

www.ti.com

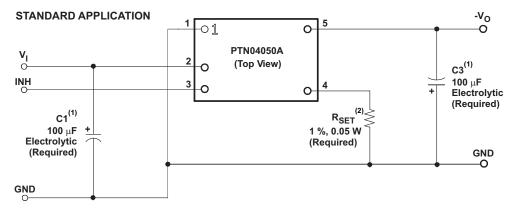
# 6-W, 3.3-V/5-V INPUT, WIDE ADJUST OUTPUT, POSITIVE-TO-NEGATIVE CONVERTER

#### **FEATURES**

- Up to 6-W Output Power
- Wide-Input Voltage (2.9 V to 7 V)
- Wide-Output Voltage Adjust (-15 V to -3.3 V)
- High Efficiency (Up to 84%)
- On/Off Inhibit
- Output Current Limit
- Undervoltage Lockout
- Overtemperature Shutdown
- Operating Temperature: –40°C to 85°C
- Surface-Mount Package Available

#### **APPLICATIONS**

 General-Purpose, Industrial Controls, HVAC Systems, Test and Measurement, Medical Instrumentation, AC/DC Adaptors, Vehicles, Marine, and Avionics




# **DESCRIPTION**

The PTN04050A is an adjustable output, positive-to-negative, integrated switching regulator. In new designs, it should be considered in place of the PT5020 series of positive-to-negative integrated switching regulator products. The PTN04050A is smaller and lighter than its predecessor, with improved electrical performance characteristics, while operating over a wider input voltage range, with an adjustable output voltage. The caseless, double-sided package also exhibits improved thermal characteristics, and is compatible with TI's roadmap for RoHS and lead-free compliance.

Operating from a wide-input voltage range of  $2.9\,\mathrm{V}$  to  $7\,\mathrm{V}$ , the PTN04050A provides high-efficient, positive-to-negative voltage conversion for loads of up to  $6\,\mathrm{W}$ . The output voltage is set using a single external resistor, and may be set to any value within the range,  $-15\,\mathrm{V}$  to  $-3.3\,\mathrm{V}$ .

The PTN04050A features include on/off inhibit, undervoltage lockout, over-current protection, and is suited for a wide variety of general-purpose applications that operate off 3.3-V or 5-V input.



- (1) See the Application Information for capacitor recommendations.
- (2) R<sub>SET</sub> is required to adjust the output voltage. See the *Application Information* for values.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### **ORDERING INFORMATION**

For the most current package and ordering information, see the Package Option Addendum at the end of this datasheet, or see the TI website at www.ti.com.

# ABSOLUTE MAXIMUM RATINGS (1)

over operating free-air temperature range unless otherwise noted all voltages with respect to GND (pin 1),

|                  |                                      |                                                     | UNIT                 |
|------------------|--------------------------------------|-----------------------------------------------------|----------------------|
| T <sub>A</sub>   | Operating free-air temperature       | Over V <sub>I</sub> range                           | -40°C to 85°C        |
|                  | Leaded temperature (H & D suffix)    | 20 seconds                                          | 260°C                |
|                  | Solder reflow temperature (S suffix) | Surface temperature of module body or pins (20 sec) | 235°C                |
|                  | Solder reflow temperature (Z suffix) | Surface temperature of module body or pins (20 sec) | 260°C <sup>(2)</sup> |
| T <sub>stg</sub> | Storage temperature                  |                                                     | -40°C to 125°C       |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### RECOMMENDED OPERATING CONDITIONS

|                |                                | MIN | MAX | UNIT |
|----------------|--------------------------------|-----|-----|------|
| VI             | Input voltage                  | 2.9 | 7   | V    |
| T <sub>A</sub> | Operating free-air temperature | -40 | 85  | °C   |
| Po             | Output power                   |     | 6   | W    |

# **PACKAGE SPECIFICATIONS**

| PTN04050A (Suffix AH, AD, AS and AZ) |                                                        |                                 |                      |  |  |  |
|--------------------------------------|--------------------------------------------------------|---------------------------------|----------------------|--|--|--|
| Weight                               |                                                        |                                 | 2.7 grams            |  |  |  |
| Flammability                         | Meets UL 94 V-O                                        |                                 |                      |  |  |  |
| Mechanical shock                     | Per Mil-STD-883D, Method 2002.3, 1 ms, ½ sine, mounted |                                 | 500 G <sup>(1)</sup> |  |  |  |
| Mechanical vibration                 | Mil-STD-883D, Method 2007.2, 20-2000 Hz                | Horizontal T/H (suffix AH & AD) | 20 G <sup>(1)</sup>  |  |  |  |
| Mechanical vibration                 | WIII-31D-665D, Wetflod 2007.2, 20-2000 Fiz             | Horizontal SMD (suffix AS & AZ) | 15 G <sup>(1)</sup>  |  |  |  |

(1) Qualification limit.

