13 TEXAS Application Report
SPRAB60—N ber 2009
INSTRUMENTS ovember
Creating a DSP Boot Image for Host Boot
High-Performance and Multicore Processors
Brighton Feng
Shenzhen, China
Abstract
This application note describes how to create a DSP boot image from a COFF file (.out
file), which can be used for host boot, such as HPI/PCI boot, RapidIO boot, etc. The
implementation of the DSP Boot Assist Tool is introduced and sample source code is
provided with this application note.
Contents
T INTrOdUCHION . .ttt e e e 3
2 .out File Format -- COFF (Common Object File Format)c.covvunin... 5
2.1 COFF File StrUCTUIE . . ettt ettt e e e 5
2.2 File Header StruCtureooue ettt 6
2.3 Optional File Header Formatoiiiiiiiiiiiii ittt iiaeeens 7
2.4 Section Header STrUCTUNe vttt 8
2.5 String Table StrUCTUIe i e e e et eaens 9
3 CreatingaBootImageo.iiiiiii i e 11
3.1 Bootlmage Format.o i e 11
3.2 Developing a Tool to Convert a COFF filetoaBootImage...................... 12
3.2.1 DefiningaHeaderFile.........ooiiiiiiiii i 12
3.2.2 Parsingthe COFF Fileooiuiiii e 14
3.2.3 BootImage Generation Process........co.vvriiniininiiiiiiiiinenene. 16
4 How to use the DSP Boot Assist Tool for Host Bootc..coviieiinn.... 17
4.1 Creating a Boot Image With the DSPBootTool.............ccooviiiiiiiiinan... 17
4.2 BootImage OPtioNsttt e 18
4.3 Copying the Boot Image into DSPmemorycvoviiiiiiiiiiinininen... 21
5 Another Use of the DSP Boot Tool: Getting Statistic From a DSP Program 23
6 Summary and ConclUSIONouut ittt e 24
7 RefOIONCES. . et 24
Tables
Table T File Header CONteNtsiiiniiiiiit it 6
Table 2 File Header Flags (Bytes 18 and 19)ttt ie e ieeeneaens 7
Table 3 Optional File Header Contentsiuiiiti ettt ettt e e eaeaans 7
Table 4 Section Header CONTENTSit ittt ettt ettt eaaes 8
Table 5 Section Header Flags (Bytes 40 Through 43)iiuiiii e 8
Figures
Figure T HOStDOOT PrOCESS ... uiu ittt e s 3

RapidlO is a registered trademark of RapidlO Trade Association.
All other trademarks are the property of their respective owners.

SPRAB60—November 2009
Submit Documentation Feedback

Creating a DSP Boot Image for Host Boot Page 1 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

Figures

Page 2 of 24

I TEXAS

INSTRUMENTS

www.ti.com
Figure2 COFF File STUCTUIE . ..o ettt ettt et ettt et e e aeans 5
Figure3 Sample COFF Object File. e 6
Figure 4 String Table Entries for Sample Symbol Namescoiiiiiiiiiiiiiiiiiinnen. 10
Figure5 BootImage FOrmatuiuenii i e e ettt 11
Figure 6 BootImage Generation ProCessv.vuin ittt et ieaeenens 16
Figure 7 DSP BOOt ASSISTTOO!ttt ittt ettt e e e et et e e 17
Figure 8 Open a.out File in DSP Boot AsSiSt TOOlo.iuiiit i 18
Figure 9 Options Dialoguenii ittt e 19
Figure 10 Exclude .stack section from bootimage 20
Figure 11 Boot Image With Separate Cinit Table ...t e 21
Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

1 Introduction

Introduction

A host processor can directly access the DSP address space through a host port
including HPI/PCI, RapidIO, etc. These peripherals allow a host processor to exchange
information with the DSP. They can also be used by the host to initialize and load boot
code in the DSP.

The Host boot configuration is selected by the external BOOTMODE pins. During
reset, DSP samples the voltage level on these pins to determine the boot mode. When
the Host boot process is selected, the DSP core is held in reset while the remainder of
the device awakens from reset. At that time, a host processor (connected to the DSP
through the host port) can access all of the DSP memory space, including internal,
external, and on-chip peripheral registers.

After loading the code into the DSP, the host informs DSP to begin execution. For HPI
boot, the host writes a 1 to the DSPINT bit in the HPI control register (HPIC). For
RapidIO boot, the host sends a DOORBELL message. The DSP then starts the program
execution from a default address.

Figure 1 shows the host boot process of C6000 DSP.

Figure 1 Host Boot Process

Release

Reset

SPRAB60—November 2009
Submit Documentation Feedback

CCS Generates Executable
COFF File (.out)

Generate Boot Image
(Code and Initialized Data)
From .out File

DSP From sl

Host
BDci)Ft’ l\Sﬂg?epIs;;hti Boot Host Copies the DSP Runs the Code
Determine the el BoOt IMage e From Default Memory
Mode Into DSP Memory Address

The problem is how to load the code into DSP memory. The .out file (COFF format)
generated by Code Composer Studio (CCS) cannot be loaded into DSP memory
directly, because it contains application code and initialized data (which is needed to
run the DSP standalone) along with information for debugging and linking.

