{i’
TEXAS Application Brief
INSTRUMENTS SPRA534

Whiting Interruptible Looped Code for the
TMS320C6x DSP

Jackie Brenner DSP Applications

Abstract

Digital signal processing algorithms are loop intensive by nature, which presents a set of choices
for the programmer working with the Texas Instruments (TI™) TMS320C6x digital signal
processor (DSP). Loops are implemented on the C6x with a branch instruction. To maintain the
determinism of operations within the C6x pipeline, a branch and its five delay slots are non-
interruptible. The C6x code generation tools provide a high degree of flexibility for interruptibility.
This application brief illustrates this flexibility and examines the code generated by various
interruptibility strategies.

Contents
(0] o] [T o o FO OO PP PP PPPPPP 1
S T0] (01170] I PSSP PP OT PP PUPP 2
NON-INEEITUPLIDIE COU....... ettt e bt e bt e e et ae e e st e e nibeeeeas 3
Code That is AIWays INTEITUPLIDIEoiiiiiiie e e e 6
INEITUPE TRFESNONU. ... ettt e e st e e st be e e sbr e e e e bbeeennes 8
Optimum Performance in C With INterruptiDilityocuueeiiriiii e 17
(0] o1 1] o] o E T O T PPV PP TS OUPPTOTPPPTPRRP 20
Ry CT (] €T o PO P SO PTRR 20

Problem

A requirement in any real-time system is the ability to respond to an interrupt. An
interrupt is an asynchronous event that requires the CPU'’s attention and service. The
flow of the main program is stopped to service the interrupt. After the interrupt is serviced,
the main program resumes execution from the point it left off. DSPs compute algorithms
quickly within the time period allowed by these asynchronous events in the real-time
system. DSP algorithms are loop intensive by nature, which presents a set of choices for
the C6x programmer.

Loops are implemented on the C6x with a branch instruction. On the C6x, a branch
instruction executes in a single cycle but the effect of the branch is delayed by five
cycles. To maintain the determinism of operations within the C6x pipeline, interrupts are
disabled during a branch and these five cycles, or delay slots. All loops shorter than six
cycles always have a pending branch. Therefore, all loops smaller than six cycles are
non-interruptible.

Digital Signal Processing Solutions April 1999

Application Brief Q’
SPRA534

This may or may not cause a problem in your system. Assume that you have a single
cycle loop that is performed 100 times. As long as your interrupt threshold is longer than
500 ns (5 ns per cycle x 100 cycles), the loop can remain non-interruptible. If the
interrupt threshold is less than 500 ns, you must increase the iteration interval (or the
number of cycles required to do one instance of the loop) to six or greater to allow
interrupts.

Solution

The C6x code generation tools provide a high degree of flexibility for interruptibility. The
compiler option —min specifies an optional interrupt threshold value, n. The threshold
value specifies the maximum number of clock cycles that the compiler can disable
interrupts. When using the —min option, the compiler and assembly optimizer analyze
both the loop structure and the number of times the loop will be iterated to determine the
maximum number of cycles it will take to execute the loop. If the tools can determine that
the maximum number of cycles is less than the threshold value, the compiler/assembly
optimizer will create non-interruptible code. Otherwise, the tools generate interruptible
looped code that will, in most cases, not degrade the performance of that loop.

The compiler command line option —min can be used for an entire module. In addition, a
pragma can be used to specify the threshold on a function-by-function basis. This
pragma is of the form:

#pragma FUNC_INTERRUPT_THRESHOLD(func, threshold);

The #pragma overrides the —min command line option. If a threshold of less than 0 is
specified, it is assumed that the function will never be interrupted.

Let us use an example to examine three cases: 1) code is never interruptible (nis
infinity), 2) the code is always interruptible (nis 1) and 3) we give a specific interrupt
threshold.

We use the following C /linear assembly code and examine the assembly code generated
to see the effect of the interrupt threshold.

/* Prototype */
short DotP(short *m, short *n, short count);

/* Declarations */

short a[40] =
{40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18
,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1};

short x[40] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, 36,37,38,39,40};
shorty = 0;

/* Main Code */
main()

y = DotP(a, x, 40);

Writing Interruptible Looped Code for the TMS320C6x DSP 2

Application Brief Q’
SPRA534

This C file declares data arrays and makes a call to the function DotP that we have
implemented in linear assembly. Note that it is our intention to run this procedure 40
times but we do not specify a trip count range in the linear assembly procedure below.

A trip count range can be used to define both the minimum and maximum number of
times we expect the loop to run. The minimum input value for the trip count allows us to
determine whether we can use software pipelining as a method to implement the loop.
The maximum trip count value helps determine whether we can implement a non-
interruptible loop given a particular interrupt threshold.

Another piece of information we can specify is a trip count factor, which indicates that the
trip count is a multiple of some known number. The compiler can use the trip count factor
along with the trip count range to unroll the loop to improve performance.

Software pipelining is a technique that takes advantage of the parallelism in the C6x’s
architecture by scheduling loop instructions so that we are working on different iterations
of the loop at the same time.

title "dotp_nt.sa"

.def _DotP
.sect "code"
_DotP: .cproc p_m, p_n, count
.reg m, n, prod, sum
zero sum
loop:
Idh *p_m++, m
Idh *p_n++,n
mpy m, n, prod
add prod, sum, sum
[count] sub count, 1, count
[count] b loop

.return sum

.endproc

Non-Interruptible Code

We compile the above code with the following options: —gs —02 —k -mw —mt —mi. The —g
option enables symbolic debug, —s is for interlisting C and assembly language
statements, and —o02 is the level of the optimizer that enables software pipelining. The —k
option keeps the assembly language file, -mw gives us a report on how well the compiler
is able to implement our loop, and —mt indicates we assume no aliasing (aliasing refers to
multiple pointers pointing to the same object).