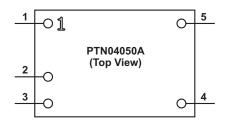
<sup>(2)</sup> Moisture Sensitivity Level (MSL) rating Level-3-260C-168HR



# **ELECTRICAL CHARACTERISTICS**

operating at 25°C free-air temperature,  $V_I = 5$  V,  $V_O = -12$  V,  $I_O = I_O$  (max),  $C_I = 100$   $\mu$ F,  $C_O = 100$   $\mu$ F (unless otherwise noted)

|                      | PARAMETER                      | TEST CONDITION                                                            | IS                                                                         | MIN                  | TYP               | MAX                | UNIT                |  |
|----------------------|--------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|-------------------|--------------------|---------------------|--|
|                      |                                |                                                                           | $V_0 = -3.3 \text{ V to } -6 \text{ V}$                                    | 0.2 (1)              |                   | 1.0 (2)            |                     |  |
|                      | Output ourrant                 | T 05°C natural convention sirflaw                                         | V <sub>O</sub> = -9 V                                                      | 0.1 (1)              |                   | 0.6 (2)            | A                   |  |
| Io                   | Output current                 | T <sub>A</sub> = 85°C, natural convection airflow                         | V <sub>O</sub> = −12 V                                                     | 0.1 (1)              |                   | 0.5 (2)            | А                   |  |
|                      |                                |                                                                           | $V_0 = -12.6 \text{ V to } -15 \text{ V}$                                  | 0.1 (1)              |                   | 0.3                |                     |  |
| Po                   | Output power                   |                                                                           |                                                                            |                      | 6                 | W                  |                     |  |
| VI                   | Input voltage range            | Over I <sub>O</sub> range                                                 |                                                                            | 2.9                  |                   | 7                  | V                   |  |
|                      | Set-point voltage tolerance    | T <sub>A</sub> = 25°C                                                     |                                                                            |                      | ±3 (3)            |                    | %                   |  |
|                      | Temperature variation          | -40°C to +85°C                                                            |                                                                            |                      | ±0.5              |                    | %V <sub>O</sub>     |  |
| Vo                   | Line regulation                | Over V <sub>I</sub> range                                                 |                                                                            |                      | 0.5               |                    | %V <sub>O</sub>     |  |
| •0                   | Load regulation                | Over I <sub>O</sub> range                                                 |                                                                            |                      | 0.25              |                    | %Vo                 |  |
|                      | Total output voltage variation | Includes set point, line, load<br>-40 < T <sub>A</sub> < 85°C             |                                                                            |                      | ±5 (3)            |                    | %V <sub>O</sub>     |  |
| V <sub>O</sub> Adj   | Output voltage adjust range    |                                                                           |                                                                            | -15                  |                   | -3.3               | V                   |  |
|                      |                                | R <sub>SET</sub> = 523                                                    | $\Omega$ , $V_0 = -15 \text{ V}$ , $I_0 = 0.3 \text{ A}$                   |                      | 80                |                    |                     |  |
|                      |                                | R <sub>SET</sub> = 1.96 k                                                 | $R_{SET} = 1.96 \text{ k}\Omega, V_O = -12 \text{ V}, I_O = 0.5 \text{ A}$ |                      |                   |                    |                     |  |
| η                    | Efficiency                     | R <sub>SET</sub> = 4.53                                                   |                                                                            | 83                   |                   | %                  |                     |  |
|                      |                                | R <sub>SET</sub> = 15.4                                                   | $k\Omega$ , $V_0 = -5 V$ , $I_0 = 1.0 A$                                   |                      | 82                |                    |                     |  |
|                      |                                | R <sub>SET</sub> = 36.5 k                                                 | $\Omega$ , $V_0 = -3.3 \text{ V}$ , $I_0 = 1.0 \text{ A}$                  |                      | 78                |                    |                     |  |
| V <sub>r</sub>       | Output voltage ripple          | 20-MHz bandwidth                                                          |                                                                            |                      | 3% V <sub>O</sub> |                    | V <sub>(PP)</sub>   |  |
| I <sub>O (LIM)</sub> | Current limit threshold        | Reset, followed by auto-recovery                                          |                                                                            |                      | 150               |                    | %I <sub>Omax</sub>  |  |
|                      | T                              | 1 A/µs load step Recovery ti                                              |                                                                            |                      | 100               |                    | μs                  |  |
|                      | Transient response             | from 50% to 100% I <sub>O</sub> max (4)                                   | V <sub>O</sub> over/undershoot                                             |                      | 2                 |                    | %V <sub>O</sub>     |  |
| Fs                   | Switching frequency            | Over V <sub>I</sub> and I <sub>O</sub> ranges                             |                                                                            | 210                  | 260               | 310                | kHz                 |  |
| UVLO                 | Lindon coltono i policout      | V <sub>I</sub> increasing                                                 |                                                                            |                      | 2.50              | 2.55               | V                   |  |
| UVLO                 | Undervoltage lockout           | V <sub>I</sub> decreasing                                                 |                                                                            | 2.30                 | 2.40              |                    |                     |  |
|                      |                                | Input high voltage (V <sub>IH</sub> )                                     |                                                                            | V <sub>I</sub> - 0.5 |                   | Open (5)           | V                   |  |
|                      | Inhibit control (pin 3)        | Input low voltage (V <sub>IL</sub> )                                      |                                                                            | -0.2                 |                   | +0.25              | V                   |  |
|                      |                                | Input low current (I <sub>IL</sub> )                                      |                                                                            |                      | 10                |                    | μΑ                  |  |
| I <sub>I</sub> inh   | Inhibit standby current        | Inhibit (pin 3) to GND (pin 1)                                            |                                                                            | 470                  |                   | μΑ                 |                     |  |
| Cı                   | External input capacitance     |                                                                           |                                                                            | 100 (6)              |                   |                    | μF                  |  |
|                      |                                | Ceramic                                                                   |                                                                            | 0                    |                   | 100(7)             | μF                  |  |
| Co                   | External output capacitance    | Nonceramic                                                                |                                                                            | 100 (8)              |                   | 560 <sup>(9)</sup> | μF                  |  |
|                      |                                | Equivalent series resistance (nonceramic)                                 |                                                                            | 10 (10)              |                   |                    | mΩ                  |  |
| MTBF                 | Calculated reliability         | Per Telcordia SR-332, 50% stress,<br>T <sub>A</sub> = 40°C, ground benign |                                                                            | 7.5                  |                   |                    | 10 <sup>6</sup> Hrs |  |