To solve this problem, the application code and initialized data will be extracted from

the .out file to build a simple file (or table). Then the host can copy the code/data to the
DSP. This file (or table) is called boot image or boot table.

Creating a DSP Boot Image for Host Boot Page 3 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

TI provides a tool named OFD (object file display) that is based on XML and Perl. The
OFD utility processes common object file format (COFF) files and converts them to
XML format. The TI application note Using OFD Utility to Create a DSP Boot Image
(SPRAA64) describes how to create a DSP boot image using COFF and XML files with
a simple Perl script. The resulting image is a C source file that can be included in the
host processor’s application program and downloaded to the DSP through the HPI or
PCI interfaces.

If you are familiar with Perl and XML, the OFD tool is a good choice. If not, this
application note introduces another more straightforward and flexible way to directly
generate boot image from COFF (.out file).

Page 4 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009
Submit Documentation Feedback

www.ti.com/lit/pdf/SPRAA64
www.ti.com/lit/pdf/SPRAA64
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

.out File Format -- COFF (Common Object File Format)

2 .out File Format -- COFF (Common Object File Format)

The TI DSP assembler and linker creates object files in common object file format
(COFF). COFF is an implementation of an object file format that was developed by
AT&T for use on UNIX-based systems. This format is used because it encourages
modular programming and provides powerful and flexible methods for managing code
segments and target system memory.

2.1 COFF File Structure

SPRAB60—November 2009
Submit Documentation Feedback

The elements of a COFF object file describe its sections and symbolic debugging
information. These elements include:

A file header
Optional header information
A table of section headers

Raw data for each initialized section

Relocation information for each initialized section

A symbol table
A string table

The assembler and linker produce object files with the same COFF structure; however,
a program that is linked for the final time does not usually contain relocation entries.
Figure 2 illustrates the object file structure.

Figure 2

COFF File Structure

File header

Optional file header

Section 1 header

Section n header

Section 1 raw data
(Executable code and initialized data)

Section n raw data

Section 1 relocation information

Section n relocation information

Symbol table

String table

Figure 3 shows a typical example of a COFF object file that contains the three default
sections .text, .data, and .bss, and a named section, referred to as <named>. By default,
the tools place sections into the object file in the following order:

1.
2.

text
.data

Creating a DSP Boot Image for Host Boot

Page 5 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

.out File Format -- COFF (Common Object File Format)

3. Initialized named sections

4. .bss

5. Uninitialized named sections

13 TEXAS
INSTRUMENTS

www.ti.com

Although uninitialized sections have section headers, notice that they have no raw data,
relocation information, or line number entries. This is because the .bss and .usect
directives simply reserve space for uninitialized data. Uninitialized sections contain no

actual code.

Figure 3

Sample COFF Object File

File header

.text section header
.data section header
.bss section header

<named> section header

text raw data
.data raw data

<named> section raw data

.text relocation information
.data relocation information

<named> section relocation information

Symbol table

String table

To create a boot image, extract raw data (executable code and initialized data)
according the information from the file headers and section headers.

2.2 File Header Structure

The file header contains 22 bytes of information that describe the general format of an

object file. Table 1 shows the structure of the COFF file header.

File Header Contents

Description

Version ID - indicates version of COFF file structure. Currently it should
always be 0xC2

Number of section headers

Time and date stamp - indicates when the file was created

File pointer — contains the symbol table’s starting address (bytes offset
from the beginning of the file)

Number of entries in the symbol table

Number of bytes in the optional header - this field is either 0 or 28. If it
is 0, there is no optional file header.

Flags (see Table 2)

Target ID - indicates the file can be executed in what kind of DSP
0x98 for C54x

0x99 for C6000

0x9c for C55x

Table 1

Byte # Type

0-1 Unsigned short
23 Unsigned short
47 Integer

811 Integer

1215 Integer

1617 Unsigned short
1819 Unsigned short
2021 Unsigned short

Page 6 of 24 Creating a DSP Boot Image for Host Boot

SPRAB60—November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

.out File Format -- COFF (Common Object File Format)

Table 2 lists the flags that can appear in bytes 18 and 19 of the file header. Any number
and combination of these flags can be set at the same time. For example, if bytes 18 and
19 are set to 0003h, both F_ RELFLG and F_EXEC are set.

Table 2 File Header Flags (Bytes 18 and 19)
Mnemonic Flag Description
F_RELFLG 0001h Relocation information was stripped from the file.
F_EXEC 0002h The file is relocatable (it contains no resolved external
references).
0004h Reserved
F_LSYMS 0008h Local symbols were stripped from the file.
F_LITTLE 0100h The target is a little-endian device.
F_BIG 0200h The target is a big-endian device.

The following pseudo code shows how to use F_LITTLE to determine the endian mode
of a DSP program. The tCoffHeader in the code is a structure including file header
contents. See 3.2.1 “Defining a Header File” for more information.

Example 1 Pseudo Code to Determine the Endian Mode

if ((tCoffHeader.uiFlags)& F_LITTLE)
The target is a little-endian device;

End of Example 1

2.3 Optional File Header Format

SPRAB60—November 2009
Submit Documentation Feedback

Thelinker creates the optional file header and uses it to perform relocation at download
time. Partially linked files do not contain optional file headers. Table 3 illustrates the
optional file header format.

