
Application Report
SPRA868A − April 2004

1

Using Code Coverage and Multi-event Profiler in Code
Composer Studio v2.3 for Robustness and Efficiency

Analyses
Amit Rangari, N.Pradeep Software Development Systems

ABSTRACT

Given the complexity of DSP application software development, powerful tools are required
for debugging, ensuring robustness, and analyzing the performance of applications.

In this application report, a new tool, Code Coverage and Multi-event Profiler, is presented.
This tool provides the following capabilities:

• Source code coverage information to increase robustness

• Function profiling over multiple events of interest that affect code performance

This application report describes how these capabilities can be used during software
development. It also illustrates the benefits of the tool by providing simple examples.

Contents

1 Introduction 3.

2 Using the Code Coverage/Multi-event Profiler Tool in the Software
Application Development Flow 5.

3 Tool Overview 5.

4 Using the Tool for Code Coverage Analysis 7.
4.1 Example 7.
4.2 Recommended Use 11.

5 Using the Tool for Efficiency Analysis 11.
5.1 C55x Example 12.
5.2 Recommended Use 17.

6 Conclusions 18.

7 References 18.

Appendix A Source Code Listing for Code Coverage Example 19.

Appendix B Source Code Listing for C5500 Multi−event Profiler Example 20.

Trademarks are the property of their respective owners.

SPRA868A

2 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

List of Figures

Figure 1. Code Coverage 3.
Figure 2. Multi-event Profiler 4.
Figure 3. Using the Tool in the Software Development Flow 5.
Figure 4. Summary View 6.
Figure 5. Annotated Source Code 6.
Figure 6. Sample Source Code for Code Coverage 7.
Figure 7. Applying Test Vectors 8.
Figure 8. Coverage Summary After First Run 8.
Figure 9. Source Code Coverage After First Run 9.
Figure 10. Coverage Summary After Second Run 9.
Figure 11. Source Code Coverage After Second Run 10.
Figure 12. Coverage Summary After Dead Code Elimination 10.
Figure 13. A Typical Flow to Follow 11.
Figure 14. Code Snippet to Demonstrate Use of the Multi-event Profiler for

Identifying and Removing Pipeline Stalls 12.
Figure 15. Multi-event Profile Output After First Run 13.
Figure 16. Profile Data Sorted By CPU Cycles 14.
Figure 17. Source Code for vectAdd.asm 15.
Figure 18. Snippet of Code After Removing Address Phase Stalls 16.
Figure 19. Multi-event Profile Output After Removing Address Phase Stalls 17.

SPRA868A

3 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

1 Introduction
DSP application developers face many challenges. These include:

• Reduced time-to-market for end products

• Increased application size and complexity

• Aggressive application performance budgets

• Increasingly complex DSP architecture platforms for implementation

In such a context, developers need powerful software tools to quickly create both correct and
efficient applications.

The code coverage and multi-event profiler tool, available in the Analysis Toolkit (ATK), provides
two important capabilities:

• Code coverage information identifying source code not exercised in a run of the application,
and facilitating the construction of test vectors to ensure adequate code coverage. See
Figure 1 for an overview.

• Profile data for functions over multiple events of interest in a single run of the application.
Events include common CPU events (cycles, executed instructions, performance stalls) and
memory events (cache hits/misses) that can highlight hotspots in the code. See Figure 2 for
an overview.

This application report discusses the capability of this tool to provide information used in the
application software development life cycle. The rest of the document is organized as follows:

• Section 2 discusses where the tool fits in the application software development life cycle.

• Section 3 provides an overview of the tool and how it is accessed as part of the ATK.

• Section 4 discusses the use of the tool for analyzing source code coverage, and illustrates
the sequence of steps to be followed by means of a small example.

• Section 5 discusses the use of the multi-event profiler capability for performance analysis,
and illustrates the sequence of steps to be followed with the help of an example.

What is Code Coverage?
Developers test the software program functionality by creating test vectors. When the program is
run on a given test vector, it exercises only a subset of the source code. This is said to be the
code covered by the test vector. Code coverage is the ratio of the number of source lines execut-
ed and the total number of source lines.