Writing Interruptible Looped Code for the TMS320C6x DSP 3

Application Brief
SPRA534

g

In this command line we did not specify a value for n with the —mi option. Therefore, the
code generator will create code that has a threshold equal to infinity. If we do not use the

—mi option, the default behavior of the compiler is enabled. This default behavior

disables interrupts around all loops.

Here is an excerpt from the assembly code that is generated. We focus our attention on

the loop kernel.

kkkkkkkkkkkhkhkhkkkkkkkkk * kkkkkkkkkkkhhhhkkkkkkkkk * *

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
:* Date/Time created: Thu Mar 11 07:27:24 1999

kkkkkkkkkkkhkhkhhkkkkkkkkk * kkkkkkkkkkkhhhhkkkkkkkkxk * *
)

kkkkkkkkkkkhkhkhkkkkkkkkk * kkkkkkkkkkkhhkhkkkkkkkkxk * *

;* GLOBAL FILE PARAMETERS

*

;¥ Architecture : TMS320C6200
;¥ Endian . Little

i* Interrupt Threshold : Infinite

;* Memory Model : Small

;* Callsto RTS : Near

;* Pipelining : Enabled

;* Speculative Load : Threshold =0
;* Epilog Collapsing : Enabled

;* Prolog Collapsing : Enabled

;* Redundant Loops : Enabled

;* Code Size Opt. : Disabled

* Memory Aliases : Presume not aliases (optimistic)
;* Debug Info : Debug

-k

* *kkkkkkkkk * *kkkkk * *kkkkk * * *kkkkk *

SOFTWARE PIPELINE INFORMATION

Loop label : loop

Known Minimum Trip Count
Known Max Trip Count Factor
Loop Carried Dependency Bound(®) : 0
Unpartitioned Resource Bound :1
Partitioned Resource Bound(*) :1
Resource Partition:

01
01

FUETETETETETETETETE TR TETETE TR T A TR TE TR T TR T TR

; A-side B-side

; .L units 0 0

; .S units 0 1*

; .D units 1* 1*

; .M units 1* 0

; .X cross paths 1* 0

; .T address paths 1* 1*

; Long read paths 0 0

; Long write paths 0 0

; Logical ops (.LS) 0 0 (.L or.S unit)
; Addition ops (.LSD) 1 1 (.Lor.Sor.Dunit)
; Bound(.L .S .LS) 0 1*

Bound(.L .S .D .LS .LSD) 1* 1*

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief

SPRA534

;¥ Searching for software pipeline schedule at ...

i il =1 Schedule found with 8 iterations in parallel

* Done

;* Speculative Load Threshold : 14

;* Collapsed Epilog Stages : 7

;* Prolog not removed : Ran out of functional units

;* Collapsed Prolog Stages : 0

. PIPED LOOP PROLOG
LDH .D2T2 *B5++,B4 ;114

I LDH .D1T1 *A3++A0 ;115]

[BO] SUB .L2 BO0,0x1,B0 ;119

I LDH .D2T2 *B5++,B4 ; @|14

I LDH .D1T1 *A3++A0 ; @|15]

[BO] B .S2 loop ;|20

|[BO] SUB .L2 BO0,0x1,B0 ; @19

I LDH .D2T2 *B5++,B4 ; @@|14|

I LDH .D1T1 *A3++A0 ; @@][15]

[BO] B .S2 loop ; @[20]

||[BO] SUB .L2 BO0,0x1,BO ; @@|19|

I LDH .D2T2 *B5++,B4 ; @@@|14|

I LDH .D1T1 *A3++A0 , @@@|15|

[BO] B .S2 loop ; @@|20]

I[BO] SUB .L2 BO0,0x1,B0 , @@@|19]

| LDH .D2T2 *B5++,B4 , @@Q@@|14|

I LDH .D1T1 *A3++A0 , @@@@]|15]
MPY .M1X B4,A0,A4 ;116]

I[BO] B .S2 loop , @@@|20]

|I[BO] SUB .L2 BO0,0x1,B0 , @@@@|19]

I LDH .D2T2 *B5++,B4 , Q@@@@|14]

I LDH .D1T1 *A3++A0 , @@@@@|15|
MPY .M1X B4,A0A4 , @]16]

|[BO] B .S2 loop , @@Q@@|20]

[|[BO] SUB .L2 BO0,0x1,BO ,@@@@@|19|

| LDH .D2T2 *B5++,B4 ,@Q@@Q@@@|14|

| LDH .D1T1 *A3++,A0 , Q@@@@@|15|

loop: ; PIPED LOOP KERNEL

[Al] SUB .S1 A11Al ;

I ADD L1 A4,A5A5 ;117

I MPY .M1X B4,A0,A4 , @@|16]

|[[BO] B .S2 loop , @@Q@Q@@|20]

|[BO] SUB .L2 BO,0x1,B0 , @@@@@@|19|

||[Al] LDH .D2T2 *B5++B4 , Q@@@Q@@@|14|

|[A1] LDH .D1T1 *A3++A0 , QQ@@@@@|15|

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief Q’
SPRA534

Note we have created a single cycle loop with all instructions included in a pending
branch and therefore non-interruptible. This code also illustrates the software pipelining
technique. We perform all instructions required by the loop in parallel. Instructions that
execute in parallel are also known as execute packets. The instructions required by the
loop include the loading of two data values, multiplying two values, adding the result of
the multiply to a summing register, decrementing a loop counter, and branching based on
the value of that loop counter. But we are working on different iterations of the loop at the
same time, as shown by the @in the comment field. While we are doing our first add (no

@), we are doing our third multiply, our sixth branch, our seventh subtraction of the loop

counter, and our eighth load of the two data values.