Table 3 Optional File Header Contents
Byte # | Type Description
01 Short Optional file header magic number (0108h for C6000)
23 Short | Version stamp
47 Integer | Size (in bytes) of .text section
811 Integer | Size (in bytes) of .data section

1215 Integer | Size (in bytes) of .bss section

1619 Integer | Entry point

2023 | Integer | Beginning address of executable code (.text)

2427 | Integer | Beginning address of initialized data (.data)

Creating a DSP Boot Image for Host Boot Page 7 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

.out File Format -- COFF (Common Object File Format) www.ti.com

2.4 Section Header Structure

COFF object files contain a table of section headers that define where each section
begins in the object file. Each section has its own section header. Table 4 shows the
structure of each section header.

Table 4 Section Header Contents
Byte # | Type Description
07 Character This field contains one of the following:

« An 8-character section name padded with nulls

+ Bytes 4 -7 are a pointer into the string table if the symbol name is longer than eight
characters. Bytes 0 - 3 are padded with nulls

811 Integer Section’s run address — should be same as Load address in most cases, except you
have overlapped code sections.

1215 Integer Section’s load address — the address in the DSP where this section should be copied to
during boot.

1619 Integer Section size in bytes

2023 | Integer File pointer to raw data — byte offset of the raw data of this section from the

beginning of this .out file

2427 Integer File pointer to relocation entries
2831 Integer Reserved
3235 Unsigned Number of relocation entries
integer
3639 | Unsigned Reserved
integer
4043 Unsigned Flags (see Table 5)
integer
4445 Unsigned Reserved
short
4647 Unsigned Memory page number
short

Actually, to boot is to copy raw data (codes and initialized data) in the .out file to DSP
memory. This table includes main information for copying.

o Source Address — File pointer to raw data
o Destination Address — Section’s load address
o Byte Count — Section size

Table 5 lists the flags that can appear in bytes 40 through 43of the section header.

Table 5 Section Header Flags (Bytes 40 Through 43) (Part 1 of 2)

Mnemonic Flag Description

STYP_REG 0000 0000h Regular section (allocated, relocated, loaded)

STYP_DSECT 0000 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0000 0002h Noload section (allocated, relocated, not loaded)

STYP_COPY 0000 0010h Copy section (relocated, loaded, but not allocated; relocation
entries are processed normally)

STYP_TEXT 0000 0020h Section contains executable code

STYP_DATA 0000 0040h Section contains initialized data

STYP_BSS 0000 0080h Section contains uninitialized data

STYP_BLOCK 0000 1000h Alignment used as a blocking factor

Page 8 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

.out File Format -- COFF (Common Object File Format)

Table 5 Section Header Flags (Bytes 40 Through 43) (Part 2 of 2)
Mnemonic Flag Description
STYP_PASS 0000 2000h Section should pass through unchanged
STYP_CLINK 0000 4000h Section requires conditional linking
STYP_VECTOR 0000 8000h Section contains vector table
STYP_PADDED 00010000h Section has been padded

The flags listed in Table 5 can be combined. For example, if the flag’s word is set to
060h, both STYP_DATA and STYP_TEXT are set.

Bits 8-11 of the section header flags are used for defining the alignment. The alignment
is defined to be 2Vu¢ P 8-1D) ko example if bits 8-11 are 0101b (decimal integer 5),
then the alignment is 32 (25).

Uninitialized sections (created with the .bss and .usect directives) vary from this
format. Although uninitialized sections have section headers, they have no raw data or
relocation information. They occupy no actual space in the object file. Therefore, the
number of relocation entries, the number of line number entries, and the file pointers
are 0 for an uninitialized section. The header of an uninitialized section simply tells the
linker how much space it should reserve in the memory map for variables.

To boot up the DSP, only the code and initialized data section need to be copied to DSP
memory. Example 2 provides pseudo code to determine which section should be added
to the boot image.

Example 2 Pseudo Code for Determining Sections to Copy

if (tSectionHeader.uiFlags& (SECTION TYPE DSECT|SECTION TYPE NOLOAD|
SECTION_TYPE COPY))
continue; //skip useless sections

if ((tSectionHeader.uiFlags& (STYPE TEXT|STYPE VECTOR|STYPE DATA)))
Add this section into boot image;

End of Example 2

2.5 String Table Structure

SPRAB60—November 2009
Submit Documentation Feedback

Symbol names that are longer than eight characters are stored in the string table. For
example, if a section name is longer than 8 characters, it will be stored in the string
table. Names are stored contiguously in the string table, delimited by a null byte. The
first four bytes of the string table contain the size of the string table in bytes. Thus
offsets into the string table are greater than or equal to 4.

Creating a DSP Boot Image for Host Boot Page 9 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

.out File Format -- COFF (Common Object File Format) www.ti.com

Page 10 of 24

Figure 4 is a string table that contains two symbol names, Adaptive-Filter and
Fourier-Transform. The index in the string table is 4 for Adaptive-Filter and 20 for
Fourier-Transform.

Figure 4 String Table Entries for Sample Symbol Names
38 bytes
4 bytes

‘A ‘d’ ‘a' p’
t iV V' ‘e’
~ ‘F i’ I
t ‘e’ r \0’
‘F ‘o’ u’ r
TV ‘e’ r !
T r ‘a’ n'
‘s’ ' ‘o’ r
‘m’ \0’

Because the string table follows the symbol table, the start address of the string table is
dependent on the symbol table offset and the symbol table size. The pseudo codes in
Example 3 calculate the location of a section name, whose length is longer than 8 bytes
and stored in the string table.