Why is Code Coverage important?
Knowing what parts of code have not been exercised helps construct further test vectors. Rather
than construct a number of tests in an ad-hoc manner, developers can judiciously build new tests
to attain better coverage over their code. Code coverage provides a meaningful, quantifiable
mechanism towards improving product quality.

Full code coverage does not ensure all paths of execution have been exercised. Code coverage
only highlights if a given source line was executed or not. It does not indicate if a given source
line was executed via all possible paths of execution.

Figure 1. Code Coverage

SPRA868A

4 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

What is Multi-event profiler?
The multi-event profiler gathers exclusive profile data for functions over multiple events in a single
run of the application. Events include CPU events, such as clock cycles, instructions executed,
and pipeline stalls, and memory events such as cache read hits, read misses, write hits, and write
misses. The event counts helps identify the reason why some functions are not performing as ex-
pected. By collecting profile data for many events in a single run, this profiler reduces the need for
multiple iterations of simulation. This single-run technique can save significant amounts of time,
especially in cases of long simulation runs.

Since this data is collected by running the application on a simulator, there is an associated over-
head in simulation performance. However, this overhead is kept to a minimum (for example, it is
about 5% on the C55x Cycle Accurate simulator).

For a full list of events available on the C6000 and C55x simulator platforms, see the ap-
propriate Code Composer Studio online help.

The simulator collects profile data for every program location that was decoded during the ap-
plication run. Exclusive profile of a function refers to this data aggregated over the address range
of the function. Since data is available at a per program location granularity, it allows detailed
analysis at assembly level.

Figure 2. Multi-event Profiler

SPRA868A

5 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

2 Using the Code Coverage/Multi-event Profiler Tool in the Software
Application Development Flow

Figure 3 describes the roles of the tool in the application development flow. This tool is valuable
in two distinct stages of development:

• For algorithm validation

• For algorithm efficiency analysis

Figure 3. Using the Tool in the Software Development Flow

3 Tool Overview

The code coverage and multi-event profiler tool is available as part of the ATK, which is an
update advisor release that relies on the simulators provided in Code Composer Studio IDE.
This capability is supported on the C6000 and C55x simulators.

The steps to be followed to set up and use this tool are:

1. Set up the appropriate simulator configuration file to enable data collection.

2. Invoke Code Composer Studio and load the project.

3. Load and run the application.

4. Launch the code coverage and multi-event profiler tool.

NOTE: The visualization of coverage and profile data uses Microsoft Excel. The Code
Coverage and Multi-event Profiler User’s Guide (SPRU624) provides detailed information on the
tool usage.

Figure 4 shows a sample function summary view of the coverage and multi-event profile output.

SPRA868A

6 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

Coverage information Multi-event profile data

Figure 4. Summary View

Figure 5 shows a sample view of the annotated source code.

Unvisited section of code

Figure 5. Annotated Source Code

SPRA868A

7 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

4 Using the Tool for Code Coverage Analysis

The use of the code coverage capability is illustrated with a detailed example which shows how
the tool helps identify new test vectors and dead code.

The C6416 functional simulator configuration is used for this example.

4.1 Example

Consider the following code snippet (Figure 6) to illustrate the use of the code coverage
capability. The code snippet consists of a single function Select_func. The purpose of this
example is to demonstrate how to achieve 100% code coverage on Select_func by developing
suitable test vectors.

Figure 7 shows the setup to apply test vectors to the sample application. The test setup consists
of a test vectors listing file named testvectors.txt that has a list of input data files. Each input
data file has a test sequence, which is a series of numbers. For each number in the file,
Select_func is called with that number as an argument.

This setup allows us to apply multiple test vectors in a single run of the application to obtain
aggregated coverage data. It also enables easy creation and insertion of new vectors into the
test flow.

void Select_func(int switch_value_parameter)
{
 int switch_value;

 switch_value = abs(switch_value_parameter);

 switch(switch_value)
 {
 case 10:
 printf(”this is the case 10 \n”);
 break;
 case 20:
 printf(”this is the case 20 \n”);
 break;
 case 30:
 printf(”this is the case 30 \n”);
 break;
 case −10: //Legacy Switch
 printf(”this is the case −10 \n”);
 break;
 }
}

