
Application Report
SWPA027 – May 2004

OMAP, TMS320C55x and C55x are trademarks of Texas Instruments Incorporated.
OMAP5910, OMAP5912, OMAP1510, and OMAP1610 are members of Texas Instruments OMAP™ family of
products.
All other trademarks are the property of their respective owners.

1

Using Endianess Conversion in the OMAP5910 Device

 Matthias Kassner

ABSTRACT

The OMAP5910™ device features a new dual-core architecture from Texas
Instruments™ (TI) that is optimized for multimedia applications in a low-power
environment. It couples two processors—a TI enhanced TI925T™ general-purpose
processor and an ultralow-power TMS320C55x™ (C55x™) DSP—with a rich set of
peripherals and powerful interfaces to achieve optimal performance.

Within the OMAP5910 device, the TI925T operates in little-endian mode, whereas the
C55x DSP uses the big-endian data format. Consequently, endianess conversion is
required for certain data transfers between these two processors.

This application note discusses the basics of the different endianess data formats,
provides an overview of the OMAP5910 architecture involved in endianess conversion,
and outlines configuration options.

Although this application note is written for the OMAP5910 device, it applies equally to the
OMAP5912™, OMAP1510™, and OMAP1610™ devices.

Contents
1 Data Formats ...2

1.1 Data Accesses in Mixed-Endian Systems...3
1.2 Endianess Conversion in Mixed-Endian Systems...4

2 OMAP Hardware Architecture..5
2.1 High-Level Overview ...5
2.2 DSP Megacell Architecture ...6
2.3 Endianess Within OMAP...7
2.4 OMAP Data Paths ...7

3 Endianess Conversion ...8
3.1 Endianess Conversion in the DSP MMU...8

3.1.1 Endianess Conversion Architecture ..8
3.1.2 Configuring DSP MMU Endianess Conversion ...9

3.2 Endianess Conversion in the MPU Interface...10
3.2.1 Configuring MPU Interface Endianess Conversion ...10

4 Conclusion...12
5 References...12

Figures
Figure 1. OMAP System Building Blocks...6

SWPA027

2 Using Endianess Conversion in the OMAP5910 Device

Figure 2. C55x DSP Megacell ..7
Figure 3. C55x Megacell Memory Interface..8
Figure 4. Endianess Conversion Architecture ..9

Tables
Table 1. Little-Endian Versus Big-Endian Data Format...3
Table 2. Endianess Conversion Versus Access Size..5
Table 3. DSP MMU Endianess Control Register ..9
Table 4. DSP MMU Endianess Control Register Bits ..10
Table 5. DSP MMU Endianess Conversion Versus Endianess Settings10
Table 6. MPUI Endianess Control Register ..10
Table 7. DSP MPUI Endianess Control Register Bits ..11
Table 8. MPUI Endianess Conversion Versus Endianess Settings ...11

1 Data Formats
When storing data in memory, each data item is stored at one or more memory addresses. The
number of memory addresses required to store an item depends on two factors:

• The size of the data item (8-bit, 16-bit, 32-bit…)

• The addressed data size, also referred to as the minimum addressable unit (MAU)

The addressed data size equals the size of the data item corresponding to a single address. In
the common case of a byte-addressable architecture, this size equals one byte (8 bits). The
OMAP5910 device is an example.

More generally, the number of memory locations required to store an item is determined by the
quotient between the data size and the addressed data size. For example, storing a 16-bit data
item requires two address locations for 8-bit addressable architectures, but only one address
location for 16-bit addressable architectures.

Storing data items to memory is unambiguous as long as it requires exactly one memory
location, meaning that the data size equals the addressed data size. For instance, this is the
case when storing a 1-byte data item on a byte-addressable architecture.

If the data size does not equal the access size, two possibilities exist:

• The data size is smaller than the addressed data size; for instance, when storing a bit (C-
type Boolean) on a byte-addressable architecture. This usually does not pose a problem
because there is a nearly universal consensus to store such items right-justified and to fill
the remaining positions with 0s. For instance, when storing a single bit using 1 byte of
memory, the bit is allocated at the rightmost (least significant) bit position and the remaining
7 bits are set to 0.

• The data size is larger than the addressed data size; for instance, when storing a 32-bit
integer on a byte-addressable architecture. This is a different situation because a data item
requires more than one memory location to be stored.