Example 3

iSymbolTableSize=SYMBOL ENTRY SIZE* tCoffHeader.uiSymbolEntryNumber;
cpStringTableAddress= tCoffHeader.uiSymbolPointer+ iSymbolTableSize;

cpSectionNameAddress=
cpStringTableAddress+tSectionHeader.SectionNameOffsetInStringTable;

End of Example 3

Relocation information and the symbol table used by the linker and debugger are not
related to the boot process, so they are not introduced here. For detailed information,
please refer to Assembly Language Tools User’s Guide v6.1 (SPRU186)

Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

www.ti.com/lit/pdf/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com Creating a Boot Image

3 Creating a Boot Image

This section discusses how to create a DSP boot image that can be downloaded from
the host through the HPL

3.1 BootImage Format

First, the boot image format needs to be defined. The boot image should include
enough information for boot loading while minimizing image size to reduce boot time
and save host memory. Figure 5 shows a recommend format, however you can define
your own format according your application.

Figure 5 Boot Image Format

Entry point (4 bytes)

Section 1 size (4 bytes)
Section 1 load address (4 bytes)
Section 1 run address (4 bytes)

Section 1 raw data (4 X n bytes)

Section 2 Size (4 bytes)
Section 2 load address (4 bytes)
Section 2 run address (4 bytes)

Section 2 raw data (4 x n bytes)

Section N size (4 bytes)
Section N load address (4 bytes)
Section N run address (4 bytes)

Section N raw data (4 X n bytes)

0x00000000 (end flag)

NOTE—The section size in a COFF file may not be a multiple of 4 bytes, but here we
align every entry in the table to 4 byte boundary. If the section size is not a multiple of
4 bytes, padding will be added to the end of the raw data. The padding does not need to
be copied to DSP memory.

The table can be saved to a binary file or saved as a C header file. The binary file is
suitable for a host with a file system. During start up, the host will read the binary file
and copy the contents of the file into DSP memory. An array embedded in a C Header
file is suitable when the host does not support a file system. Example 4 illustrates an
embedded array.

Example 4 Boot Table Array in a C Header File

#ifndef BootTable H

#define BootTable H

const char BootTable[]={

/*Program Entry point*/

SPRAB60—November 2009 Creating a DSP Boot Image for Host Boot Page 11 of 24
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

Creating a Boot Image

13 TEXAS
INSTRUMENTS

www.ti.com
0x60, Oxae, 0x00, 0xO00,
/*Section .hwi_vec begin*/
0x00, 0x02, 0x00, 0x00, /*Size in bytes*/
0x00, 0x00, 0x00, 0x00, /*load address*/
0x00, 0x00, 0x00, 0x00, /*run address*/
/*Raw section Data*/

0x2a, 0x30, 0x57, 0x00, Ox6a, 0x00, 0x00, 0x00,
0x62, 0x03, 0x00, 0x00, Oxb5a, 0xa3, 0x00, 0x00,

0xa2, 0x03, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

/*Section .sysinit begin*/
0xa0, 0x03, 0x00, 0x00, /*Size in bytes*/
0x80, Oxab, 0x00, 0x00, /*load address*/
0x80, Oxab, 0x00, 0x00, /*run address*/
/*Raw section Data*/

0xf6, 0x54, Oxbc, 0x01, Ox2a, 0xd0, 0x98, 0x01,
Ox6a, 0x01, 0x80, 0x01, 0x62, 0x03, 0x0c, 0x00,

0x2a, Oxce, 0xd5, 0x01l, Ox6a, 0x00, 0x80, 0x01,
0x00, 0x40, 0x00, 0x00, 0x28, 0x48, 0x82, 0x00,

/*End Flag*/

0x00, 0x00, 0x00, 0x00

}i
#endif

End of Example 4

The C header file should be added into host projects so that the host boot code can read
the boot image from the BootTable array, and copy the image into DSP memory.

3.2 Developing a Tool to Convert a COFF File to a Boot Image

The following sections use the DSP Boot Assist Tool as an example of how to
implement a tool to convert from a COFF file to a boot image.

3.2.1 Defining a Header File

The DSP Boot Assist Tool is built with Turbo C++ Explorer. To easily parse the COFF
file format, you will need to begin by defining a header file that describes the format of
COFF file. Example 5 shows the definition for the DSP Assist Boot Tool.