Figure 6. Sample Source Code for Code Coverage

SPRA868A

8 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

main()
{
 FILE *fp_testvector;
 FILE *fp_test;
 char test_fname[80];

 int switch_value_parameter;

 fp_testvector = fopen(”testvectors.txt”, ”r”);
 while ((fscanf(fp_testvector, ”%s”, test_fname) != 0))
 {

 fprintf(stdout,”fname = %s \n”, test_fname);
 fp_test = fopen(test_fname, ”r”);
 while(!feof(fp_test))
 {
 fscanf(fp_test, ”%d”, &switch_value_parameter);
 fprintf(stdout, ”value read = %d \n”, switch_value_parameter);
 Select_func(switch_value_parameter);
 }
 }
}

Figure 7. Applying Test Vectors

The steps to run this example are:

1. Start the coverage analysis by creating the input data file input1.dat that has the contents:
10 20.

2. Add input1.dat to testvectors.txt.

3. Set up the appropriate simulator configuration file to enable coverage data collection.
For this example, select the sim6416_functional_simulator_profile.cfg file. See the Code
Coverage and Multi-event Profiler User’s Guide (SPRU624) for more details.

4. Bring up Code Composer Studio IDE and load the application project.
The project is located in the following directory:
<CCS_INSTALL_DIR>/examples/sim64xx/code_coverage/select_func

5. Compile the application with full debug (−g).
The tool requires full debug information in the COFF file (the executable) to generate
coverage information. To enable this, the code must be compiled with the debugging option
−g.

6. Load the application.

7. Run the application to completion.
input1.dat is the test vector.

8. Launch the code coverage tool by clicking on Tools → Analysis Toolkit → Code Coverage
and Multi-event profiler. This launches Microsoft Excel. See Figure 8.

Figure 8. Coverage Summary After First Run

SPRA868A

9 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

9. Observe that the function Select_func has 75 percent coverage.

10. Click on the function name to get coverage information for the function. See Figure 9.

Figure 9. Source Code Coverage After First Run

11. Observe that the cases with labels 10 and 20 (shown in green) are visited. Cases with
labels 30 and –10 (shown in red) are not visited.

12. Create file input2.dat with the contents 30, −10 to cover the lines in red above.

13. Add input2.dat to testvectors.txt. It now has:

− input1.dat

− input2.dat

14. Reload and rerun the application to completion.

15. Launch the tool. See Figure 10.

Figure 10. Coverage Summary After Second Run

16. Observe that the function Select_func has moved from 75% to 87.5% coverage.

SPRA868A

10 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

17. Click on the function name to get coverage information for the function. See Figure 11.

Figure 11. Source Code Coverage After Second Run

18. Note that the coverage is less than 100% even though all case labels have been specified
in one of the input data files.

19. Study the body of the function to identify that the variable switch_value can not assume a
negative value (see source line number: 7)

20. Edit this function to remove dead code – case label with value –10.

21. Rebuild, reload and rerun the application.

22. Launch the tool. See Figure 12. The function Select_func now has 100% coverage.

Figure 12. Coverage Summary After Dead Code Elimination

SPRA868A

11 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

4.2 Recommended Use

The flowchart in Figure 13 depicts typical usage of the tool.

Start

Analyze
coverage

Is coverage
adequate ?

Create new
test vector

Stop

Yes

No

Figure 13. A Typical Flow to Follow

5 Using the Tool for Efficiency Analysis

We illustrate the use of the multi-event profiler capability with an example on the C55x cycle
accurate simulator. The multi-event nature of the profiler helps identify functions with high cycle
count and the contributing factors to that cycle count in a single run of simulation. We also
highlight the detailed analysis capability by visualizing profile data at the granularity of assembly
source code.

SPRA868A

12 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

5.1 C55x Example

For this example, we use the C55x cycle accurate CPU simulator configuration. This example
shows how the profiler helps identify and remove pipeline stalls. Figure 14 shows an assembly
function, vectAdd, which the optimizations are demonstrated.

