
1 Terms and Abbreviations

2 Background

Application Report
SPRAAU0–March 2008

LSP 1.20 DaVinci Linux Frame Buffer Driver Migration
...

ABSTRACT
This migration document provides information to developers who will be working with
the LSP 1.20 Frame Buffer (FB) device for the TI DaVinci Video Processing Back End
(VPBE) subsystem. The FB device driver has been redesigned since version LSP 1.10
to meet new system requirements.

Contents
1 Terms and Abbreviations .. 1
2 Background.. 1
3 LSP1.20 IOCTL Changes ... 2
4 LSP1.20 Kernel Boot Arguments for the Frame Buffer Driver................................ 4
5 Setting Up Frame Buffer Size... 5
6 Setting Output and Mode .. 6

List of Tables

1 Terms and Abbreviations .. 1
2 Deprecated IOCTLs .. 3
3 Removed IOCTLs .. 3
4 Changed IOCTLs ... 4

Table 1. Terms and Abbreviations
Term Description
API Application Programming Interface
FB Frame Buffer

OSD On Screen Display
IOCTL Input Output Control
VPBE Video Processing Back End
LSP Linux Support Package

In LSP1.10, the video driver for TI DaVinci products consists only of the Linux frame buffer device driver.
This driver’s API is designed around the scenario that the frame buffer dimensions and the display screen
dimensions are one and the same. For example, the xres and yres values in the fb_var_screeninfo not
only define the size of the image in memory, they also define the resolution of the display. The display

SPRAAU0–March 2008 LSP 1.20 DaVinci Linux Frame Buffer Driver Migration 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

www.ti.com

3 LSP1.20 IOCTL Changes

LSP1.20 IOCTL Changes

timing values (pixclock, left_margin, right_margin, upper_margin, lower_margin, hsync_len, and
vsync_len) are also specified in the fb_var_screeninfo. The underlying assumption is that these values can
always be used together with xres and yres to calculate all of the display timing settings that would be
needed to initialize the display controller. In addition, each FB device instance (/dev/fb/0, /dev/fb/1, etc) is
implicitly assumed by the API design to be completely independent of all other instances.

The DaVinci video controller is designed to support four video windows (OSD0, OSD1, VID0, and VID1),
which are implemented in the FB driver as independent FB device instances. However, there are actually
four windows of the same display, not four independent displays. The xres and yres values in the
fb_var_screeninfo are interpreted as the dimensions of the corresponding window, which are not
necessarily the same as the dimensions of the display. In fact, there is no way to specify the display
dimensions via the standard FB API.

The fact that the frame buffer dimensions are not the display dimensions leads to a problem with
specifying the display timing. You must know the display resolution in order to calculate the display timing,
but since the display resolution is unknown within the confines of the standard FB API, it is impossible to
set the display timing via the usual method.

Within DaVinci, the fact that all four windows share a common underlying display leads to conflicts with
the FB API. For example, on the DaVinci processor, the display timing is shared by all windows, but the
FB API will allow an application to set unique timing values on a per-device basis.

Additionally, the DaVinci video windows use a YUV pixel format rather than an RGB format. The Linux FB
API only supports RGB format. Therefore, the FB devices for the video windows will only work with
applications specifically written for DaVinci. When the OSD1 window is used as an attribute window, only
applications written specifically for DaVinci will be able to utilize it.

Given the above limitations of the Linux FB API as applied to the DaVinci display controller, it was
unavoidable that some non-standard mechanisms must be implemented to allow applications to fully
utilize the DaVinci display controller.

The LSP 1.10 FB driver implementation defines 27 non-standard IOCTLs. The LSP1.20 has a few
improvements in the driver, like removing some redundant IOCTLs and providing alternatives of using
these non-standard IOCTLs.

In LSP1.20, Linux sysfs attributes supporting the FB device driver have been implemented as an
alternative to or replacement for the IOCTLs. Sysfs is a virtual file system that is normally mounted at /sys
in a Linux root file system. A device driver can create files within sysfs that can be used to display (by
reading the file) or modify (by writing to the file) arbitrary parameters associated with the driver. For the
DaVinci VPBE, the sysfs attributes are located in: /sys/class/davinci_display directory.