Example 5

REMOVE

/*Define TI DSP COFF (.out) file format structure*/

#ifndef _COFF_H
#define _COFF_H
Page 12 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

SPRAB60—November 2009
Submit Documentation Feedback

Creating a Boot Image

#define HEADER SIZE 22
#define OPTIONAL HEADER SIZE 28
#define SECTION HEADER SIZE 48

//define of Header flag
//Relocation information was stripped from the file.
#define HEADER FLAG RELFLG 0x001

//The file is relocatable (it contains no unresolved external references).
#define HEADER FLAG EXEC 0x002

//Local symbols were stripped from the file.
#define HEADER FLAG LSYMS 0x008

//The target is a little-endian device.
#define HEADER FLAG LITTLE 0x100

//The target is a big-endian device.
#define HEADER FLAG BIG 0x200

//define of section type
//Regular section (allocated, relocated, loaded)
#define SECTION_TYPE REG 0x0000000

//Dummy section (relocated, not allocated, not loaded)
#define SECTION_TYPE DSECT 0x0000001

//Noload section (allocated, relocated, not loaded)
#define SECTION_TYPE NOLOAD 0x0000002

/*Copy section (relocated, loaded, but not allocated;
relocation entries are processed normally)*/
#define SECTION TYPE COPY 0x0000010

//Section contains executable code
#define SECTION TYPE TEXT 0x0000020

//Section contains initialized data
#define SECTION TYPE DATA 0x0000040

//Section contains uninitialized data
#define SECTION TYPE BSS 0x0000080

//Alignment used as a blocking factor
#define SECTION TYPE BLOCK 0x0001000

//Section should pass through uncxhanged
#define SECTION TYPE PASS 0x0002000

//Section requires conditional linking
#define SECTION TYPE CLINK 00004000

//Section contains vector table
#define SECTION TYPE VECTOR 0x0008000

//Section has been padded
#define SECTION TYPE PADDED 0x0010000

typedef struct _tCoffHeader

unsigned short usVersionID; //indicates version of COFF file structure
unsigned short usSectionNumber; //Number of section headers

int iTimeStamp; //indicates when the file was created

unsigned int uiSymbolPointer; //contains the symbol table's starting address
unsigned int uiSymbolEntryNumber; //Number of entries in the symbol table

//This field is either 0 or 28; if it is 0, there is no optional file header.
unsigned short uiOptionalHeaderBytes; //Number of bytes in the optional header

unsigned short uiFlags;
//magic number (0099h) indicates the file can be executed in a C6000 system
unsigned short uiTargetID;
}TCoffHeader;
typedef struct _tCoffOptionalHeader
//Optional file header magic number (0108h) indicates C6000
unsigned short usOptionalHeaderID;

unsigned short usVersionStamp;
unsigned int uiTextSize; //Integer Size (in bytes) of .text section

Creating a DSP Boot Image for Host Boot Page 13 of 24

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS

INSTRUMENTS
Creating a Boot Image www.ti.com
unsigned int uiDataSize; //Integer Size (in bytes) of .data section
unsigned int uiBssSize; //Integer Size (in bytes) of .bss section
unsigned int uiEntryPoint;
unsigned int uiTextAddress; //Integer Beginning address of .text section
unsigned int uiDataAddress; //Integer Beginning address of .data section
}TCof fOptionalHeader;
typedef struct _tSectionHeader
union
char sName[8]; //An 8-character section name padded with nulls
//A pointer into the string table if the symbol name >8bytes
unsigned int uiPointer[2];
}SectionName;
unsigned int uiPysicalAddress; //Section's physical address (Run Address)
unsigned int uivirtalAddress; //Section's virtual address (Load Address)
unsigned int uiSectionSize; //Section size in bytes
unsigned int uiRawDataPointer; //File pointer to raw data

unsigned int uiRelocationEntryPointer; //File pointer to relocation entries
unsigned int uiReservedo;

unsigned int uiRelocationEntryNumber; //Number of relocation entries
unsigned int uiReservedl;

/*Type of the section*/

unsigned int uiFlags;

unsigned short usReserved;

unsigned short usMemoryPageNumber;
}TSectionHeader;

#endif

End of Example 5

3.2.2 Parsing the COFF File

The C++ class named TCoffParser parses the COFF file and generates a boot image.
TCoffParser is defined in Example 6.

Example 6 Parsing the COFF File with TCoffParser

#ifndef COFFPARSER H
#define COFFPARSER H

#include "vcl.h"
#include "Coff.h"

class TCoffParser

public:
TCoffParser () ;
~TCoffParser () ;

//Parser COFF file, get information, prepare for generating boot miage
int Parser (AnsiString CoffFileName) ;
//generate binary boot image;
int GenerateBinBootFile (AnsiString BinFileName) ;
//generate C header file includeing boot image
int GenerateCBootFile (AnsiString CFileName) ;

//API for providing statistics information of the program
//Total memery size should be consumed by the program

unsigned int GetTotalSize() {return
uiCodeSize+uiInitializedDataSize+uiUninitia1izedDataSize;}
//Initialized sections, including codes and initialized data, which should be copy
during boot

Page 14 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com Creating a Boot Image

unsigned int GetInitializedSectionSize() {return
uiCodeSize+uilnitializedDataSize;}

unsigned int GetCodeSize() {return uiCodeSize;}
unsigned int GetInitializedDataSize() {return uilnitializedDataSize;}
unsigned int GetUninitializedDataSize() {return uiUninitializedDataSize;}
unsigned int GetInitializedSectionNumber ()
{returnuiCodeSectionNumber+uilnitializedDataSectionNumber; }
unsigned int GetCodeSectionNumber () {return uiCodeSectionNumber; }
unsigned int GetInitializedDataSectionNumber () {return
uilnitializedDataSectionNumber;} unsigned int
GetUninitializedDataSectionNumber () {return uiUninitializedDataSectionNumber; }

TCoffHeader tCoffHeader;
TCoffOptionalHeader tCoffOptionalHeader;

private:

TSectionHeader tSectionHeader;

unsigned int uiCodeSize; //Total codes size in bytes

unsigned int uiInitializedDataSize; //Total Initialized Data Size
unsigned int uiUninitializedDataSize; //Totol uninitialized data size
unsigned int uiCodeSectionNumber;

unsigned int uiInitializedDataSectionNumber;

unsigned int uiUninitializedDataSectionNumber;

#endif

SPRAB60—November 2009 Creating a DSP Boot Image for Host Boot Page 15 of 24
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

Creating a Boot Image

3.2.3 Boot Image Generation Process
The boot image generation process is shown in Figure 6.

Page 16 of 24

Figure 6

Boot Image Generation Process

Parse the COFF Header to Get:
Section Number,
Optional Header Size.

