
Application Report
SPRA376 - June 2002

1

TMS320VC5470/5471 Bootloader
Bill Winderweedle
Jack Rosenzweig
Denise Ombres

DSP Catalog, C5000 Hardware Applications
Software Development Systems
Software Development Systems

ABSTRACT

The TMS320VC547x devices, TMS320VC5470 and TMS320VC5471, have a master
TMS470R1x (ARM7TDMIE) microcontroller (MCU) central processing unit (CPU) with a
slave TMS320C54x digital signal processor (DSP) CPU. Bootload is accomplished through
the MCU while the DSP is held in reset. Since no ROM resides on these devices, the
bootloader code is transferred on-chip through one of several interfaces to the MCU and sent
through an internal memory interface to the DSP. This document describes a method for boot
loading through the MCU external memory interface.

Contents

1 TMS320VC5470/TMS320VC5471 Bootloader 2.
1.1 Supported Configurations 2.
1.2 Bootloading Process 2.

1.2.1 Bootloader Phase 1 2.
1.2.2 Bootloader Phase 2 3.
1.2.3 Bootloader Phase 3 4.
1.2.4 Bootloader Execution Flow Chart 5.
1.2.5 Converting DSP COFF Files Into ARM C-Language Header Files 7.

1.3 Bootloader Example 7.
1.3.1 Building the Bootloader Example 8.
1.3.2 Executing the Bootloader Example 10.

1.4 External Flash vs. External SRAM Considerations 10.

2 References 11.

Appendix A DSP and MCU Registers 12.

List of Figures

Figure 1 DSP Sub-System Memory Map for Arm Port Interface Boot Mode
(APIBN = 0 and ABMDIS = 0) 3.

Figure 2 DSP Sub-System Memory Map for Normal Boot Mode (APIBN = 1 or ABMDIS = 1) 4.
Figure 3 Bootloader Execution Flow Chart 6.
Figure 4 OUT2BOOT Format for DSP Code and Data 7.
Figure 5 Bootloader Build Flowchart 9.

TMS470R1x and TMS320C54x are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA376

2 TMS320VC5470/5471 Bootloader

Figure A–1 DSP Bank-Switching Control Register (BSCR) 12.
Figure A–2 MCU API Control Register (APIC) 12.
Figure A–3 MCU Arm Port Interface Wait-State Configuration Register (API_REG) 12.
Figure A–4 MCU Reset Control Register (CLKM_CNTL_RESET) 13.
Figure A–5 MCU DSP Phase-Locked Loop Register (DSP_REG) 13.

List of Tables

Table 1 Software Handshake Memory Locations 5.

1 TMS320VC5470/TMS320VC5471 Bootloader

This document describes the process by which the TMS470R1x (ARM7TDMIE) MCU master
processor loads code into the C54x DSP slave processor after a power-on reset.

1.1 Supported Configurations

• Both little- and big-endian loading are supported.

• Supports loading into flash or RAM memory

• Spectrum Digital TMS320VC5470/5471 EVM board

• Code Composer Studio OMAP v 2.1

• MS Visual Studio v6.0 (optional)

1.2 Bootloading Process

The MCU is responsible for setting up the DSP memory map register bits (MP/MC, OVLY,
DROM and APIBN), and copying the bootloader into internal memory shared by the DSP and
MCU via the arm port interface, before releasing the DSP from reset. The MCU clock,
DSP clock, and arm port interface internal-memory wait states must be initialized before the
bootload process is run. Manipulating the DSP memory map must be done carefully, because it
is possible to swap out the memory that the DSP is currently executing from. With this
consideration, the bootloader program has three distinct phases, each with its own memory map
configuration. Following is a description of these phases.

1.2.1 Bootloader Phase 1

Phase 1 starts with MP/MC = 0, OVLY = 0, DROM = 0 in arm port interface boot mode (see
Figure 1). When OVLY and DROM are cleared, the DSP expects to find external program
memory space. In arm-port-interface boot mode, the DSP shadows 0x3F80 – 0x3FFF into the
normal reset vector space at 0xFF80 – 0xFFFF. The following steps are executed from code at
the shadowed reset vector, starting at 0x3F80:

• Write 0xFFA8 to the DSP PMST register to set the OVLY and DROM bits for proper enabling
of internal DSP program memory space.

• Branch to address 0x3810, which is the start of the bootloader program phase 2.