- (1) The module will operate down to no load with reduced specifications.
- (2) The maximum output current is 1 A or the maximum output power is 6 W, whichever is less.
- (3) The set-point voltage tolerance is affected by the tolerance and stability of R<sub>SET</sub>. The stated limit is unconditionally met if R<sub>SET</sub> has a tolerance of 1% with 100 ppm/°C or better temperature stability.
- (4) A load step from 66% to  $100\% I_{O}$  max for  $V_{O} = -15 V$ .
- (5) This control pin has an internal pull-up to the input voltage, V<sub>I</sub>. If it is left open circuit, the module operates when input power is applied. A small, low-leakage (< 100 nA) metal-oxide semiconductor field effect transistor (MOSFET) is recommended for control. See the application Information for further guidance.
- (6) 100 μF of capacitance is required across the input (V<sub>I</sub> and GND) for proper operation. Locate the ceramic capacitance close to the module.
- (7) When using ceramic output capacitance equivalent to 100 μF, a 100 μF electrolytic capacitor is also required.
- (8) 100 µF of output capacitance is required for proper operation. See the application information for further guidance.
- (9) The minimum ESR limitation may result in a lower value for the output capacitance. See the Input/Output Capacitor Recommendations for further guidance.
- (10) This is the typical ESR for all the electrolytic (nonceramic) capacitance. Use 17 m $\Omega$  as the minimum when using maximum ESR values to calculate.