13 TEXAS
INSTRUMENTS

www.ti.com

Has Optional

Header? Y

Write it Into the Boot Image Table.

Parse Optional Header to Get:
Entry Point Address.

Parse Section Header to get:
Section Size in Bytes,
Raw Data Offset in COFF File,

Destination Address in DSP,
Section Property Flag.

Section Flag is
STYPE TEXT or
STYPE VECTOR or
STYPE DATA

Write Section Information
Y—» and Raw Data into the
Boot Image Table.

N Processed Al

Sections?

NOTE—To reduce boot time and save host memory, only copy sections with the
STYPE_TEXT, STYPE_VECTOR, or STYPE_DATA flag into the boot image.

For implementation details, please refer to the source code bundled with this
application note. It can be downloaded from the following URL
http://www-s.ti.com/sc/techlit/SPRAB60.zip.

Creating a DSP Boot Image for Host Boot

SPRAB60—November 2009
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRAB60.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com How to use the DSP Boot Assist Tool for Host Boot

4 How to use the DSP Boot Assist Tool for Host Boot

Using the Windows DSP Boot Assist Tool is very simple. Figure 7 shows the interface
of the tool. The tool is tested on the C6000 DSP, but it may be used on the C5000 DSP
because the COFF format is same.

Figure 7 DSP Boot Assist Tool
" 7 DSP Boot Assist Tool V1.1 M=
Dut File

| Cpen... Options...

Generate hoottable as Cheader file

| Savethsﬁm| SaveAsm|

Generate boottable as binary file

| SavethSﬁm| SaveAsm|

I 36 3 3 I I I I I 3 W K I H KK KN NENNE

®* Copyright (C) 2005 Texas Instruments Incorporated. All Rights Reserved =
* Brighton Feng Last update in January 2006 *

EAREEEX XXX EEEXR XXX EEER R ENXE

This tool can generator DSP boot takle from .out file as following format:

| Entryv Point (4 hyvtes)
| =ommommommoooeooooeooo o |

| Bection 1 Size (4 bytes)

| Bection 1 Load Address (4 bytes) |
| Bection 1 Run Address (4 hytes) |
| Bection 1 Data (4%*n hytes) |
e |
| Bection 2 Size (4 bytes)

| Bection 2 Load Address (4 bvtes) |
| Bection 2 Run Address (4 hytes) |
| Bection 2 Data (4*n hvtes) |

4.1 Creating a Boot Image With the DSP Boot Assist Tool
Procedure 1 describes how to use the DSP Boot Assist Tool

Procedure 1

Step - Action

1 Click the Open button and choose your .out file for processing. Figure 8 shows the
status when you open a .out file. Statistics information including the code size, section
number, etc. display in the bottom window.

2 Inthe appropriate text box, save the file as a C header file or Generate a boot table
as a binary file.

« Click the Save to this file button to generate a boot image and save to a relative
file. The default directory for the generated file is the same as .out file.

» Click the Save as button to choose the directory or change the file name for the
generated file.

End of Procedure 1

SPRAB60—November 2009 Creating a DSP Boot Image for Host Boot Page 17 of 24
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS

INSTRUMENTS
How to use the DSP Boot Assist Tool for Host Boot www.ti.com
Figure 8 Open a .out File in DSP Boot Assist Tool
DSP Boot Assist Tool V1.1 M=
DutFile
|E:\2_DSPPrDjem\BDDt\CE4xTest\Debug\CB4xTest.Dut Options...
Generate boattable as Cheaderfile
|E:\2_DSPPrDject\BDDt\CE4xTest\Debug\CB4xTest.h Savetothisfie | Save As.. |
Generate hoottable as binary file
|E:\2_DSPijecﬂEloot\CE4xTest\Debug\CMxTest.bin Savetothisfile | Save As.. |
ET\Z_ESPP;ojeEt\BEot\EE4xfest<DebEg\CE4xT;st.;ut was gucegsfufly Earsgd: B B y
COFF file format wversion cZ
Creation date Mon Dec 1% 19:11:45 2005
Targeted architecture CpO00 (0x99)
Endianess of ohject code Little Endian
Mumber of sections 49
Humber of code sections 5
Humber of initialized data sections 10
Humber of uninitialized data sections 14
Code size (bytes) 24430
Initialzied data size (hvtes) 4990
Uninitialized data size (hvtes) 45685
Initialized section size (hytes) 29470
Total memory consumed (byvtes) 34038

4.2 Boot Image Options

The DSP Boot Assist Tool provides advanced options if you want to add or remove
sections from the boot image. The Options button displays the Options dialog shown
in Figure 9.