C54x, Code Composer Studio, and OMAP are trademarks of Texas Instruments.

SPRA376

3 TMS320VC5470/5471 Bootloader

Hex Page 0 Program, MP/MC = 1
(Microprocessor Mode)

Hex Page 0 Program, MP/MC = 0
(Microcomputer Mode)

Hex Data

0000 OVLY = 1 OVLY = 0 0000 OVLY = 1 OVLY = 0 0000

007F

Reserved

External
Program
Space

Memory 007F

Reserved

External
Program
Space

Memory 007F

Memory-Mapped Registers,
Scratch-Pad RAM

0080
On-Chip Data

DARAM

0080 On-Chip Data
DARAM

0080 On-Chip Data DARAM
(8K 0x80 words)

1FFF
DARAM

1FFF
DARAM

1FFF
(8K-0x80 words)

2000 On-chip Data
DARAM

External 2000 On-Chip Data
DARAM

External 2000 On-Chip Data DARAM,
Arm Port Interface Accessible

37FF
DARAM,
Arm Port

Program
Space

37FF
DARAM,
Arm Port

Program
Space

37FF
Arm Port Interface-Accessible

(8K words)

3800
Arm Port
Interface-

A ibl

S ace
Memory 3800

Arm Port
Interface-

A ibl

S ace
Memory 3800

(Shadowed portion)
3FFF Accessible

y

3FFF Accessible
y

3FFF
(Shadowed portion)

4000 On-Chip Data 4000 On-Chip Data 4000 On-Chip Data SARAM
5FFF

On Chi Data
SARAM 5FFF

On Chi Data
SARAM 5FFF

On Chi Data SARAM
(8K words, data only)

6000 6000 6000 On-Chip Data SARAM
7FFF

On Chi Data SARAM
(8K words)

8000
External Data Space Memory

BFFF
External Data Space Memory

C000 DROM=1 DROM=0

External Program Space
Memory

External Program Space
Memory

DFFF

On-Chip
Program
SARAM

(8K words)
External

Data
E000 On-Chip

Program

Data
Space

Memory

F7FF F7FF F7FF

Program
SARAM

(6K words)

y

F800 Shadowed Arm Port Interface F800 Shadowed Arm Port Interface F800
External Data Space Memory

FFFF
Shadowed Arm Port Interface

DARAM (2K) FFFF
Shadowed Arm Port Interface

DARAM (2K) FFFF
External Data Space Memory

NOTE: When APIBN = 0 and ABMDIS = 0, 2K words of the arm port interface DARAM are re-mapped to program-space. All other internal
program-space RAMs are disabled in program space. Data-space RAMs may be dual-mapped to program-space via OVLY.

Figure 1. DSP Sub-System Memory Map for Arm Port Interface Boot Mode
(APIBN = 0 and ABMDIS = 0)

1.2.2 Bootloader Phase 2

Phase 2 starts with MP/MC = 0, OVLY = 1, DROM = 1 in arm port interface boot mode (see
Figure 2). When OVLY and DROM are set, the DSP expects to find internal program memory
space. In arm port interface boot mode, the DSP shadows 0x3F80–0x3FFF into the normal reset
vector space at 0xFF80–0xFFFF. The following step is executed from code in arm port
interface-accessible memory starting at 0x3810.

• Write 0x0010 to the BSCR register to clear the arm port interface boot mode bit. This takes
the DSP out of arm port interface boot mode and places it into normal boot mode, which
allows access to the C54x reset vector at the DSP program space address range
0xFF80–0xFFFF.

SPRA376

4 TMS320VC5470/5471 Bootloader

Hex Page 0 Program, MP/MC = 1
(Microprocessor Mode)

Hex Page 0 Program, MP/MC = 0
(Microcomputer Mode)

Hex Data

0000 OVLY = 1 OVLY = 0 0000 OVLY = 1 OVLY = 0 0000

007F

Reserved

External
Program
Space

Memory 007F

Reserved

External
Program
Space

Memory 007F

Memory-Mapped Registers,
Scratch-Pad RAM

0080
On-Chip

External
Program

0080
On-Chip Data

External
Program

0080
On-Chip Data DARAM

1FFF

On Chi
Data DARAM

Program
Space

Memory 1FFF

On Chi Data
DARAM

Program
Space

Memory 1FFF

On Chi Data DARAM
(8K-0x80 words)