# **PIN ASSIGNMENT**

# **TERMINAL FUNCTIONS**

| TERMINAL              |     | 1/0 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                  | NO. | 1/0 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GND                   | 1   |     | The common ground connection for the $V_I$ and $V_O$ power connections. It is also the reference for the $V_O$ <i>Adjust</i> control inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VI                    | 2   | I   | The positive input voltage power node to the module, which is referenced to common GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inhibit               | 3   | ı   | The Inhibit pin is an open-collector/drain (non-TTL), negative logic input that is referenced to GND. Applying a low-level ground signal to this input disables the module's output. When the Inhibit control is active-low, the input current drawn by the regulator is significantly reduced. If the Inhibit pin is left open-circuit, the module produces an output voltage whenever a valid input source is applied. The PTN04050A Inhibit control circuitry must not be shared with another module. Never connect a resistor between the Inhibit pin and any other voltage reference or GND. |
| V <sub>O</sub> Adjust | 4   | ı   | A 1% resistor must be connected between pin 4 and pin 1 to set the output voltage of the module. If left open-circuit, the output voltage defaults to –1.79 V, which is beyond the recommended operating range. The set-point range is –15 V to –3.3 V. The temperature stability of the resistor should be 100 ppm/°C (or better). The standard resistor value for a number of common output voltages is provided in the application information.                                                                                                                                                |
| Vo                    | 5   | 0   | The negative output voltage power node with respect to the GND node.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





# TYPICAL CHARACTERISTICS (3.3-V INPUT)(1)(2)

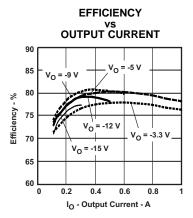



Figure 1.

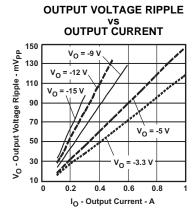



Figure 2.

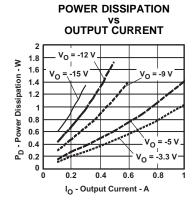



Figure 3.

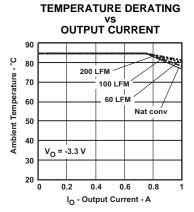



Figure 4.

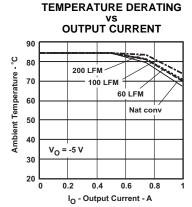



Figure 5.

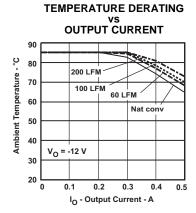



Figure 6.



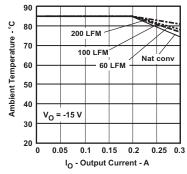



Figure 7.

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 1, Figure 2, and Figure 3.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100 mm x 100 mm, double-sided PCB with 2 oz. copper. Applies to Figure 4, Figure 5, Figure 6, and Figure 7.



# TYPICAL CHARACTERISTICS (5-V INPUT)(1)(2)

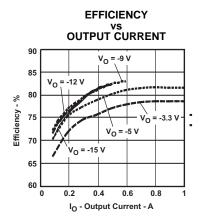



Figure 8.

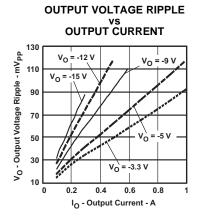



Figure 9.

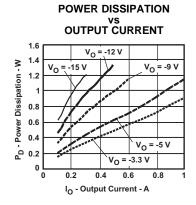



Figure 10.

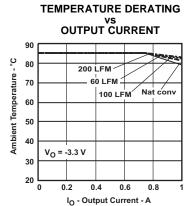



Figure 11.

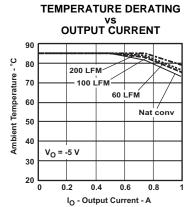



Figure 12.

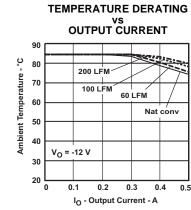



Figure 13.



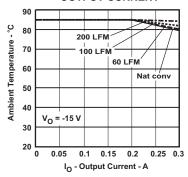



Figure 14.

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 9, and Figure 10.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100-mm x 100-mm, double-sided PCB with 2 oz. copper. Applies to Figure 11, Figure 12, Figure 13, and Figure 14.