SWPA027

Using Endianess Conversion in the OMAP5910 Device 3

For this case, two approaches have evolved over time. The difference between the two
approaches centers on which part of the data word is stored at the first memory location,
that is, at the location with the lowest address.

In big-endian data format, the most significant part is stored first and the least significant
part last. In little-endian data format, the least significant part is stored first and the most
significant part last.

Table 1 shows examples of how different data items are stored in big- and little-endian
architectures. These examples assume a byte-addressable architecture.

Table 1. Little-Endian Versus Big-Endian Data Format

Endianess Examples
32-bit: 0x1234:5678 16-bit: 0x1234 8-bit: 0x12 Address
Little

Endian
Big Endian Little

Endian
Big Endian Little

Endian
Big

Endian
0x50000 0x78 0x12 0x34 0x12 0x12 0x12
0x50001 0x56 0x34 0x12 0x34

0x50002 0x34 0x56

0x50003 0x12 0x78

From these examples you can see that different endianess formats only affect data sizes larger
than 1 byte. The conclusion is that different endianess formats affect data accesses only when
the access size exceeds the addressed data size.

If your system uses two different endianess formats (as is the case with the OMAP5910 device),
data transferred between the big-endian and little-endian subsystems must sometimes be
converted into the respective format. This process is called endianess conversion.

1.1 Data Accesses in Mixed-Endian Systems

In this section, the basic procedures used to access data in mixed-endian systems—in systems
using two different endianess formats—are discussed. Although the case of a processor
accessing memory is discussed, these considerations can be generalized in principle to any
type of host (processor, DMA, etc.) accessing any type of target (memory, peripheral, etc.).

In mixed-endian systems, endianess conversion may be required if a processor accesses a
memory region containing data stored in a different endianess format; for example, a big-endian
processor accessing data stored in little-endian format.

Whether endianess conversion is required depends on the way the data is accessed. When a
processor accesses memory, it typically does so by sending the start address of the data item
and the data size (1-byte, 2-byte, 4-byte…). The memory system then fetches the required
amount of data from the memory and places it onto the memory data bus.

The actual data retrieving is done by the memory system, so the endianess of the requesting
processor has no effect on the fetched result. This means that the same value is read by a big-
or little-endian processor, as long as the same start address and the same access size are
used.

SWPA027

4 Using Endianess Conversion in the OMAP5910 Device

Both big- and little-endian processors read (and write) the same values from (to) memory as
long as they provide the same start address and read (write) the same amount of data.

Taking an example from Table 1, a 32-bit read from address 0x50000 results in the same value
(0x1234:5678) both for the little-endian and big-endian processors independent of the endianess
of the memory system.

When is endianess conversion actually needed? It is assumed that the 32-bit value 0x1234:5678
has been stored in little-endian data format at address 0x50000 as shown in Table 1. It is also
assumed that a big-endian processor wants to read this 32-bit data using two 16-bit read
operations.

The processor issues a first 16-bit read request to address 0x50000 and reads back the value
0x5678. It then issues a second read request to address 0x50002 and reads back 0x1234. As
the processor uses big-endian data format, it interprets the retrieved data as 0x5678:1234. This,
however, may not be what had been expected.

Generally, the use of different endianess formats poses problems only if different data sizes are
used to access the data. As an example, if a 32-bit value has been stored in little-endian format
and is read with two 16-bit accesses by a big-endian processor, then the 16-bit words are
swapped. Similarly, when a 16-bit value is read with the two 8-bit accesses, the two 8-bit values
are swapped.

In mixed-endian systems it is not always possible to avoid accessing data with such differing
access sizes. A process is needed in those cases to reorder the retrieved values into the
expected order. This process is called endianess conversion.

1.2 Endianess Conversion in Mixed-Endian Systems

Endianess conversion is required in mixed-endian systems when two processors access shared
data using different endianess formats and different access sizes. This means that:

• The endianess format of the processors accessing shared data must be different. This is
the case, for instance, when one processor stores data in memory using little-endian format
and another processor reads the same data using big-endian data format.

• The access size used by the processors accessing shared data must be different. This is
the case, for instance, when one processor stores data using 32-bit accesses while the
other processor reads the same data with 16-bit accesses.