Multiple Assignment

The software pipelining techniqgue makes use of a concept called multiple assignment of
registers. We mentioned above that we are working on different iterations of the loop in
parallel. We are doing a load every cycle and a multiply every cycle in our loop above.
However, our multiply instruction uses values that were previously loaded. In the case
above, we multiply values that were loaded into registers B4 and AO five cycles prior to

the current cycle.

This has implications for interruptibility. All instructions that begin executing before an
interrupt is taken will complete. If an interrupt occurs between the first loop iteration load
and the first loop iteration multiply, we will get an invalid result. The reason for this is that
the data load for the fifth loop iteration completes before we start the multiply for the first
loop iteration. Therefore, incorrect data inputs are provided to the multiplier for the first

four loop iterations.

To prevent an invalid result, the compiler by default turns off interrupts prior to entering a

software pipelined loop and re-enables them after exiting a software pipelined loop
whenever multiple assignment is utilized. (Please see the TMS320C62x/C67x
Programmer’s Guide for more information on single and multiple assignment.)

Code That is Always Interruptible

In our second example case we compile the same code but add the value of 1 to the —mi

option (—mil). This says we always want the code to be interruptible.

The following code is generated:

*kkkkkkkkkkhhkkkkkkkkkkkkkkx kkkkkkkkkkkhhkhkkkkkkkkkkkkx *kkkk

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
:* Date/Time created: Thu Mar 11 08:07:40 1999

kkkkkkkkkkkhhkkkkkkkkkkkkkkx kkkkkkkkkhkkhhhhkkkkkkkkkkkkx *kkkk

;* GLOBAL FILE PARAMETERS

*

;* Architecture : TMS320C6200
;* Endian : Little

;* Interrupt Threshold : 1

;* Memory Model : Small

;* Callsto RTS : Near

;* Pipelining : Enabled

;* Speculative Load : Threshold =0
ok

Epilog Collapsing : Enabled

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief
SPRA534

Prolog Collapsing : Enabled

Redundant Loops : Enabled

Code Size Opt. : Disabled

Memory Aliases : Presume not aliases (optimistic)
Debug Info : Debug

FTx TR TR TR TR

* *kkkkkkkkk * *kkkkk * *kkkkkkkkk * *kkkkk * *

SOFTWARE PIPELINE INFORMATION

Loop label : loop

Known Minimum Trip Count
Known Max Trip Count Factor
Loop Carried Dependency Bound(®) : 0
Unpartitioned Resource Bound :1
Partitioned Resource Bound(*) :1
Resource Partition:

01
01

; A-side B-side

; .L units 0 0

; .S units 0 1*

; .D units 1* 1*

; .M units 1* 0

; .X cross paths 1* 0

; .T address paths 1* 1*

; Long read paths 0 0

; Long write paths 0 0

; Logical ops (.LS) 0 0 (.L or.S unit)
; Addition ops (.LSD) 1 1 (.Lor.Sor.Dunit)
; Bound(.L .S .LS) 0 1*

Bound(.L.S .D .LS .LSD) 1* 1*

U TR TR TETETETETETE TR TE TR T A TR TR TR TE TR TR TR TE TR TR TR TR TR TR TE TR T TR TR

Searching for software pipeline schedule at ...
il =6 Schedule found with 2 iterations in parallel
Done

Loop is Interruptible
Speculative Load Threshold : 2
Collapsed Epilog Stages : 1
Collapsed Prolog Stages : 1

loop: ; PIPED LOOP KERNEL

[BO] B .S2 loop 7 119]

NOP 2

MPY .M1X B4,A0,A4 ; |15]
[Al] LDH .D2T2 *B5++,B4 ; @|13]
II[A1] LDH .DIT1 *A3++A0 , @14

[A2] SUB .D1 A21,A2 ;
I[A1] SUB .L1 A11A1 ;
|| ['{A2] ADD .S1 A4,A5A5 |16
[|[BO] SUB .L2 BO0,0x1,BO ; @]18]

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief
SPRA534

g

This creates a loop kernel that has six execute packets and is therefore interruptible.

Note also that we no longer have multiple assignment for registers B4 and AQ. This code
obeys single assignment. There is no pending next iteration load that occurs before the
multiply happens. Now if there is an interrupt between the load and the multiply, the

result will be correct because the completed load is in the same loop iteration as the

multiply.

Interrupt Threshold

For our third example case, let us specify an interrupt threshold of 100 with a —mi100.
We still do not modify the linear assembly to specify a trip count range or trip count factor.