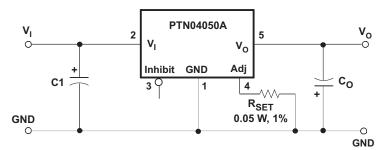


### **APPLICATION INFORMATION**

# Adjusting the Output Voltage of the PTN04050A Wide-Output Adjust Power Modules

#### General

A resistor must be connected directly between the  $V_O$  Adjust control (pin 4) and GND (pin 1) to set the output voltage of the module. The adjustment range is from -15 V to -3.3 V. If pin 4 is left open, the output voltage defaults to -1.79 V, which is beyond the recommended operating range.


Table 1 gives the standard resistor value for a number of common voltages, along with the actual output voltage that the value produces. For other output voltages, the resistor value can either be calculated using Equation 1, or by selecting from the range of values given in Table 2. Figure 15 shows the placement of the required resistor.

$$R_{SET} = -4.34 \text{ k}\Omega \times \frac{V_O + 16.6 \text{ V}}{V_O + 1.734 \text{ V}}$$
 (1)

Table 1. Standard Values of  $R_{\text{set}}$  for Common Output Voltages

| V <sub>o</sub><br>(Required) | R <sub>SET</sub><br>(Standard Value) | V <sub>O</sub><br>(Actual) |
|------------------------------|--------------------------------------|----------------------------|
| -15 V <sup>(1)</sup>         | 523 Ω                                | -15.00 V                   |
| -12 V <sup>(2)</sup>         | 1.91 kΩ                              | –12.02 V                   |
| -5 V <sup>(2)</sup>          | 15.4 kΩ                              | −5.00 V                    |
| -3.3 V <sup>(2)</sup>        | 36.5 kΩ                              | −3.31 V                    |

- (1) For  $V_0 = -12.6 \text{ V}$  to -15 V the maximum output current is limited to 0.3 A.
- (2) For  $V_0 = -3.3 \text{ V}$  to -12.6 V the maximum output current is 1 A or the maximum output power is 6 W, whichever is less.



- (1) A 0.05-W rated resistor may be used. The tolerance should be 1%, with a temperature stability of 100 ppm/°C (or better). Place the resistor as close as possible to the regulator. Connect the resistor directly between pins 4 and 1 using dedicated PCB traces.
- (2) Never connect capacitors from V<sub>O</sub> Adjust to either GND or V<sub>O</sub>. Any capacitance added to the V<sub>O</sub> Adjust pin affects the stability of the regulator.