Page 18 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS

INSTRUMENTS
www.ti.com How to use the DSP Boot Assist Tool for Host Boot
Figure 9 Options Dialog
Options E
Special Sections
Sections Must includein 0 Nomal Sections 49 Sections MustNOT 0
hoot table include in boot table
$BRID i
.args
hios
hss
.cinit
.cio
— ||-clk =
g .const J
.data
—>» ||.debug_abbrev —

.debug_frame
.debug_info
debug_line
.debug_loc
.dsm 3
far

Swap for different endian mode

[SwepPRewData [B3|B2|B1/BO] -> [BOJB1[B2IB3]

[Swap Inforation (Address and Size)

[Create Seperate ClnifTahle for hoat time initialization 0K, | Cancel |
All the available sections are listed in the Normal Sections box. Select the desired
section and click the left or right arrow button to add or remove the section from the
boot image. These settings will override the rules about boot image section inclusion
that were shown in Figure 6.

For example, The stack does not need to be included into the boot image because it does
not need to be initialized, but some compilers will automatically initialize the stack with
default values for debug purposes. In this case, the .stack section type should be
STYPE_DATA, which means initialized section. According the rules shown in
Figure 6, the section should be included in boot image. Through the Options dialog
shown in Figure 9, you can manually remove the section from the boot image to reduce
the boot time and save host memory.

SPRAB60—November 2009 Creating a DSP Boot Image for Host Boot Page 19 of 24

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

How to use the DSP Boot Assist Tool for Host Boot www.ti.com

The Figure 10 dialog box shows the .stack will NOT be included into the boot image
regardless of how the section flag is set.

Figure 10 Exclude .stack Section From Boot Image

Options g‘

Special Sections

Sections Must include in i} MNaomal Sections 48 Sections Must NOT i
hoot table include inboat table

pinit A stack
pip
Jordd
printf
id_data
rtihx_ten
¢— ||.sts
5wl
.switch
—> ||.avs
sysdata
.sysinit
.SySregs
et
trace
trodata

Swap for different endian mode

[SwapRawData [E3|B2|B1|B0]-> [BO|E1|B2E3]

[Swap Information (Address and Size)

[Create Seperate ClnitTable for hoat time initislization oK | Taneel |

The DSP Boot Assist Tool provides options to support different endian mode. The DSP
can support both little and big endian. Generally speaking, Intel CPUs are little endian
and Motorola (Freescale) CPUs are big endian. If the host endian mode is not the same
as the DSP, you can swap the data in the boot image to match it.

Since the boot image file is generated by a Windows PC, the address and size
information should always be little endian; raw data endian is determined by the target
DSP endian mode. If your host endian mode is different from the target DSP, you
should swap the raw data; if your host endian mode is big endian (different from
Windows PC) you should swap other information including the address and size

If you check Swap Raw Data, the raw section data will be swapped. If you check Swap
Information, the address and size will be swapped. Swapping is done for every four
bytes, it will change the byte order from [B3|B2|B1|B0] to [BO|B1|B2|B3].

The option Create Separate CinitTable for boot time initialization can support

autoinitialization of variables at boot. When selected, the .cinit section will be saved
separately at the end of the boot image file as shown in Figure 11.

Figure 11 Boot Image With Separate Cinit Table

Entry point (4 bytes)

Section 1 size (4 bytes)

Section 1 load address (4 bytes)

Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

www.ti.com

How to use the DSP Boot Assist Tool for Host Boot

Figure 11 Boot Image With Separate Cinit Table
Section 1 run address (4 bytes)

Section 1 raw data (4 X n bytes)

Section N size (4 bytes)
Section N load address (4 bytes)
Section N run address (4 bytes)
Section N raw sata (4 X n bytes)

0x00000000 (end flag)

.Cinit section size (4 bytes)

.cinit section load address (4 bytes, useless)

.Cinit section run address (4 bytes, useless)

.cinit section raw data (4 X n bytes)

0x00000000 (end flag)

If you generate a C header file, the .cinit section will generate a separate array at the end
of the file.

For more details about load time auto initialization, Please refer to:
o TMS320C6000 Optimizing Compiler User’s Guide (sprul87)
o TMS320C6000 Assembly Language Tools User's Guide (sprul86)

4.3 Copying the Boot Image into DSP memory

SPRAB60—November 2009
Submit Documentation Feedback

If the boot image table is saved as a C header file, you should include the header file into
your host project where you should add code to load the boot image into DSP memory.
Example 7 shows loading the boot image through HPI.

Example 7 HPI Boot Sample Code

#include "BootTable.h" //Include the header file generated by the tool

void LoadDSPCodes ()

{

unsigned int uiSectionSize, uiEntryPoint;
//data pointer for the array, which contains the boot image
unsigned int *ipBootTable= (unsigned int *)BootTable;

uiEntryPoint=*ipBootTable++;
uiSectionSize=*ipBootTable++;
while (uiSectionSize) //0 is the end flag

HPIA= *ipBootTable++; //Write HPI transfer target address to HPIA
ipBootTable++; //Skip the run address
//Copy a section into DSP Memory
for(int i=0; i< uiSectionSize; i+=4)

HPID= *ipBootTable++; //Write raw section data to HPID register
uiSectionSize=*ipBootTable++; //Next section

}
}

End of Example 7

Creating a DSP Boot Image for Host Boot Page 21 of 24

www.ti.com/lit/pdf/SPRU187
www.ti.com/lit/pdf/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

How to use the DSP Boot Assist Tool for Host Boot www.ti.com

Page 22 of 24

If the boot image is saved as a binary file, you should store the file on the host’s file
system. With HPI boot, shown in Example 7, code is copied to DSP memory as an
array, but when loading from a file, you should modify the code to copy the data from
the binary file to DSP memory.