Here is an excerpt from the output of the assembly optimizer:

kkkkkkkkkkkhhhhkkkkkkkkk * kkkkkkkkkkkhhkhkkkkkkkkk * *kkkk

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
* Date/Time created: Thu Mar 11 09:03:57 1999

kkkkkkkkkkkhhkhhkkkkkkkkk * kkkkkkkkkkkhkhkkkkkkkkkkkkkkx *kkkk
)

. * *kkkkkkkkk * *kkkkk * *kkkkk * * *kkkkk *
’

;* GLOBAL FILE PARAMETERS

ok

;¥ Architecture : TMS320C6200
;¥ Endian . Little

;* Interrupt Threshold : 100

;* Memory Model : Small

;* Callsto RTS : Near

;* Pipelining : Enabled

;* Speculative Load : Threshold =0
;* Epilog Collapsing : Enabled

;* Prolog Collapsing : Enabled

;* Redundant Loops : Enabled

;* Code Size Opt. : Disabled

* Memory Aliases : Presume not aliases (optimistic)
;* Debug Info : Debug

-k

’
rkkkkkkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhkkkkhkkhhkkhkkkkkkkkkkhhkkkk

SOFTWARE PIPELINE INFORMATION

*

*

* Loop label : loop

* Known Minimum Trip Count 01

* Known Max Trip Count Factor :1

* Loop Carried Dependency Bound(®) : 0
* Unpartitioned Resource Bound :1

;* Partitioned Resource Bound(*) :1
*

*

*

*

*

*

*

*

Resource Partition:
A-side B-side

.L units 0 0
.S units 0 1*
.D units 1* 1*
.M units 1* 0

.X cross paths 1* 0
; .T address paths 1* 1*

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief Q’
SPRA534

Long read paths 0 0
Long write paths 0 0
Logical ops (.LS) 0 0 (.L or.S unit)
Addition ops (.LSD) 1 1 (.Lor.Sor.Dunit)
Bound(.L .S .LS) 0 1*

Bound(.L .S .D .LS .LSD) 1* 1*

TR TR TR TR TR T

Searching for software pipeline schedule at ...
ii = 6 Schedule found with 2 iterations in parallel
Done

Loop is Interruptible
Speculative Load Threshold : 2
Collapsed Epilog Stages : 1
Collapsed Prolog Stages : 1

TR TETETETE TR TR TR TR

loop: ; PIPED LOOP KERNEL

[BO] B .S2 loop ; 129]

NOP 2

MPY .M1X B4,A0,A4 : |15]
[A1] LDH .D2T2 *B5++,B4 ; @]13]
[|[A1] LDH .D1T1 *A3++,A0 , @]14]

[A2] SUB .D1 A21A2 :
|[A1] SuB .L1 A1,1A1 :
|| [[A2] ADD .S1 A4,A5A5 ;16|
[[[BO] SUB .L2 BO0,0x1,BO , @[18]

Note that this is identical to the —mil case. Because we did not specify a maximum trip
count or trip count factor, the assembly optimizer creates code that is interruptible, with
an iteration interval greater than or equal to six, and obeys single assignment.

Maximum Trip Count

Now let us modify the linear assembly to specify both a minimum and a maximum trip
count and a trip count factor with the .trip directive.

title "dotp_ldh.sa"

.def _DotP
.sect "code"
_DotP .cproc p_m, p_n, count
.reg m, n, prod, sum
zero sum
loop: trip 8, 40, 2 ; min. is 8, max. is 40, loop count is

; always a multiple of 2
[dh *p_m++, m

Writing Interruptible Looped Code for the TMS320C6x DSP 9

Application Brief
SPRA534

[dh *p_n++,n

mpy m, n, prod

add prod, sum, sum
[count] sub count, 1, count
[count] b loop

.return sum
.endproc

Now let us look at the output of the assembly optimizer when compiled with the —gs —02

—k —mw -mt —mi100 options:

*kkkkkkkkkkhhkhkkkkkkkkxk * kkkkkkkkkkkhhkkhkkkkkkkkk * *kkkkkk

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
* Date/Time created: Mon Mar 29 12:22:43 1999

kkkkkkkkkkkhhkhkkkkkkkkk *kkkkkkkkkkhhkkkkkkkkkkkkkkx *kkkkkk

* GLOBAL FILE PARAMETERS

,* Architecture : TMS320C6200
;* Endian . Little

;* Interrupt Threshold : 100

;* Memory Model : Small

;* Callsto RTS . Near

;* Pipelining : Enabled

;* Speculative Load : Threshold =0
;* Epilog Collapsing : Enabled

;* Prolog Collapsing : Enabled

;* Redundant Loops : Enabled

;* Code Size Opt. : Disabled

;* Memory Aliases : Presume not aliases (optimistic)
;* Debug Info : Debug

ok

* * *kkkkk * *kkkkk * *kkkkk * * *kkkkk * *%

SOFTWARE PIPELINE INFORMATION

Loop label : loop

Known Minimum Trip Count 8
Known Maximum Trip Count 140
Known Max Trip Count Factor : 2
Loop Carried Dependency Bound(®) : 0
Unpartitioned Resource Bound :1
Partitioned Resource Bound(*) :1
Resource Partition:

FTRTETETETETETETETETETE TR TE TR TR TR TR TR TR TR

; A-side B-side

; .L units 0 0

; .S units 0 1*

; .D units 1* 1*

; .M units 1* 0

; .X cross paths 1* 0

; .T address paths 1* 1*

; Long read paths 0 0

; Long write paths 0 0

; Logical ops (.LS) 0 0 (.L or.S unit)