When both of these conditions are met, endianess conversion is required. The effect of using
different data access sizes on the required endianess conversion can be demonstrated using a
data item stored as a 32-bit word as an example:

• If this 32-bit word is accessed with one 32-bit access, then no endianess conversion is
required independent of the endianess of the accessing processor.

• If this 32-bit word is accessed with two 16-bit accesses by a processor using a different
endianess format, then the two 16-bit half-words within this 32-bit word must be swapped.

• If this 32-bit word is accessed with four 8-bit accesses by a processor using a different
endianess format, then the four bytes within this 32-bit word must be swapped.

SWPA027

Using Endianess Conversion in the OMAP5910 Device 5

Similarly, using a data item stored as a 16-bit half-word as an example:

• If this 16-bit half-word is accessed with one 16-bit access, then no endianess conversion is
required independent of the endianess of the accessing processor.

• If this16-bit half-word is accessed with two 8-bit accesses by a processor using a different
endianess format, then the two bytes within this 16-bit half-word must be swapped.

Table 2 illustrates these conclusions by showing the results of different accesses from a big-
endian processor to little-endian byte-addressable memory storing the 32-bit data word
0x1234:5678.

Table 2. Endianess Conversion Versus Access Size

Address Little Endian
0x1234:5678

One 32-bit Read
Access

Two 16-bit Read
Accesses

Four 8-bit Read
Accesses

0x50000 0x78 0x1234:5678 0x5678 0x78
0x50001 0x56 0x56
0x50002 0x34

0x1234 0x34

0x50003 0x12

 0x12

2 OMAP Hardware Architecture

2.1 High-Level Overview

The OMAP5910 architecture consists of several main building blocks aside from the TI925T
MPU and the C55x DSP.

A dedicated direct memory access (DMA) engine exists to move data between various sources
and destinations. The memory and traffic controller handles all accesses to shared internal and
external memories. A rich set of peripherals is provided to communicate with external devices.

Figure 1 gives a high-level view of the OMAP5910 architecture. For the sake of simplicity, it
contains only the most important functional units.

SWPA027

6 Using Endianess Conversion in the OMAP5910 Device

Figure 1. OMAP System Building Blocks

For more details about the OMAP5910 architecture, see the OMAP5910 Dual-Core Processor
Data Manual (SPRS197C).

2.2 DSP Megacell Architecture

The DSP megacell consists of the C55x DSP core, DSP internal memory, the DSP DMA,
multimedia hardware accelerators, the instruction cache, and several interfaces to other OMAP
units (see Figure 2).

External Program
Memory (Flash)

External Data
Memory (SDRAM)

Internal Memory
(SRAM)

Memory and Traffic Controller

I-MMU D-MMU

I-Cache D-Cache

MPU Core

DSP MMU
External Memory IF

MPU IF Data IF Program IF
DSP DMA I-Cache

Internal
Memory DSP Core

System
DMA

Peripherals
LCD Controller, Interrupt Handlers, Timers, GPIO, UARTs,

SWPA027

Using Endianess Conversion in the OMAP5910 Device 7

Figure 2. C55x DSP Megacell

2.3 Endianess Within OMAP

Within the OMAP5910 device, the MPU and the memory system operate in little-endian data
format, whereas the C55x DSP (including the DSP internal memory) uses big-endian data
format.

To establish data sharing between the MPU and the DSP, endianess conversion is required
when shared data is accessed by the MPU and the DSP using different access sizes. No
endianess conversion is required if both MPU and DSP access data using the same access
size.

For efficiency reasons, the endianess conversion is performed at the boundary of the C55x DSP
megacell. This means that all functional units outside the C55x megacell use little-endian data
format, while all units within the megacell use big-endian data format.

2.4 OMAP Data Paths

To discuss the endianess conversion in the OMAP5910 device, you must first establish which
data paths are affected by the different endianess of the two processors.

Three distinct scenarios can be identified where the MPU and the DSP access the same
resources, and endianess conversion potentially must be performed.

• MPU or system DMA accesses to the DSP internal memory via the MPU interface.
Endianess conversion is performed in the MPU interface.

• DSP or DSP DMA accesses to external memories via the DSP memory management unit
(MMU) and the traffic controller. Endianess conversion is performed in the DSP MMU.