2000 On-Chip Data
DARAM,
Arm Port

External
Program

2000 On-Chip Data
DARAM,
Arm Port

External
Program

2000
On-Chip Data DARAM,

Arm Port Interface Accessible

3FFF

Arm Port
Interface-

Accessible

Program
Space

Memory 3FFF

Arm Port
Interface-

Accessible

Program
Space

Memory 3FFF

Arm Port Interface-Accessible
(8K Words)

4000
On-Chip Data

External
Program

4000
On-Chip

External
Program

4000
On-Chip Data SARAM

5FFF

On Chi Data
SARAM

Program
Space

Memory 5FFF

On Chi
Data SARAM

Program
Space

Memory 5FFF

On Chi Data SARAM
(8K words)

6000
External Program Space

Memory

6000
On-Chip Program SARAM
(8K words program only)

6000
On-Chip Data SARAM,
(8K words data only)

7FFF
Memory

7FFF
(8K words, program only)

7FFF
(8K words, data only)

8000 8000 On-Chip Program SARAM 8000

9FFF
On Chi Program SARAM
(8K words, program only)

External Data Space Memory
A000 On-Chip Program SARAM

External Data Space Memory

External BFFF
On Chi Program SARAM
(8K words, program only) BFFFExternal

Program Space Memory C000 On-Chip Program SARAM C000 DROM=1 DROM=0

DFFF
On Chi Program SARAM

(8K Words) On-Chip External
E000 On-Chip Program SARAM

On-Chi
Program
S

External
Data-Space

FFFF FFFF
On Chi Program SARAM

(8K words) FFFF

g
SARAM Memory

Figure 2. DSP Sub-System Memory Map for Normal Boot Mode (APIBN = 1 or ABMDIS = 1)

1.2.3 Bootloader Phase 3

Phase 3 starts with MP/MC = 0, OVLY = 1, DROM = 1 in normal boot mode. Now the DSP
expects all of its program memory space to be internal. In normal boot mode the reset vector
space from 0xFF80–0xFFFF is accessible. Currently, none of the program or data memory
space has been initialized, except that the bootloader DSP program has been loaded into arm
port interface-accessible memory space from 0x3810–0x3900.

There are four handshake variables held in arm port interface memory from 0x3800 to 0x3803
used in the boot-copy process. Also, the PMST value to be used by the DSP is written to
location 0x3804. Table 1 summarizes the software handshake memory locations.

SPRA376

5 TMS320VC5470/5471 Bootloader

Table 1. Software Handshake Memory Locations

DSP
Address S/W Handshake Description

0x3800 DSP_Ready When set, signals to the MCU that the DSP is in normal boot mode.

0x3801 Prog_Buf_Ready When set, signals to the DSP that the MCU has transferred code to arm port interface
memory. This code is now ready to be transferred to runtime DSP memory.

0x3802 Data_Buf_Ready When set, signals to the DSP that the MCU has transferred data to arm port interface
memory. This data is now ready to be transferred to runtime DSP memory.

0x3803 Copy_Done When set, signals to the DSP that the MCU has completed transfer of all code and data
to arm port interface memory. The DSP can now boot from its reset vector at 0xFF80.

0x3804 PMST_VAL PMST value used by the DSP for proper configuration of its memory map

0x3900 API_BUF_START Starting address for arm port interface buffer written to by MCU for temporary storage of
code/data to be transferred by the DSP.

0x3F80 API_BUF_END Starting address for arm port interface memory shadowed to the DSP reset vector of
0xFF80 when in arm port interface boot mode.

The following steps are executed by the DSP Bootloader, which resides in arm port
interface-accessible memory starting at 0x3810:

• The DSP sets the DSP_Ready word to a value of 0x0001, which tells the MCU that the
DSP is now in normal boot mode and is ready to start the boot-copy process.

• MCU copies the code sections of the DSP program into the arm port interface transfer buffer.
When the buffer becomes full, the DSP moves the buffer contents into the DSP program
memory space. The MCU and DSP synchronize their access to the arm port interface buffer
via the Prog_Buf_Ready handshake flag. The process is repeated until the last section of the
DSP program code is copied, which is indicated by a section of zero length.

• Using the same algorithm, the data sections of the DSP program are loaded. The
Data_Buf_Ready handshake flag is used for synchronization between MCU and DSP.