Addition ops (.LSD) 1 1 (.Lor.Sor.Dunit)

Writing Interruptible Looped Code for the TMS320C6x DSP

10

Application Brief
SPRA534

* Bound(.L .S .LS) 0 1*
* Bound(L.S.D.LS.LSD) 1* 1*
;* Searching for software pipeline schedule at ...
* ii =1 Schedule found with 8 iterations in parallel
* Done
;* Speculative Load Threshold : 14
;* Collapsed Epilog Stages : 7
-k
;* Prolog not removed : Ran out of functional units
;* Collapsed Prolog Stages : 0
; loop: trip 8,40,2
LDH .D2T2 *B5++,B4 k]
I LDH .D1T1 *A3++,A0 ;14|
LDH .D2T2 *B5++,B4 ; @|13
I LDH .DIT1 *A3++,A0 ; @14
[BO] B .S2 loop ; 129]
I LDH .D2T2 *B5++,B4 ; @@|13]
I LDH .D1T1 *A3++A0 ; @@[14
[BO] B .S2 loop ; @19
I LDH .D2T2 *B5++,B4 , @@@|13|
I LDH .D1T1 *A3++A0 , @@@|14|
[BO] B .S2 loop , @@|19|
I LDH .D2T2 *B5++,B4 , @@@O@|13|
I LDH .D1T1 *A3++A0 , @@@@|14|
MPY .M1X B4,A0,A4 ;15|
I[BO] B .S2 loop , @@@|19]
I LDH .D2T2 *B5++,B4 , @@@@@|13|
I LDH .D1T1 *A3++A0 , @@@@@|14|
MPY .M1X B4,A0A4 ; @[195]
|[BO] B .S2 loop , @@Q@@|19]
| LDH .D2T2 *B5++,B4 ,@Q@@@@@|13|
| LDH .D1T1 *A3++A0 ,@@@@@@|14|
loop: ; PIPED LOOP KERNEL
[A1] SUB .S1 Al11A1l ;
I ADD L1 A4,A5A5 ;|16
I MPY .M1X B4,A0,A4 , @@|15]|
|[[BO] B .S2 loop , @Q@Q@Q@@|19]
[|[BO] SUB .L2 BO0,0x1,BO ,0Q@@Q@@|18]
||[Al] LDH .D2T2 *B5++,B4 , Q@@@@@@|13|
|[A1l] LDH .D1T1 *A3++A0 , Q@@@Q@@@|14|

Writing Interruptible Looped Code for the TMS320C6x DSP

Application Brief Q’
SPRA534

Now we again have a single cycle loop because we specified a maximum trip count of
40, which is below the interrupt threshold set. We can generate this same single cycle
loop as long as the interrupt threshold is equal to or greater than 41.

Trip Count Factor

Specifying a trip count range and trip count factor can improve the performance of the
loop even when the interrupt threshold is less than the maximum trip count. We
mentioned above that the compiler can use the trip count factor along with the trip count
range to unroll the loop to improve performance.

Let us take another look at the .trip directive we used in our last code example:

trip 8, 40, 2 ; min. is 8, max. is 40, loop count is
; always a multiple of 2

Our minimum trip count is 8, our maximum trip count is 40, and our trip count factor is 2
(the loop count will always be a multiple of 2).

We now change our interrupt threshold value to be 20 cycles with the —mi20 compiler
option.

Here is an excerpt from the output of the assembly optimizer:

* *kkkkkkkkk * *kkkkk * *kkkkk * * *kkkkk * *%

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
:* Date/Time created: Mon Mar 29 12:18:19 1999

TETETETETETETE TR TR TR TR TR TR T

Writing Interruptible Looped Code for the TMS320C6x DSP

*kkkkkkkkk *kkkkk *kkkkk * *kkkkk * *%

* GLOBAL FILE PARAMETERS

Architecture : TMS320C6200
Endian : Little

Interrupt Threshold : 20

Memory Model : Small

Calls to RTS : Near

Pipelining : Enabled
Speculative Load : Threshold = 0
Epilog Collapsing : Enabled
Prolog Collapsing : Enabled
Redundant Loops : Enabled
Code Size Opt. : Disabled
Memory Aliases : Presume not aliases (optimistic)
Debug Info : Debug

12

Application Brief
SPRA534

SOFTWARE PIPELINE INFORMATION

*

*

* Loop label : loop

* Loop Unroll Multiple 12X

* Known Minimum Trip Count 14
* Known Maximum Trip Count 120
* Known Max Trip Count Factor :1
* Loop Carried Dependency Bound(®) : 0
* Unpartitioned Resource Bound : 2
* Partitioned Resource Bound(*) :2
* Resource Partition:

* A-side B-side

* L units 0 0

* .S units 1 0

* D units 2* 2*

* .M units 1 1

;¥ .Xcross paths 1 1

* T address paths 2* 2*

* Long read paths 0 0

* Long write paths 0 0

* Logical ops (.LS) 0 0 (.L or.S unit)

* Addition ops (.LSD) 1 2 (.L or.Sor.D unit)
* Bound(.L.S.LS) 1 0

* Bound(.L.S.D.LS.LSD) 2* 2*

*
*
*
*
*
*
*
*
*
*

Searching for software pipeline schedule at ...
il =6 Schedule found with 2 iterations in parallel
Done