#include <stdio.h>
int mul(int x, int y);
int add(int x, int y);
main()
{
 int result[4][100];
 int a, b;
 int i ;

 a = 20 ;
 b = 15 ;

 for(i=0; i<100 ; i++)
 {
 result[0][i] = mul(a,b);
 result[1][i] = add(a,b);
 result[2][i] = vectAdd();
 }

}
 .global _vectAdd
 .sect ”init”

x .int 10,5,5,6,7,8,9,4,78,56,89,45
y .int 10,5,5,6,7,8,9,4,78,56,89,45
 .align

_vectAdd:
 AMOV #x,AR2 ;load pointers
 MOV *AR2, AR1
 MOV #0, AR4 ; loop counter
 MOV #0, AC0
 AMOV #y,AR3 ; pointer to B

L1: CMP AR4 >= AR1, TC1
 nop
 nop
 nop
 nop
 BCC L2,TC1
 ADD #1, AR2
 ADD *AR2, AC0, AC0
 ADD #1, AR3
 ADD *AR3, AC0, AC0
 ADD #1, AR4
 B L1
L2: MOV AC0, T0
 nop
 nop
 return

Figure 14. Code Snippet to Demonstrate Use of the Multi-event Profiler for Identifying and
Removing Pipeline Stalls

SPRA868A

13 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

The steps to run the C55x example are:

1. Set up the appropriate simulator configuration file to enable profile data collection.

For this example, select the SIM55xx_profile.cfg file. See the Code Coverage and
Multi-event Profiler User’s Guide (SPRU624) for more details.

2. Invoke Code Composer Studio IDE and load the project.

The project is located in the following directory:
<CCS_INSTALL_DIR>/examples/sim55xx/multi_event_profiler/pipeline_stall_optimization/op
tim_example_start

3. Set the project build options to:

a. build C files with –gp option. This option enables function profile information to be
gathered.

b. build assembly files with –g option. This option enables assembly source line profile
information to be gathered.

4. Load and run the application to completion.

5. Launch the multi-event profiler tool, which also launches Microsoft Excel. See Figure 15.

Figure 15. Multi-event Profile Output After First Run

6. Sort profile data according to decreasing order of CPU cycle counts. See Figure 16.

SPRA868A

14 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

Figure 16. Profile Data Sorted By CPU Cycles

7. The assembly module in the source file, vectAdd.asm, has the highest cycle count –
32800.

8. Examine the other event columns to identify the possible reason(s) for this high cycle
count. We find that this module has 8000 cpu address phase stalls . The multi-event
profiler has facilitated identification of both the most costly function (highest cycle
count) as well as the sources of the high cycle count.

In this example, we are interested in reducing address phase stalls.

9. Click on the assembly function name (“ASM”) to view annotated source line profile data.
See Figure 17.

SPRA868A

15 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

Figure 17. Source Code for vectAdd.asm

10. The source lines 25 and 27 show high CPU address phase stalls. This is caused by
resources AR2 and AR3, respectively. The resource that causes the stall in line 25 is AR2
(modified by the instruction in line 24 and accessed for reading in the instruction at line
25). Similarly, AR3 causes the observed stall in line 27.

The annotated source code display helps perform detailed analysis at an assembly line
level. By associating the stall events to exact program locations that have these stalls, it
becomes possible to quickly identify the exact nature and cause of the stalls.

These stalls can be removed by replacing the conflicting instruction pairs with a single
instruction. Replace the instructions in lines 24 and 25 with this single instruction:

ADD *AR2+, AC0, AC0

SPRA868A

16 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

Also replace the instructions in lines 26 and 27 with the following single instruction:

ADD *AR3+, AC0, AC0

11. Figure 18 shows the vectAdd function after these modifications are made.

 .global _vectAdd
 .sect ”init”

x .int 10,5,5,6,7,8,9,4,78,56,89,45
y .int 10,5,5,6,7,8,9,4,78,56,89,45
 .align

_vectAdd:
 AMOV #x,AR2 ;load pointers
 MOV *AR2, AR1
 ADD #1, AR2
 MOV #0, AR4 ; loop counter
 MOV #0, AC0
 AMOV #y,AR3 ; pointer to B
 ADD #1, AR3

L1: CMP AR4 >= AR1, TC1
 nop
 nop
 nop
 nop
 BCC L2,TC1
 ADD *AR2+, AC0, AC0
 ADD *AR3+, AC0, AC0
 ADD #1, AR4
 B L1
L2: MOV AC0, T0
 nop
 nop
 return

Figure 18. Snippet of Code After Removing Address Phase Stalls

12. Rebuild, reload and rerun the application.

13. Launch the multi-event profiler tool.

14. Sort by CPU cycle counts and review the total CPU cycles for the assembly module in the
file vectAdd.asm (shown in Figure 19). The address phase stalls have been reduced to
zero for the ASM module. We have obtained 31 percent improvement in cycles for the
assembly module.