• The MCU will now set the Copy_Done word to a value of ‘0x0001’, which signals to the DSP
that the boot-copy process has completed.

• Once the DSP sees the Copy_Done word equal to 0x0001, it will branch to the reset vector
at 0xFF80 and begin normal execution.

NOTE: The reset vector will now be valid since it was initialized during the program memory
boot-copy process.

1.2.4 Bootloader Execution Flow Chart

Figure 3 shows the order of actions for each processor, as well as the synchronization that
needs to occur between them to control the timing of the execution.

NOTE: The following items have been simplified for better readability of the flow chart:

• Some of the configuration steps are not shown.

• The separate loadings of the DSP program and data sections are shown as a single loop in
the flow chart; however, in reality these are done in two consecutive loops. The “arm port
interface buffer ready” handshake flag shown in the flow chart represents two separate flags:
Prog_Buf_Ready, and Data_Buf_Ready.

SPRA376

6 TMS320VC5470/5471 Bootloader

ARM

Set Arm Port Interface
Boot Mode

Copy DSP Loader
to Arm Port Interface

Release DSP From Reset

“DSP Ready”
Flag Set

Copy Next Section of DSP
Bits to Arm Port Interface

Buffer

Arm Port
Interface Buffer Full,

or Last Section

Set “Arm Port Interface
Buffer Ready” Flag

Set “Copy Done” Flag
Start Main Application

Arm Port
Interface Buffer Ready”

Flag Cleared

Last Section of
DSP Bits?

Branch to Bootloader
Disable Arm Port Interface

Boot Mode

Set “DSP Ready” Flag

“Arm Port
Interface Buffer

Ready”
Set

Copy Arm Port Interface
Buffer to

Run-Time Destination

Clear “Arm Port Interface
Buffer Ready” Flag

“Copy Done”?

Branch to DSP Application

DSP

NoNo

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Figure 3. Bootloader Execution Flow Chart

SPRA376

7 TMS320VC5470/5471 Bootloader

1.2.5 Converting DSP COFF Files Into ARM C-Language Header Files

Since the MCU and the DSP are different types of processors, the DSP code needs to be
converted into a format usable by the MCU. To do this, the DSP COFF file output is converted
into MCU C language header files, which declare arrays initialized with the contents of the COFF
file. This conversion can be accomplished by using the converter program OUT2BOOT. This
converter uses the TI assembly language tool HEX500 to extract the DSP code from the COFF
file. See the TMS320C54x Assembly Language Tools User’s Guide (SPRU102) for information
on the common object file format (COFF) and the HEX500 conversion utility. The OUT2BOOT
program calls HEX500 to convert the COFF file into two binary output files: one for program
memory code and the other for data memory contents. Then, OUT2BOOT converts these two
binary files into the C language header files, which are used as include files with the MCU C
code. The combined MCU and DSP code can then be placed into flash or ROM to be accessed
from the MCU external memory interface.

The header file consists of an array that holds the sections of code/data (see Figure 4). A record
consisting of the following fields represents each section:

• The section length in 16-bit words

• The DSP destination run-time address for the section.

• The code/data words for the section.

Array [] = {
length, address, data, …
length, address, data, …
length, address, data, …
0 // ‘0’ in the final line signifies the end of program code or data
}

Figure 4. OUT2BOOT Format for DSP Code and Data

1.3 Bootloader Example

Included with this application report is an example of how to load a program into the
DSP processor from the MCU. This DSP application continuously toggles the XF pin, which
flashes an LED. Listed below are the MS VC++ Studio and Code Composer Studio projects,
which build the individual components of this example.

NOTE: The compressed file which accompanies this application report, c547x_bootloader.zip,
should be copied to the Code Composer Studio <drive>:\ti\myprojects directory and extracted
there into <drive>:\ti\myprojects/c547x_bootloader. All directories referenced below and in the
following build example are relative to the c547x_bootloader directory.

• .\out2boot: MS VC++ Studio project which builds the out2boot.exe conversion utility. This
tool converts a DSP COFF File into an ARM C-language header. The source code is
provided, as well as the executable, .\out2boot\out2boot.exe.

• .\dsp_proj: Code Composer Studio project which builds a simple DSP application to toggle
the XF pin. The DSP application can be modified or replaced to include new code.