Loop is Interruptible
Speculative Load Threshold : 4
Collapsed Epilog Stages : 1
Collapsed Prolog Stages : 1

; loop: trip 8,40,2
loop: ; PIPED LOOP KERNEL
[BO] B .S1 loop ; 129]
NOP 1
MPY .M2X B7,A5,B8 7 |15]

MPY .M1X B6,A0,A6 7 115]

|| [A1]
I [A1]

[1A2]
|| [A1]
II [A1]

[A2]
|| [AL]
|| ['A2]
|l [BO]

LDH
LDH

ADD
LDH
LDH

SuUB
SUB
ADD
SUB

.D2T2 *B4++(4),B7
DIT1 *Ad++(4),A5

L2 B8,B5B5
.D2T2 *-B4(2),B6
DIT1 *A4(2),A0

.D1 A21A2
L1 Al2A1
.S1 A6,A3,A3
.L2 BO0,0x2,B0

; @|13]
; @[14]

; 116]
; @[13]
; @[14]

; |16]
; @|18]

Writing Interruptible Looped Code for the TMS320C6x DSP

13

Application Brief Q’
SPRA534

The compiler has created code that is still interruptible but, by unrolling the loop once, we
are able to calculate two values per loop iteration. This allows us to double the
performance from our previous case of interruptible code, in which we did not specify a
maximum trip count or trip count factor.

Codingin C

We have now illustrated three cases of the compiler/assembly optimizer, generating code
that is never interruptible, always interruptible, and interruptible based on an interrupt
threshold. We have shown how in linear assembly we can use a trip count range and trip
count factor to improve performance. Can this be done in the C environment alone?

The C6x compiler utilizes a number of intrinsic operators. Intrinsics are used as functions
and produce assembly language statements that are ordinarily inexpressible in C. C
variables are used with these intrinsics just as they would with any normal function.
Starting with the 3.0 release of the C6x code generation tools, the intrinsic _nassert can
be used to tell the compiler the minimum and maximum trip counts as well as trip count
factor. The _nassert statement itself generates no code; it is analogous to the .trip
directive in linear assembly.

Let's modify our original C program to include the _nassert intrinsic with a minimum count
of 8, a maximum count of 40, and a trip count factor of 2. Note also we are no longer
making a call to the DotP linear assembly function but we define the DotP in C:

/* Main Code */
main()

y = DotP(a, x, 40);

short DotP(short *m, short *n, short count)

{ inti;
int product;
int sum = 0;

_nassert(count >=8 && count <=40 && (count % 2) == 0);

for (i=0; i < count; i++)

{

product = m[i] * n[i];
sum += product;

return(sum);

Now let us look at the assembly output of the compiler when the above code is compiled
with the —gs —02 —k —-mw —mt —mi100 options:

Writing Interruptible Looped Code for the TMS320C6x DSP 14

Application Brief
SPRA534

kkkkkkkkkkkhhkhhkkkkkkkk * kkkkkkkkkkkhhkhkkkkkkkkk * *kkkkkk

;* TMS320C6x ANSI C Codegen
*Version 3.00 *
* Date/Time created: Tue Mar 30 14:11:57 1999

kkkkkkkkkkkhhkhhkkkkkkkkk kkkkkkkkkkkhhhkkkkhkkkkkkkkkkkkkkkhkhhhhhkk

;* GLOBAL FILE PARAMETERS

Architecture : TMS320C6200
Endian . Little

Interrupt Threshold : 100

Memory Model : Small

Calls to RTS : Near

Pipelining : Enabled
Speculative Load : Threshold = 0
Epilog Collapsing : Enabled
Prolog Collapsing : Enabled
Redundant Loops : Enabled
Code Size Opt. : Disabled
Memory Aliases : Presume not aliases (optimistic)
Debug Info : Debug

FUERTETETETETETE TR TR TR T TR TR

kkkkkkkkkkkhkhhkkkkkkkkkkkkkx *kkkkkkkkkkhhkhkkkkkkkkkkkkx *kkkkkk

SOFTWARE PIPELINE INFORMATION

Known Minimum Trip Count 8
Known Maximum Trip Count 140
Known Max Trip Count Factor : 2
Loop Carried Dependency Bound(®) : 0
Unpartitioned Resource Bound : 1
Partitioned Resource Bound(*) :1
Resource Partition:

A-side B-side

.L units 0 0

.S units 0 1*

.D units 1* 1*

.M units 1* 0

.X cross paths 1* 0

.T address paths 1* 1*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;* Long read paths 0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
Long write paths 0 0
Logical ops (.LS) 0 0 (.L or.S unit)
Addition ops (.LSD) 1 1 (.Lor.Sor.Dunit)
Bound(.L .S .LS) 0 1*
Bound(.L .S .D .LS .LSD) 1* 1*

Searching for software pipeline schedule at ...
ii =1 Schedule found with 8 iterations in parallel
Done