Peripheral
Bus

HW Accel's:
DCT/IDCT,

Motion Est'n,
 Half-pixel
 Interpolation

TMS320C55x
DSP
CPU

Peripheral
Interface

DMA
6 Channel

5 Port

MPUI

M
I
F

Instruction
Cache
(24KB)

PDROM
(32KB)

SARAM
(96KB)

DARAM
(64KB)

EMIF

Endianess Conversion MMU

Addr. Data Data Addr.
To TC To MPU

SWPA027

8 Using Endianess Conversion in the OMAP5910 Device

• DSP and MPU accesses to shared peripherals. No endianess conversion is performed—
both the DSP and the MPU see the same data.

Therefore, endianess conversion is performed in the DSP MMU for accesses from the
DSP/DSP DMA to external memories, and in the MPU interface for MPU/system DMA accesses
to DSP internal memory. No endianess conversion is implemented for accesses to shared
peripherals.

3 Endianess Conversion

3.1 Endianess Conversion in the DSP MMU

The DSP MMU handles all DSP and DSP DMA accesses to external memory. It maps the 24-bit
DSP addresses into the 32-bit MPU address space, provides fault and permission checking, and
performs endianess conversion. It is configured by the MPU. Figure 3 outlines the role of the
DSP MMU within the C55x megacell memory interface.

Resources

DMA

CPU
Data Buses

CPU
Prog Buses

E
M
I
F

DSP MMU

Address Conv.

Endianess Conv.

Access Checking

Addr.

Data

Addr.

Data

C55x DSP

IMIF
Internal
SRAM

Flash

SDRAM

EMIFS

EMIFF

Requestors

Traffic
Controller

Figure 3. C55x Megacell Memory Interface

3.1.1 Endianess Conversion Architecture

Endianess conversion is performed at the boundary between the C55x DSP and the DSP MMU.
The endianess conversion unit splits data accesses into individual bytes and reorders them
according to the access type and chosen configuration. Figure 4 outlines the endianess
conversion architecture.

SWPA027

Using Endianess Conversion in the OMAP5910 Device 9

Byte 3

Byte 2

Byte 1

Byte 0

Byte
Steering

Logic
(Write)

Byte 0

Byte 1

Byte 2

Byte 3

Byte
Steering

Logic
(Read)

Read Swapping

(LE)

EMIFDATAIN

EMIFDATAOUT

C55x
DSP
Big

Endian

EMIFADDR

Controls

Packing and
Unpacking
Controls

DSP
MMU
(LE)

Async
FIFO
(LE)

D_IN

D_OUT

Traffic
Controller

(LE)

Flash
(LE)

SDRAM
(LE)

Internal
SRAM
(LE)

(BE)

Write Swapping

Controls

Controls

Endianess Configuration
Figure 4. Endianess Conversion Architecture

3.1.2 Configuring DSP MMU Endianess Conversion

The DSP MMU endianess conversion unit is configured by the MPU using the DSP MMU
endianess control register located at address 0xFFFE:CC34 (see Table 3).

Table 3. DSP MMU Endianess Control Register

 31 2 1 0
MMU endianess Unused Byte swap/Word swap Enable conversion

The DSP MMU endianess control register contains two configuration bits that control whether,
and how, endianess conversion is performed.

The first bit enables or disables endianess conversion. The second bit selects the type of
endianess conversion to be performed—either swapping the 16-bit words only or swapping both
the 16-bit words and the bytes within the words. Note that the 16-bit word swapping applies only
to 32-bit accesses.

Table 4 outlines the function of the two configuration bits.

SWPA027

10 Using Endianess Conversion in the OMAP5910 Device

Table 4. DSP MMU Endianess Control Register Bits
Name Reset Value Description

Enable conversion 0 Enables endianess conversion
0 = Endianess conversion is disabled.
1 = Endianess conversion is enabled.

Byte swap/Word swap 0 Selects between byte swapping and word swapping
0 = Swap bytes and words.
1 = Swap words only.

Typically, both the 16-bit words and the bytes within each word are swapped if data has been
written as four times 8-bit by the MPU and is read as one 32-bit word by the DSP. In contrast,
only the 16-bit words (but not the bytes within them) are swapped when the MPU has written
data in two 16-bit accesses and the DSP reads them using one 32-bit access.

No endianess conversion is required if both the MPU and the DSP access the data as 32-bit.
Table 5 lists the effects of the different settings.