• .\dsp_boot: Code Composer Studio project which builds the C54x-side bootloader program,
dsp_boot.out. This program copies the DSP application from arm port interface memory to
its runtime location in memory. This project should not be modified.

SPRA376

8 TMS320VC5470/5471 Bootloader

• .\arm_boot: Code Composer Studio project which builds the ARM-side bootloader program,
arm_boot_le_flash.out for little-endian or arm_boot_be_flash.out for big-endian. The
program initializes the device and copies the DSP bootloader and the DSP application into
arm port interface memory. Once this is completed, the ARM main program simply loops
indefinitely, while the DSP application continuously flashes the LED. This project can be
modified to include other arm or DSP code (as modified by out2boot) to be loaded by the
MCU.

1.3.1 Building the Bootloader Example

To build the bootloader example, follow these steps (Figure 5):

1. If needed, use the MS VC++ Studio workspace file, .\out2boot\out2boot.dsw, to build the
conversion utility .\out2boot\out2boot.exe. Otherwise, just use the existing executable
and skip this step.

2. Configure Code Composer Studio using provided configuration files:

• Run Code Composer Studio Setup program

• Choose File–>Import menu option.

• Click Advanced button.

• Browse to the .\config directory, and select a .Code Composer Studio file that is appropriate
for your memory setup. Different configuration files are provided to support various memory
layouts. For example, choose c5471_le_ramlow.ccs for little-endian, RAM-low memory.

3. Using the C54x Code Composer Studio project file, .\dsp_proj\dsp_proj.prj, build the
sample DSP application .\dsp_proj\dsp_proj.out. The post-link step of this project will
invoke the out2boot utility on the dsp_proj.out image, and copy the resulting C-header
files, dsp_proj_code.h and dsp_proj_data.h, into the. \arm_boot directory.

4. Using the C54x Code Composer Studio project file, .\dsp_boot\dsp_boot.prj, build the
DSP bootloader program .\dsp_boot\dsp_boot.out. The post-link step of this project will
invoke the out2boot utility on the dsp_boot.out image, and copy the resulting C-header
file, dsp_boot_code.h into the. \arm_boot directory.

5. Choose the ARM Code Composer Studio project file appropriate for your memory byte
ordering, .\arm_boot\arm_boot_le.prj or .\arm_boot\arm_boot_be.prj, and use it to build
the ARM bootloader program, .\arm_boot\arm_boot_le_flash.out for little-endian or
.\arm_boot\arm_boot_be_flash.out for big-endian. When switching between big- and
little-endian modes, do a Project–>Rebuild All within Code Composer Studio because
most of the files within each project are the same and will not be re-compiled with a
Project–>Build.

SPRA376

9 TMS320VC5470/5471 Bootloader

dsp_proj
project

files

Project Build

dsp_proj.out

out2boot

dsp_boot
project

files

Project Build

dsp_boot.out

out2boot out2boot

dsp_proj_code.h
dsp_proj_data.h

dsp_boot_code.harm_boot
project

files

Project Build
arm_boot_le

or
arm_boot_be

arm_boot_le_flash.out
or

arm_boot_be_flash.out

Figure 5. Bootloader Build Flowchart

SPRA376

10 TMS320VC5470/5471 Bootloader

1.3.2 Executing the Bootloader Example

To execute the bootloader example, follow these steps (NOTE: All directories referenced below
are relative to the Code Composer Studio root installation directory and project sub-directory):

1. On the C5471 EVM board, configure JP19 for big-endian (1–2) or little-endian (2–3) mode.
Also, ensure that JP20 is set to the 32-bit ROM (Flash) Size (1–2). The arm_boot code
examples included with the bootloader use ARM 32-BIS. The chosen byte ordering and
ARM instruction set must match those followed during the build of the bootloader
example.

2. Start Code Composer Studio. This should run the Parallel Debug Manager.

3. From the Parallel Debug Manager open ARM Code Composer Studio.

4. From the Parallel Debug Manager open C54x Code Composer Studio.

5. In the C54x Code Composer Studio debug window, make sure that the DSP is in the
running state. This will be indicated at the bottom of the window. If it is not, then execute
Debug–>Reset CPU, followed by Debug–>Run Free.

6. In the ARM Code Composer Studio debug window, load the executable:
.\arm_boot\arm_boot_le_flash.out for little-endian or
.\arm_boot\arm_boot_be_flash.out for big-endian.