Speculative Load Threshold : 14
Collapsed Epilog Stages : 7

Prolog not removed : Ran out of functional units
Collapsed Prolog Stages : 0

Writing Interruptible Looped Code for the TMS320C6x DSP

15

Application Brief

SPRA534

; PIPED LOOP PROLOG

LDH .D1T1 *A0++A3 ;127
I LDH .D2T2 *B5++,B4 ;127
LDH .D1T1 *A0++,A3 ; @[27]
I LDH .D2T2 *B5++,B4 ; @]27]
[BO] B .82 L2 ;28]
I LDH .D1T1 *A0++A3 ; @@|27]
I LDH .D2T2 *B5++,B4 ; @@]27]
[BO] B .S2 L2 , @|28|
I LDH .D1T1 *A0++A3 , @@@|27
I LDH .D2T2 *B5++,B4 ; @@@|27|
[BO] B .S2 L2 , @@]28|
I LDH .D1T1 *AO++A3 , @@@@|27|
I LDH .D2T2 *B5++,B4 , @@@@|27|
MPY .M1X B4,A3,A5 ;127
I[BO] B .82 L2 , @@@|28
I LDH .D1T1 *AO++A3 , @@@@@|27|
I LDH .D2T2 *B5++,B4 , @Q@@@@|27|
MPY .M1X B4,A3,A5 ; @127
I[BO] B .82 L2 , @@Q@@|28
I LDH .D1T1 *AO++,A3 , QQ@@@@|27|
I LDH .D2T2 *B5++,B4 , @@@@@@|27|
; PIPED LOOP KERNEL
[Al] SUB .S1 A11Al ;
I ADD L1 A5A4,A4 ;27|
I MPY .M1X B4,A3,A5 ; @@|27]
II[BO] B .82 L2 , @@@@@|28|
[BO] SUB .L2 BO,1,B0 , @@@Q@Q@@	28
[A1] LDH .D1T1 *AO++A3 , QQQ@@@@@	27
[Al] LDH .D2T2 *B5++,B4 , QQ@@@@@	27

The compiler generated a single cycle loop, just as we saw with the assembly optimizer.
This time we remained entirely in the C environment with the addition of the _nassert
intrinsic. A single cycle loop was possible because the specified maximum trip count (40)
was below the interrupt threshold that was set.

Writing Interruptible Looped Code for the TMS320C6x DSP 16

Application Brief Q’
SPRA534

Optimum Performance in C With Interruptibility

Let's look at one last case where the interrupt threshold is less than the maximum
specified trip count. In our linear assembly example we doubled the performance of an
interruptible loop by specifying a trip count factor of 2. The trip count factor specifies that
the loop counter is a multiple of the number provided. What if we know that the trip count
will always be a multiple of 8?2 We can modify the trip count factor, which allows the C
compiler to unroll the loop even further to obtain optimum performance while maintaining
interruptibility.

Let's modify the _nassert intrinsic in our C program to have a minimum count of 8, a
maximum count of 40, and a trip count factor of 8:

/* Main Code */
main()

y = DotP(a, X, 40);

short DotP(short *m, short *n, short count)
{ inti;
int product;
int sum = 0;

_nassert(count >=8 && count <=40 && (count % 8) == 0);

for (i=0; i < count; i++)

{

product = m[i] * n[i];
sum += product;

return(sum);

}

This time we compile the above code with —03 level of optimization and do not keep track
of debug or interlisting information. We also use the —mx option, which tells the compiler
to spend more time to find an optimum solution. We also utilize an interrupt threshold of
20, which is less than our maximum trip count of 40. Our compiler command line options
are now: —03 -k —-mx —mw —mt —mi20. The following loop kernel is generated by the
compiler:

* *kkkkkkkkk * *kkkkk * *kkkkk * * *kkkkk * *%

;* TMS320C6x ANSI C Codegen
;*Version 3.00 *
;* Date/Time created: Mon Apr 05 09:18:51 1999

*kkkkkkkkk *kkkkk *kkkkk * *kkkkk * *%

;* GLOBAL FILE PARAMETERS

*

* Architecture : TMS320C6200
* Endian : Little

;* Interrupt Threshold : 20

;* Memory Model : Small

* Callsto RTS : Near

Writing Interruptible Looped Code for the TMS320C6x DSP 17

Application Brief
SPRA534

Pipelining : Enabled

Speculative Load : Threshold = 0

Epilog Collapsing : Enabled

Prolog Collapsing : Enabled

Redundant Loops : Enabled

Code Size Opt. : Disabled

Memory Aliases : Presume not aliases (optimistic)
Debug Info : No Debug Info

TR TR TE TR TR TR TR

kkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkhhhhhhhhhkhkkkkkkkkkrkkhkik * *kkkkkk

SOFTWARE PIPELINE INFORMATION

Loop Unroll Multiple : 3X
Known Minimum Trip Count 3
Known Maximum Trip Count 13
Known Max Trip Count Factor : 3
Loop Carried Dependency Bound(®) : 0
Unpartitioned Resource Bound : 6
Partitioned Resource Bound(*) :6
Resource Partition:

A-side B-side
.L units 0 0
.S units 1 0
.D units 6* 6*
.M units 6* 6*
.X cross paths 6* 6*
.T address paths 6* 6*
Long read paths 0 0
Long write paths 0 0
Logical ops (.LS) 0 0 (.L or.S unit)
Addition ops (.LSD) 6 7 (.L or.Sor.D unit)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Bound(.L .S .LS) 1 0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Bound(L.S.D.LS.LSD) 5 5

Searching for software pipeline schedule at ...
il = 6 Cannot allocate machine registers
Regs Live Always : 7/8 (A/B-side)
Max Regs Live :14/15
Max Cond Regs Live : 0/1
il =7 Cannot allocate machine registers
Regs Live Always : 7/8 (A/B-side)
Max Regs Live :13/14
Max Cond Regs Live : 0/1
il =8 Schedule found with 2 iterations in parallel
Done