An efficient way to do this is to load the binary file into an array and name the array
BootTable. Then you can use the code in Example 7 without modification.

After loading the boot image into DSP memory, notify the DSP to begin running the
program. For HPI boot, the host writes a 1 to the DSPINT bit in the HPI control register
(HPIC). For RapidIO boot, the host sends a DOORBELL message. The DSP will begin
running from the predefined address. For C6000 DSP, the "Entry Point" in the .out file
is useless, because the C6000 DSP will always run from the default address after host
boot. For C62x and C64x, the default address is 0. For C64x+, the default address is not
0. Refer to device specific documentation for the default address.

Creating a DSP Boot Image for Host Boot SPRAB60—November 2009

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

Another Use of the DSP Boot Assist Tool: Getting Statistics From a DSP Program

www.ti.com

5 Another Use of the DSP Boot Assist Tool: Getting Statistics From a DSP Program

Even if you don’t need to generate a boot image for your application, the DSP Boot Tool
is still useful. You can use it to gather statistical information from a DSP program. To
retrieve statistics, open a .out file in the DSP Boot Tool. The information will be shown

in the output window from Figure 8.

This information is helpful when:
+ You want to know how much memory is consumed on a DSP.
« You want to compare memory consumption when you are optimizing a program
with different methods.

SPRAB60—November 2009 Creating a DSP Boot Image for Host Boot Page 23 of 24
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

13 TEXAS
INSTRUMENTS

Summary and Conclusion www.ti.com

6 Summary and Conclusion

This application note shows how to create a DSP boot image directly from a .out file.
This approach eliminates the need to use the HEX utility which requires reformatting
the intermediate output of these tools. Thus, the development flow becomes simpler,
more robust and more flexible.

This application note only introduces how to create boot image for host boot, but the
tool can easily be modified to accommodate various boot modes.

TI provides another tool named OFD, which is based on XML and Perl script. If you
are familiar with Perl and XML, it is a good choice. See Using OFD Utility to Create a
DSP Boot Image (SPRAA64) for more details.

7 References
o TMS320C6000 Assembly Language Tools User’s Guide (SPRU186)
o Implementing the TMS320C6201/C6701/C6211 HPI Boot Process (SPRA512)
o TMS320C6000 Optimizing Compiler User’s Guide (SPRU187)
« Using OFD Utility to Create a DSP Boot Image (SPRAA64)

Page 24 of 24 Creating a DSP Boot Image for Host Boot SPRAB60—November 2009
Submit Documentation Feedback

www.ti.com/lit/pdf/SPRU186
www.ti.com/lit/pdf/SPRA512
www.ti.com/lit/pdf/SPRU187
www.ti.com/lit/pdf/SPRU187
www.ti.com/lit/pdf/SPRU186
www.ti.com/lit/pdf/SPRAA64
www.ti.com/lit/pdf/SPRAA64
www.ti.com/lit/pdf/SPRAA64
www.ti.com/lit/pdf/SPRAA64
www.ti.com/lit/pdf/SPRAA64
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers pmplifier.ti.com Audio [vww.1r.com/audid

Data Converters Automotive [vww Tr.com/automofiv
DLP® Products [vww .dIp.comn] Broadband [pww i.com/broadband
DSP Fspicom Digital Control [pww ir-com/digitalcontrol
Clocks and Timers [yww Ti.com/cloc Medical [pww Ti.com/medical
Interface [nferfacedico Military [pww ir-com/military
Logic [oaicTiconi Optical Networking [xww Ti.com/opficalnetwor
Power Mgmt powerfr.com Security vww Tr.com/securt
Microcontrollers nicrocontroller.fi.conj Telephony lvww.tr.com/telephony
RFID [wWwiiirfid-co Video & Imaging [pww i-com/vided

RF/IF and ZigBee® Solutions | {r.com/prl Wireless [vww fi.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Contents
	Tables
	Figures
	1 Introduction
	2 .out File Format -- COFF (Common Object File Format)
	2.1 COFF File Structure
	2.2 File Header Structure
	2.3 Optional File Header Format
	2.4 Section Header Structure
	2.5 String Table Structure

	3 Creating a Boot Image
	3.1 Boot Image Format
	3.2 Developing a Tool to Convert a COFF File to a Boot Image
	3.2.1 Defining a Header File
	3.2.2 Parsing the COFF File
	3.2.3 Boot Image Generation Process

	4 How to use the DSP Boot Assist Tool for Host Boot
	4.1 Creating a Boot Image With the DSP Boot Assist Tool
	4.2 Boot Image Options
	4.3 Copying the Boot Image into DSP memory

	5 Another Use of the DSP Boot Assist Tool: Getting Statistics From a DSP Program
	6 Summary and Conclusion
	7 References