There are two important distinctions between sysfs driver attribute files and IOCTLs. First, IOCTLs are
associated with a specific FB device (OSD0, OSD1, VID0, and VID1 for DaVinci), but driver attribute files
are global and are not associated with a particular frame buffer device. Second,the IOCTLs require
custom applications to access them, and there is no method to enumerate the controls that are available.
On the other hand, driver attribute files can be accessed with standard shell commands (e.g. 'cat <
/sys/attrfile' to read and 'echo xyz > /sys/attrfile' to write). The available attributes can be enumerated
simply by listing the sysfs directory where the attributes are defined.

As a result of the new design, a few of the non-standard IOCTLs can be deprecated; their functions can
be replaced by either using the FB driver API or by accessing sysfs attributes.

Table 2 lists those deprecated IOCTLs that are retained for backward compatibility. They can be replaced
by using the alternative API or sysfs attributes mentioned in the Notes column. For more detailed
information on using the alternatives, please refer to the LSP1.20 Frame Buffer Device Driver User’s
Guide.

LSP 1.20 DaVinci Linux Frame Buffer Driver Migration2 SPRAAU0–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

www.ti.com

LSP1.20 IOCTL Changes

Table 2. Deprecated IOCTLs
Deprecated IOCTL Name Use Notes

FBIO_SETATTRIBUTE Set the blend factor for a rectangular area in the The application can write attribute pixel values
attribute window directly to the rectangular area in the OSD1

frame buffer.

FBIO_ENABLE_DISABLE_WIN Enable or disable the display of a window Use FBIOBLANK IOCTL instead.

An additional way is implemented in the FB
driver to enable and disable the window. If
FBIOPUT_VSCREENINFO ioctl is used with any
xres, yres, xres_virtual, yres_virtual set to zero,
then the window will be disabled. It can be
reenabled by using

FBIOPUT_VSCREENINFO again and setting a
valid video mode.

FBIO_SET_BITMAP_WIN_ Load values into the RAM CLUT (color lookup Use FBIOPUTCMAP IOCTL with RGB format.
RAM_CLUT table). FB driver converts it to YUV format internally.

FBIO_ENABLE_DISABLE_ Enable or disable the attribute window Attribute mode can be enabled via the standard
ATTRIBUTE_WIN functionality of OSD1 FBIOPUT_VSCREENINFO by setting

bits_per_pixel to 4 and nonstd to non-zero. It
can be disabled by setting nonstd to zero.

When enabling attribute mode,
var->bits_per_pixel is set to 4.

var->xres, var->yres, var->xres_virtual,
var->yres_virtual, win->xpos, and win->ypos are
all copied from OSD0. var->xoffset and
var->yoffset are set to 0. fix->line_length is
updated to be consistent with 4 bits per pixel. No
changes are made to the OSD1 configuration if
OSD1 is already in attribute mode.

When disabling attribute mode, the window
geometry is unchanged.

var->bits_per_pixel remains set to 4. No
changes are made to the OSD1 configuration if
OSD1 is not in attribute mode.

Table 3 lists those deprecated IOCTLs that are no longer supported.

Table 3. Removed IOCTLs
Deprecated IOCTL Name Use Notes
FBIO_SET_INTERFACE Set the output display interface Display output switch is replaced by

writing into sysfs attribute
/sys/class/davinci_display/ch#/output
where ch# is the channel number of the
display on the system.

FBIO_GET_INTERFACE Get the output display interface Getting display output is done by reading
sysfs attribute
/sys/class/davinci_display/ch#/output

FBIO_GETSTD Get the current video standard Getting display standard is done via
reading sysfs attributes
/sys/class/davinci_display/ch#/mode

FBIO_QUERY_TIMING Querying video mode definition Mode info can be retrieved via
FBIOGET_VSCREENINFO
For further details, please see LSP1.20
FB Device Driver User’s Guide

FBIO_SET_TIMING Given a video mode definition, switch to Can use FBIO_PUT_VSCREENINFO
a display that supports the mode IOCTL to set non-standard timings.