7. In the ARM Code Composer Studio debug window, execute Debug–>Run. The DS1 LED
should begin to blink.

1.4 External Flash vs. External SRAM Considerations

Debug is difficult within flash or EPROM devices because of the lack of support for S/W
breakpoints due to the inability to do instantaneous writes to these types of memories. Writes to
flash must be performed through the use of custom algorithms developed for use with the 547x
devices or other means. Spectrum Digital has created algorithms for use with their SD Flash
utility to program the flash memories on their 5470/5471 EVM boards. The bootloader example
code has some modifications to allow for booting from external flash devices and compatibility
with debug within external SRAM. These special modifications are in the form of embedded
assembly code instructions within the c boot vector program file,
.\arm_boot\intvectors_be_flash.c for big-endian or .\arm_boot\intvectors_le_flash.c for
little-endian, to properly configure the ARM MEMINT, API_REG, and the DSP. This code is
linked at the ARM reset vector 0x0000:0000. Similar code is replicated within the Code
Composer Studio Gel file, .\gel\c5471_be_ramlow_mcu.gel for big-endian or
.\gel\c5471_le_ramlow_mcu.gel for little-endian, to allow for proper setup when debugging
from external SRAM mapped to the ARM reset vector. The executable produced from the Code
Composer Studio project build is compatible for both external SRAM loading and external flash
image building and booting. Within the Code Composer Studio external SRAM debug session,
the bootloader COFF will be loaded at the C entry point label “c_int00”. When executing the
bootloader from external flash, the C boot vector program will take care of the necessary device
configuration, as previously mentioned, before branching to the C entry point.

SPRA376

11 TMS320VC5470/5471 Bootloader

2 References
1. TMS320C54x Assembly Language Tools User’s Guide (SPRU102).

2. TMS320C54x DSP CPU and Peripherals Reference Set Volume 1 (SPRU131).

3. TMS320VC547x CPU and Peripherals Reference Guide (SPRU038).

4. TMS320VC5471 Fixed-Point DSP Data Manual (SPRS180).

5. TMS320VC5470 Fixed-Point Digital Signal Processor (SPRS017).

6. TMS470R1x 32-Bit RISC Microcontroller Family User’s Guide (SPNU134).

7. TMS470R1x Assembly Language Tools User’s Guide (SPNU118).

8. TMS320VC5470/5471 Evaluation Module Technical Reference (SPRU135).

9. Spectrum Digital SD Flash Utility (http://www.spectrumdigital.com)

SPRA376

12 TMS320VC5470/5471 Bootloader

Appendix A DSP and MCU Registers

15 12 11 10 8

BNKCMP PS-DS reserved

R/W-1111 R/W-1 R/W-0

7 5 4 3 2 1 0

reserved ABMDIS HINT APIMODE reserved EXIO

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R/W = Read/Write

Figure A–1. DSP Bank-Switching Control Register (BSCR)

15 8

reserved

R-0

7 4 3 2 1 0

reserved HINT DSPINT APIMODE reserved

R-0 R-0 W-0 R-0 R-0

Legend: R = Read only; W = Write only

Figure A–2. MCU API Control Register (APIC)

31 16

reserved

R-0

15 10 9 6 5 4 3 0

reserved APICS APIBS APIWS

R-0 R-0 W-0 R-0

Legend: R = Read only; W = Write only

Figure A–3. MCU Arm Port Interface Wait-State Configuration Register (API_REG)

SPRA376

13 TMS320VC5470/5471 Bootloader

31 16

reserved

R-0

15 8

reserved

R-0

7 2 1 0

reserved
EXTERNAL

RESET
DSP

RESET

R-0 R/W-0 R/W-1

Legend: R = Read only; R/W = Read/Write

Figure A–4. MCU Reset Control Register (CLKM_CNTL_RESET)

31 24

reserved

R-0

23 16

reserved

R-0

15 11 10 9 8

reserved
DSP

MPNMC
DSP

APIBN
DSPPLL

SHUTOFF

R-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

DSPPLL
FRRSN

DSPPLL
FRPLLDIVN

DSPPLL
FRPLL-
ONOFF

DSPPLL
FRDIV0

DSPPLL
FRDIV1

DSPPLL
FRDIV2

DSPPLL
FRDIV3

DSPPLL
FRDIVN

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write

Figure A–5. MCU DSP Phase-Locked Loop Register (DSP_REG)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