SPRA868A

17 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency

Analyses

Figure 19. Multi-event Profile Output After Removing Address Phase Stalls

Key observations:

In this example, we illustrated the utility of the multi-event profiler on the C55x platform. The
multi-event profiler identified the high cycle count functions in the assembly module as well as
identified the sources of the performance loss (address phase stalls). Further, it enabled a
detailed analysis by visualizing the events on an assembly instruction level. This allowed easy
identification of instructions that were experiencing stalls as well as the resources causing those
stalls (AR2, AR3 resources).

5.2 Recommended Use

As illustrated above, the following project build options make best use of the profiler:

• For C source files, use the ‘−gp’ build option.

This option enables the gathering of profile data over functions in the application. Availability
of source line profile information is tied to use of the ‘−g’ build option. However, use of this
option may hinder full optimization.

• For assembly files, use the ‘−g’ option.

This option enables the gathering of profile data over both functions and source lines. Since
linear assembly sources are assembled without optimizations, use of the ‘−g’ option is
recommended.

For further details on build options, see the Code Coverage and Multi-event Profiler User’s
Guide (SPRU624).

To make best use of the profile data over all the events, see the respective optimization guides.

SPRA868A

18 Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

6 Conclusions

In this application report, we described how the code coverage and multi-event profiler tool
facilitates robustness and efficiency analyses of applications. The code coverage capability
clearly highlights source code that was not executed over a run of the application. This facilitates
directed creation of test vectors that can help ensure adequate coverage. We demonstrated this
capability with a step-by-step example using the C6416 simulator platform. This example clearly
shows how the tool aids in test vector creation as well as dead code identification.

The multi-event profiler capability visualizes function profile data for multiple events of interest,
using a single simulation run for all data collection. This allows identification of high cycle count
functions as well as the identification of the sources of the performance losses. Further, the tool
allows detailed analysis by visualizing profile data at the granularity of assembly source code
(annotated source code visualization).

We illustrated this capability via an example on the C55x simulator platform. The multi-event
profiler not only helped identify high cycle count functions, but also helped isolate the causes.
This helped identify significant optimizations very quickly. In the C55x example, we achieved
over 30% improvement in cycles by removing address phase stalls. In this example, we also
highlighted the utility of the annotated source code visualization. By observing profile data over
individual assembly source statements, we could quickly identify the resources causing pipeline
stalls.

These capabilities significantly benefit application software robustness and efficiency analyses.

7 References
1. Analysis Toolkit for Code Composer Studio v2.3 User Guide (SPRU623)

2. Code Coverage and Multi-event Profiler User’s Guide (SPRU624)

3. TMS320C6000 Optimizing Compiler User’s Guide (SPRU187)

4. TMS320C55x Optimizing C/C++ Compiler User’s Guide (SPRU281)

5. TMS320C6000 Peripherals Reference Guide (SPRU190)

6. TMS320C55x DSP Programmer’s Guide (SPRU376)

SPRA868A

19 Using Code Coverage and Multi-event Profiler for Robustness and Efficiency Analyses

Appendix A Source Code Listing for Code Coverage Example

/******************* file – select_func.c *************************/
void Select_func(int switch_value_parameter)
{
 int switch_value;

 switch_value = abs(switch_value_parameter);

 switch(switch_value)
 {
 case 10:
 printf(”this is the case 10 \n”);
 break;
 case 20:
 printf(”this is the case 20 \n”);
 break;
 case 30:
 printf(”this is the case 30 \n”);
 break;
 case −10: //Legacy Switch
 printf(”this is the case −10 \n”);
 break;
 }
}