For further details, please see LSP1.20
FB Device Driver User’s Guide

FBIO_GET_TIMING Get the current video mode definition Can be replaced with new IOCTL:
FBIOGET_VSCREENINFO

SPRAAU0–March 2008 LSP 1.20 DaVinci Linux Frame Buffer Driver Migration 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

www.ti.com

4 LSP1.20 Kernel Boot Arguments for the Frame Buffer Driver

LSP1.20 Kernel Boot Arguments for the Frame Buffer Driver

Table 3. Removed IOCTLs (continued)
Deprecated IOCTL Name Use Notes

For further details, please see LSP1.20
FB Device Driver User’s Guide

FBIO_SET_VENC_CLK_SOURCE Get the VENC clock source Use sysfs attribute instead (this attribute is
not yet implemented)

FBIO_ENABLE_DISPLAY Enable/disable the display Use sysfs attribute instead
/sys/class/davinci_display/ch0/enable

Table 4 shows the slightly modified behavior of some of the retained IOCTLs in LSP1.20.

Table 4. Changed IOCTLs
Deprecated IOCTL Name Use Notes
FBIO_GET_VIDEO_CONFIG_PARAMS Get/set video parameters When changing the Cb/Cr order, the
FBIO_SET_VIDEO_CONFIG_PARAMS change will not take effect until an

FBIOPUT_VSCREENINFO ioctl is issued
for a window with a YUV pixel format. And
this change is global, meaning all other
display windows in YUV format get
switched at the same time.

FBIIO_SETZOOM Setting zooming of the display The ‘window_id’ parameter is now ignored
since this ioctl is issued to a specific FB
device.

LSP1.20 Kernel Boot Argument format for the Frame Buffer Driver is as follows:
• video = [davincifb | dm64xxfb | dm355fb] – dm64xxfb and dm355fb are deprecated, davincifb should

be used instead.
• vid0=[off | MxNxP, S@X,Y]
• vid1=[off | MxNxP, S@X,Y]
• osd0=[MxNxP, S@X,Y]
• osd1=[MxNxP, S@X,Y]

where MxN are the horizontal and vertical window size; P is the color depth (bits per pixel), S is the frame
buffer size in bytes with suffixes such as ‘K’ or ‘M’ for Kilo (2^10) and Mega (2^20); X, Y are the window
position. Only video windows can be turned off. Turning off a video window means that no FB device will
be registered for it.

For example:
video=davincifb:vid0=720x480x16,2025K@0,0:vid1=720x480,1350K@0,0:osd0=720x480,1350K@0,0:osd1=720x4
80,1350K@0,0

In the above example, the vid0 is reserved with buffer size 2025K bytes, which is large enough for triple
buffering at 720x280x16. The osd0 window is reserved with buffer size 1350K, which is for double
buffering for 720x480x16. The FB driver limits video windows to triple buffering and osd windows to
double buffering. The total size of the buffer for all display windows shall not exceed 40M bytes.

Specific window can be disabled using boot argument option as below:
video=davincifb:vid0=off:vid1=off

or

video=davincifb:vid0=0,0:vid1=0,0

In this example both the vid0 and vid1 will be disabled at boot time. This will prevent the FBDev driver

4 LSP 1.20 DaVinci Linux Frame Buffer Driver Migration SPRAAU0–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

www.ti.com

5 Setting Up Frame Buffer Size

Setting Up Frame Buffer Size

from creating devices for vid0 and vid1 (/dev/fb/1 and /dev/fb/3). If any of the windows is disabled at boot
time, any FBDev driver application is not allowed to perform any IO control operation with that window.
However, this will allow other video applications (e.g. V4L2) to access the video windows disabled by FB
driver bootargs. OSD windows, however, cannot be disabled by boot arguments. Even if setting up an
OSD window as “off” in the bootargs, it will be ignored by FB driver and set it up with default values.

When a video window is turned off at boot time, no /dev/fb or /proc/dev entry will be created for it.

Alternatively, the following boot arguments can be used to prevent the FBDev driver from claiming video
windows, but still reserve the frame buffer space and create FBDev devices. In other words, this will allow
V4L2 applications to access vid0 and vid1 windows, yet FBDev devices /dev/fb/1 and /dev/fb/3 will still be
created.
video=davincifb:vid0=0,2025K:vid1=0,1350K

After booting up, all FB devices are created as normal, and V4L2 applications are able to claim video
windows (through /dev/video/2 or /dev/video/3) to use. When an FBDev application needs to use the
device, use ‘fbset’ command to allow FBDev driver to re-claim the video windows (to desired resolution):
$ fbset -fb /dev/fb/1 -xres 720 -yres 480 -vxres 720 -vyres 1440 -depth 16
$ fbset -fb /dev/fb/3 -xres 720 -yres 480 -vxres 720 -vyres 1440 -depth 16