Loop is Interruptible

Epilog not removed : Instructions share increment
Speculative Load Threshold : 24

Collapsed Epilog Stages : 0

; Collapsed Prolog Stages : 1

Writing Interruptible Looped Code for the TMS320C6x DSP

18

Application Brief
SPRA534

; PIPED LOOP KERNEL

MPY .M2X B11,A7,B11 :127]
I MPYH .M1X B11,A7A7 :127]
|| ['/A1] LDW .D1T1 *+Al13(4),A2 ;|27
|| [[A1] LDW .D2T2 *+B6(4),B1 2 127]
[BO] SUB .L2 BO0,3,B0 ;28]
I MPY .M2X B13,A0,B13 127
| MPYH .M1X B13,A0,A0 ;127
[lA1] ADD .L2 B11,B4,B4 :127]
|| ['/A1]] ADD .L1 A7,A10,A10 ;127]
| MPY .M2X B12,A3,B12 127
| MPYH .M1X B12,A3,A3 ;127
|[BO] B .S1 L2 ;28]
[lA1] ADD .L2 B13,B5,B5 :127]
|| ['[A1]] ADD .L1 AO0,A9,A9 1127
| MPY .M2X B2,A6,B2 127
| MPYH .M1X B2,A6,A6 ;127
I LDW .DIT1 *+A13(8),A7 ; @|27|
I LDW .D2T2 *+B6(8),B11 ; @|27|
[lA1] ADD .L2 B12,B7,B7 :127]
|| [/A1]] ADD .L1 A3,A8A8 1127
| MPY .M2X B3,A4,B3 :127]
| MPYH .M1X B3,A4,A4 ;127]
| LDW .D1T1 *+A13(12),A0 : @|27|
| LDW .D2T2 *+B6(12),B13 : @|27|
['[A1] ADD .L2 B2,B10,B10 :127]
|| ['/A1]] ADD .L1 A6,A12,A12 :127]
| MPY .M2X B1,A2,B1 :127]
| MPYH .M1X B1,A2,A2 :127]
| LDW .D1T1 *+A13(16),A3 : @|27|
I LDW .D2T2 *+B6(16),B12 : @|27|
[[Al]] ADD .L2 B3,B9,B9 ;127
| ['/A1]] ADD .L1 A4,A11A11 :127]
| LDW .D1T1 *+A13(20),A6 : @|27|
I LDW .D2T2 *+B6(20),B2 ; @|27|
[Al] SUB .S1 A11A1 ;
|| ['/A1]] ADD .L2 B1,B8,B8 ;127
|| ['/A1]] ADD .L1 A2A5A5 ;127
I LDW .DIT1 *++Al13(24),A4 : @|27|
I LDW .D2T2 *++B6(24),B3 ; @|27|

Writing Interruptible Looped Code for the TMS320C6x DSP

19

Application Brief Q’
SPRA534

At the —03 level of optimization, the compiler creates code that brings in two 16-bit values
per load with an LDW instruction. It also uses the second multiplier on the C6x with an
MPYH instruction (multiply the upper 16 bits of a register by the upper 16 bits of the
second register). In addition, the compiler has unrolled the loop a total of three times,
creating an eight-cycle loop in which 12 multiplies are executed per loop iteration. This
results in no performance degradation from our single-cycle loop case but our code size
has grown. In fact, the performance of our loop has increased at this level of optimization
because we are averaging 1.5 multiplies per cycle instead of 1 multiply per cycle.

Conclusion

The C6x code generation tools provide a high degree of flexibility for interruptibility. We
can specify an interrupt threshold globally through a compiler option or use a pragma to
change interruptibility on a function-by-function basis. We can also use the flexibility of
the tools to create interruptible code with no loss of performance. This application brief
illustrates this flexibility and examines the code generated by various interruptibility
strategies.

References

TMS320C6x Optimizing C Compiler User’s Guide, Literature number SPRU187, Texas
Instruments Inc, 1998.

TMS320C62x/C67x Programmer’s Guide, Literature number SPRU198, Texas
Instruments Inc., 1998.

Writing Interruptible Looped Code for the TMS320C6x DSP 20

Application Brief
SPRA534

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas

Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Esparfiol +34-(0) 90 2354 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67
Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026
Fax
International +81-3-3457-1259
Domestic 0120-81-0036
Email pic-japan@ti.com

Asia
Phone
International +886-2-23786800

Domestic

Australia 1-800-881-011

Tl Number -800-800-1450
China 10810

Tl Number -800-800-1450
Hong Kong 800-96-1111

Tl Number -800-800-1450
India 000-117

Tl Number -800-800-1450
Indonesia 001-801-10

Tl Number -800-800-1450
Korea 080-551-2804
Malaysia 1-800-800-011

Tl Number -800-800-1450
New Zealand 000-911

Tl Number -800-800-1450
Philippines 105-11

Tl Number -800-800-1450
Singapore 800-0111-111

Tl Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

Tl Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Writing Interruptible Looped Code for the TMS320C6x DSP

21

Application Brief Q’
SPRA534

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

T1 warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright © 1999 Texas Instruments Incorporated

Writing Interruptible Looped Code for the TMS320C6x DSP 22