/******************* file – main.c *************************/
main()
{
 FILE *fp_testvector;
 FILE *fp_test;
 char test_fname[80];

 int switch_value_parameter;

 fp_testvector = fopen(”testvectors.txt”, ”r”);
 while ((fscanf(fp_testvector, ”%s”, test_fname) != 0))
 {

 fprintf(stdout,”fname = %s \n”, test_fname);
 fp_test = fopen(test_fname, ”r”);
 while(!feof(fp_test))
 {
 fscanf(fp_test, ”%d”, &switch_value_parameter);
 fprintf(stdout, ”value read = %d \n”, switch_value_parameter);
 Select_func(switch_value_parameter);
 }
 }
}

SPRA868A

20 Using Code Coverage and Multi-event Profiler for Robustness and Efficiency Analyses

Appendix B Source Code Listing for C5500 Multi−event Profiler Example
/***************** File – main.c *******************/

#include <stdio.h>
int mul(int x, int y);
int add(int x, int y);

main()
{
int result[4][100];
int a, b;
int i ;

a = 20 ;
b = 15 ;

for(i=0; i<100 ; i++)
{
 result[0][i] = mul(a,b);
 result[1][i] = add(a,b);
 result[2][i] = vectAdd();
}

}

/***************** File – add.c *******************/
int add(int x, int y)
{
return (x+y);
}

/***************** File – mul.c *******************/
int mul(int x, int y)
{
int mulResult = 0 ;
int i;
for(i = 0; i<y ; i++)
{

mulResult += x ;
}

return mulResult;
}

;******************** File – vectAdd.asm – Before optimization
*********************;

.global _vectAdd

.sect ”init”

x .int 10,5,5,6,7,8,9,4,78,56,89,45

y .int 10,5,5,6,7,8,9,4,78,56,89,45

 .align

_vectAdd:
AMOV #x,AR2 ;load pointers
 MOV *AR2, AR1
MOV #0, AR4 ; loop counter
 MOV #0, AC0
 AMOV #y,AR3 ; pointer to B

SPRA868A

21 Using Code Coverage and Multi-event Profiler for Robustness and Efficiency Analyses

L1: CMP AR4 >= AR1, TC1
nop
nop
nop
nop
BCC L2,TC1
 ADD #1, AR2
 ADD *AR2, AC0, AC0
 ADD #1, AR3
ADD *AR3, AC0, AC0
ADD #1, AR4
B L1

L2: MOV AC0, T0
 nop
 nop
 return
;******************** File – vectAdd.asm – After address phase stall optimization
****;

.global _vectAdd
.sect ”init”

x .int 10,5,5,6,7,8,9,4,78,56,89,45
y .int 10,5,5,6,7,8,9,4,78,56,89,45

 .align

_vectAdd:
AMOV #x,AR2 ;load pointers
 MOV *AR2, AR1
 ADD #1, AR2
MOV #0, AR4 ; loop counter
 MOV #0, AC0
 AMOV #y,AR3 ; pointer to B
 ADD #1, AR3

L1: CMP AR4 >= AR1, TC1
nop
nop
nop
nop
BCC L2,TC1
 ADD *AR2+, AC0, AC0
 ADD *AR3+, AC0, AC0
ADD #1, AR4
B L1

L2: MOV AC0, T0
 nop
 nop
 return

;******************** File – vectAdd.asm – After prefetch stall optimization ****;

.global _vectAdd
.sect ”init”

x .int 10,5,5,6,7,8,9,4,78,56,89,45
y .int 10,5,5,6,7,8,9,4,78,56,89,45

 .align

_vectAdd:

SPRA868A

22 Using Code Coverage and Multi-event Profiler for Robustness and Efficiency Analyses

AMOV #x,AR2 ;load pointers
 MOV *AR2, AR1
 ADD #1, AR2
MOV #0, AR4 ; loop counter
 MOV #0, AC0
 AMOV #y,AR3 ; pointer to B
 ADD #1, AR3
 nop ; added to make branch target L1 double−word aligned
 nop ; added to make branch target L1 double−word aligned

L1: CMP AR4 >= AR1, TC1
nop
nop
nop
nop
BCC L2,TC1
 ADD *AR2+, AC0, AC0
 ADD *AR3+, AC0, AC0
ADD #1, AR4
B L1

L2: MOV AC0, T0
 nop
 nop
 return

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