Table 5. DSP MMU Endianess Conversion Versus Endianess Settings

DSP Read Access to MPU Data Value 0x1234:5678
Word/Byte Swap Conversion Enable 16-Bit Access 32-Bit Access

Don’t care 0 = Disabled 0x5678 0x12345678
0 = Byte/word swap 1 = Enabled 0x7856 0x78563412
1 = Word swap only 1 = Enabled 0x5678 0x56781234

3.2 Endianess Conversion in the MPU Interface

The MPU interface enables accesses from the MPU (in the case of the OMAP5910 device, a
TI925T) or the system DMA to the DSP resources. Two kinds of resources can be accessed: the
DSP internal memory and the DSP public peripherals.

The architecture of the endianess conversion unit within the MPU interface is similar to that used
within the DSP MMU shown in Figure 4.

3.2.1 Configuring MPU Interface Endianess Conversion

The endianess conversion within the MPU interface is configured by the MPU using the MPU
interface control register at address 0xFFFE:C900 (see Table 6).

Table 6. MPUI Endianess Control Register

 31 23 22 21 20 18 17 16 15 0
MPUI control Unused Word swap control Unused Byte swap control Unused

The endianess configuration in the MPU interface offers a wider range of settings to configure
the way endianess conversion is performed, because the MPU interface is used to access both
DSP peripherals and DSP internal memory. The endianess conversion unit within this interface
offers the options of controlling byte swapping and word swapping depending on the access
type (memory or peripheral).

SWPA027

Using Endianess Conversion in the OMAP5910 Device 11

Therefore, the MPU interface control register contains two configuration bit fields that control the
way the endianess conversion is handled (see Table 7).

Table 7. DSP MPUI Endianess Control Register Bits
Name Reset Value Description

Word swap control 00 Enable/disable word swapping
00: Word swap for all accesses
01: Word swap only for peripheral accesses
10: Word swap only for memory accesses
11: No word swap

Byte swap disable 11 Enable/disable byte swapping
00: No byte swap
01: Byte swap only for peripheral accesses
10: Byte swap for all accesses
11: Byte swap only for memory accesses

Table 7 outlines the way that word swapping and byte swapping can be individually enabled or
disabled depending on the access type.

• Access to memory only: Word or byte swapping is performed for memory accesses but not
for peripheral accesses.

• Access to peripherals only: Word or byte swapping is performed for peripheral accesses but
not for memory accesses.

• Both memory and peripheral accesses: Word or byte swapping is performed for all
accesses.

In order to decide which settings apply to memory accesses in your application, see Section 1.2.

When using the same access size on the MPU and the DSP, no endianess conversion is
required. In this case, disable both word swapping and byte swapping. Otherwise, turn on word
and byte swapping according to the specifics of your application.

For the DSP peripherals, typically neither byte nor word swapping needs to be performed, as
they are bit fields of a predefined size rather than numbers. The results of the different
endianess settings for MPUI memory accesses are shown in Table 8.

Table 8. MPUI Endianess Conversion Versus Endianess Settings

MPU Read Access to DSP Data Value 0x1234:5678
Word Swap Byte Swap 16-Bit Access 32-Bit Access

OFF OFF 0x1234 0x12345678
OFF ON 0x3412 0x34127856
ON OFF 0x1234 0x56781234
ON ON 0x3412 0x78563412

SWPA027

12 Using Endianess Conversion in the OMAP5910 Device

To summarize, the recommended endianess conversion setting for the MPU interface is:

• Enable word swapping for memory accesses (word swap control = 01).

• Disable byte swapping both for memory and for peripheral accesses
(byte swap control = 00).

4 Conclusion
The OMAP5910 deice provides a flexible way to handle endianess conversion between the big-
endian C55x DSP subsystem and the little-endian TI925T MPU. This conversion is performed at
the boundary of the DSP subsystem.

Two distinct conversion units exist—one associated with the DSP MMU and one with the MPU
interface. They are implemented as dedicated hardware controlled by configuration registers.

Several configuration options exist to configure these endianess conversion units. These options
are controlled by the MPU using two configuration registers—the DSP MMU endianess control
register and the MPU interface control register. Endianess conversion can be configured with
these registers according to the specific needs of the application.

5 References

1. OMAP5910 Dual-Core Processor Data Manual (SPRS197C)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