A second alternative is, instead of disabling these windows using boot arguments, using ‘fbset’ to release
the windows from FBDev driver’s control for other applications to use even if FBDev devices are enabled
at boot argument. The following example shows two console commands to “turn off” osd0 and vid0
windows, respectively.
$ fbset -fb /deb/fb/0 -xres 0
$ fbset -fb /dev/fb/1 -xres 0

When these display windows need to be used by an FBDev application, use ‘fbset’ again to restore the
frame buffer device. The following example shows the command of setting vid0 display window to NTSC
window size with triple buffering.
$ fbset -fb /dev/fb/1 -xres 720 -yres 480 -vxres 720 -vyres 1440

To set the bootarg to the LSP1.10 FB default behavior, use the following settings:
video=davincifb:osd0=720x480x16,1350K:osd1=720x480,1350K:vid0=720x480,2025K:vid1=720x480,2025K

These settings will make the OSD frame buffers large enough for double buffering at 720x480x16, and the
video frame buffers large enough for triple buffering at 720x480x16. Now, however, the FB driver always
makes the initial window resolution (xres, yres) and frame buffer resolution (xres_virtual, yres_virtual)
match, so the extra buffers in the frame buffer won't be accessible until an fbset command (or equivalently
an FBIOPUT_VSCREENINFO ioctl) is used to increase yres_virtual to allow for screen flipping.

The virtual resolution (var->yres_virtual) in the application has to be set explicitly to support double or
triple buffering, provided that the frame buffer memory allocation is large enough. Otherwise
FBIOPUT_VSCREENINFO ioctl will fail.

In order to make legacy applications work as-is (without fixing them), the following fbset commands can be
used before running the application. These commands assume that an NTSC display is used and the
frame buffers are sufficiently large to accommodate these sizes.

Make OSD0 720x480x16 with double buffering:
fbset -fb /dev/fb/0 -xres 720 -yres 480 -vxres 720 -vyres 960 -depth 16 -nonstd 0

Make VID0 720x480x16 (YCbCr) with triple buffering:
fbset -fb /dev/fb/1 -xres 720 -yres 480 -vxres 720 -vyres 1440 -depth 16 -nonstd 1

Make OSD1 720x480x4 (attribute mode) with double buffering:
fbset -fb /dev/fb/2 -xres 720 -yres 480 -vxres 720 -vyres 960 -depth 4 -nonstd 1

Make VID1 720x480x16 (YCbCr) with triple buffering:
fbset -fb /dev/fb/3 -xres 720 -yres 480 -vxres 720 -vyres 1440 -depth 16 -nonstd 1

SPRAAU0–March 2008 LSP 1.20 DaVinci Linux Frame Buffer Driver Migration 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

www.ti.com

6 Setting Output and Mode

Setting Output and Mode

Also note that the virtual horizontal size can be made larger than the window’s horizontal size in order to
accommodate displaying an image that was created with a longer line length than the display. For
example, if a static image was created for a 720x480 display, it can be displayed in a 640x480 window by
doing the following:
fbdev -fb /dev/fb/3 -xres 640 -vxres 720 -yres 480 -vyres 480
cp my_720x480_image /dev/fb/3

In this case, the 80 pixels at the end of every line will not be displayed.

In LSP1.20, output interface parameters set by user are passed to Encoder Manager for processing. They
can be set through Encoder Manager boot argument as follows at boot time:
davinci_enc_mngr.ch0_output=COMPOSITE davinci_enc_mngr.ch0_mode=NTSC

Or, after the kernel boots up, they can be set by writing the output string and mode string into two Davinci
sysfs attributes
/sys/class/davinci_dsplay/ch0/output
/sys/class/davinci_display/ch0/mode

For details of setting up and supported output and mode strings, please refer to the DaVinci Video Display
Driver sysfs User’s Guide.

6 LSP 1.20 DaVinci Linux Frame Buffer Driver Migration SPRAAU0–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAU0

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	1 Terms and Abbreviations
	2 Background
	3 LSP1.20 IOCTL Changes
	4 LSP1.20 Kernel Boot Arguments for the Frame Buffer Driver
	5 Setting Up Frame Buffer Size
	6 Setting Output and Mode