Figure 15. Vo Adjust Resistor Placement



Table 2. Output Voltage Set-Point Resistor Values

| V <sub>O</sub> Required | R <sub>SET</sub> | V <sub>O</sub> Required | R <sub>SET</sub>        | V <sub>O</sub> Required | R <sub>SET</sub>        |
|-------------------------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| –15.0 V                 | 523 $\Omega$     | –11.9 V                 | $2.00~\text{k}\Omega$   | -8.8 V                  | $4.75~\text{k}\Omega$   |
| –14.9 V                 | 562 Ω            | –11.8 V                 | $2.05~\mathrm{k}\Omega$ | -8.6 V                  | 5.11 kΩ                 |
| –14.8 V                 | 604 Ω            | –11.7 V                 | $2.15~\text{k}\Omega$   | -8.4 V                  | $5.36~\mathrm{k}\Omega$ |
| –14.7 V                 | 634 Ω            | -11.6 V                 | 2.21 kΩ                 | -8.2 V                  | 5.62 kΩ                 |
| -14.6 V                 | 681 Ω            | –11.5 V                 | 2.26 kΩ                 | -8.0 V                  | 5.90 kΩ                 |
| –14.5 V                 | 715 Ω            | -11.4 V                 | 2.32 kΩ                 | -7.8 V                  | 6.34 kΩ                 |
| -14.4 V                 | 750 Ω            | -11.3 V                 | 2.37 kΩ                 | -7.6 V                  | 6.65 kΩ                 |
| –14.3 V                 | 787 Ω            | –11.2 V                 | 2.49 kΩ                 | -7.4 V                  | 7.15 kΩ                 |
| -14.2 V                 | 845 Ω            | -11.1 V                 | 2.55 kΩ                 | -7.2 V                  | 7.50 kΩ                 |
| –14.1 V                 | 887 Ω            | -11.0 V                 | 2.61 kΩ                 | -7.0 V                  | 7.87 kΩ                 |
| -14.0 V                 | 931 Ω            | -10.9 V                 | 2.67 kΩ                 | -6.8 V                  | 8.45 kΩ                 |
| –13.9 V                 | 953 Ω            | -10.8 V                 | 2.80 kΩ                 | -6.6 V                  | 8.87 kΩ                 |
| –13.8 V                 | 1.00 kΩ          | -10.7 V                 | 2.87 kΩ                 | -6.4 V                  | 9.53 kΩ                 |
| –13.7 V                 | 1.05 kΩ          | -10.6 V                 | 2.94 kΩ                 | -6.2 V                  | 10.2 kΩ                 |
| -13.6 V                 | 1.10 kΩ          | -10.5 V                 | 3.01 kΩ                 | -6.0 V                  | 10.7 kΩ                 |
| –13.5 V                 | 1.15 kΩ          | -10.4 V                 | 3.09 kΩ                 | -5.8 V                  | 11.5 kΩ                 |
| –13.4 V                 | 1.18 kΩ          | -10.3 V                 | 3.16 kΩ                 | -5.6 V                  | 12.4 kΩ                 |
| –13.3 V                 | 1.24 kΩ          | -10.2 V                 | 3.32 kΩ                 | -5.4 V                  | 13.3 kΩ                 |
| –13.2 V                 | 1.30 kΩ          | -10.1 V                 | 3.40 kΩ                 | -5.2 V                  | 14.3 kΩ                 |
| –13.1 V                 | 1.33 kΩ          | -10.0 V                 | 3.48 kΩ                 | -5.0 V                  | 15.4 kΩ                 |
| -13.0 V                 | 1.40 kΩ          | -9.9 V                  | 3.57 kΩ                 | -4.8 V                  | 16.5 kΩ                 |
| -12.9 V                 | 1.43 kΩ          | -9.8 V                  | 3.65 kΩ                 | -4.6 V                  | 18.2 kΩ                 |
| -12.8 V                 | 1.50 kΩ          | −9.7 V                  | 3.74 kΩ                 | -4.4 V                  | 19.6 kΩ                 |
| –12.7 V                 | 1.54 kΩ          | -9.6 V                  | 3.83 kΩ                 | -4.2 V                  | 21.5 kΩ                 |
| -12.6 V                 | 1.58 kΩ          | −9.5 V                  | 3.92 kΩ                 | -4.0 V                  | 24.3 kΩ                 |
| −12.5 V                 | 1.65 kΩ          | -9.4 V                  | 4.12 kΩ                 | -3.8 V                  | 26.7 kΩ                 |
| -12.4 V                 | 1.69 kΩ          | -9.3 V                  | 4.22 kΩ                 | -3.6 V                  | 30.1 kΩ                 |
| –12.3 V                 | 1.78 kΩ          | -9.2 V                  | 4.32 kΩ                 | -3.4 V                  | 34.0 kΩ                 |
| –12.2 V                 | 1.82 kΩ          | -9.1 V                  | 4.42 kΩ                 | -3.3 V                  | 37.4 kΩ                 |
| –12.1 V                 | 1.87 kΩ          | -9.0 V                  | 4.53 kΩ                 |                         |                         |
| -12.0 V                 | 1.96 kΩ          | -8.9 V                  | 4.64 kΩ                 |                         |                         |



# CAPACITOR RECOMMENDATIONS FOR THE PTN04050A NEGATIVE-OUTPUT ADJUST POWER MODULES

# **Input Capacitor**

The minimum requirement for the input bus is  $100 \mu F$  of capacitance. The minimum ripple current rating for any nonceramic capacitance must be at least  $250 \mu F$  mms. The ripple current rating of electrolytic capacitors is a major consideration when they are used at the input. This ripple current requirement can be reduced by placing ceramic capacitors at the input.

If tantalum capacitors are used at the input bus, a minimum voltage rating of  $2 \times (maximum dc voltage + ac ripple)$  is standard practice to ensure reliability. Polymer-tantalum capacitors are more reliable and are available with a maximum rating of typically 20 V.

# **Output Capacitor**

The minimum capacitance required to ensure stability is a 100  $\mu$ F. Either ceramic or electrolytic-type capacitors can be used. The minimum ripple current rating for the nonceramic capacitance must be at least 200 mA rms. The stability of the module and voltage tolerances is compromised if the capacitor is not placed near the output bus pins. A high-quality, computer-grade electrolytic capacitor should be adequate. When using ceramic capacitance equivalent to 100  $\mu$ F, a 100  $\mu$ F electrolytic is also required.

For applications with load transients (sudden changes in load current), the regulator response improves with additional capacitance. Additional electrolytic capacitors should be located close to the load circuit. These capacitors provide decoupling over the frequency range, 2 kHz to 150 kHz. Aluminum electrolytic capacitors are suitable for ambient temperatures above 0°C. For operation below 0°C, tantalum or Os-Con-type capacitors are recommended. When using one or more nonceramic capacitors, the calculated equivalent ESR should be no lower than 10 m $\Omega$  (17 m $\Omega$  using the manufacturer's maximum ESR for a single capacitor). A list of recommended capacitors and vendors are identified in Table 3.

### **Ceramic Capacitors**

Above 150 kHz, the performance of aluminum electrolytic capacitors becomes less effective. To further reduce the reflected input ripple current, or the output transient response, multilayer ceramic capacitors must be added. Ceramic capacitors have low ESR, and their resonant frequency is higher than the bandwidth of the regulator. When placed at the output, their combined ESR is not critical as long as the total value of ceramic capacitance does not exceed 200  $\mu$ F.

# **Tantalum Capacitors**

Tantalum-type capacitors may be used at both the input and the output, and are recommended for applications where the ambient operating temperature can be less than 0°C. The AVX TPS, Sprague 593D/594/595, and Kemet T495/T510/T520 capacitors series are suggested over many other tantalum types due to their rated surge, power dissipation, and ripple current capability. As a caution, many general-purpose tantalum capacitors have considerably higher ESR, reduced power dissipation, and lower ripple current capability. These capacitors are also less reliable as they have lower power dissipation and surge current ratings. Tantalum capacitors that do not have a stated ESR or surge current rating are not recommended for power applications. When specifying Os-Con and polymer-tantalum capacitors for the output, the minimum ESR limit is encountered well before the maximum capacitance value is reached.

#### **Capacitor Table**

The capacitor table, Table 3, identifies the characteristics of capacitors from various vendors with acceptable ESR and ripple current (rms) ratings. The recommended number of capacitors required at both the input and output buses is identified for each capacitor type. This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The rms rating and ESR (at 100 kHz) are critical parameters necessary to ensure both optimum regulator performance and long capacitor life.



### **Designing for Load Transients**

The transient response of the dc/dc converter has been characterized using a load transient with a di/dt of 1 A/µs. The typical voltage deviation for this load transient is given in the data sheet specification table using the required value of output capacitance. As the di/dt of a transient is increased, the response of a converter's regulation circuit ultimately depends on its output capacitor decoupling network. This is an inherent limitation of any dc/dc converter once the speed of the transient exceeds its bandwidth capability. If the target application specifies a higher di/dt or lower voltage deviation, the requirement can only be met with additional output capacitor decoupling. In these cases, special attention must be paid to the type, value, and ESR of the capacitors selected.

If the transient performance requirements exceed those specified in the data sheet, the selection of output capacitors becomes more important. Review the minimum ESR in the characteristic data sheet for details on the capacitance maximum.

**Table 3. Recommended Input/Output Capacitors** 

|                                          |                           | CAPACITOR CHARACTERISTICS QUANTITY |                                                 |                                                                  |                          |              | NTITY             |                                                |  |
|------------------------------------------|---------------------------|------------------------------------|-------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------|-------------------|------------------------------------------------|--|
| CAPACITOR VENDOR/<br>COMPONENT<br>SERIES | WORKING<br>VOLTAGE<br>(V) | VALUE<br>(μF)                      | EQUIVALENT<br>SERIES<br>RESISTANCE<br>(ESR) (Ω) | 85°C<br>MAXIMUM<br>RIPPLE<br>CURRENT<br>(I <sub>rms</sub> ) (mA) | PHYSICAL<br>SIZE<br>(mm) | INPUT<br>BUS | OUTPUT<br>BUS     | VENDOR<br>NUMBER                               |  |
| Panasonic FC( Radial)                    | 25                        | 180                                | 0.117                                           | 555                                                              | 8 X 11                   | 1            | 1                 | EEUFC1E181                                     |  |
| Panasonic FC (SMD)                       | 25                        | 100                                | 0.30                                            | 450                                                              | 8 X 10,2                 | 1            | 1                 | EEVFC1E101P                                    |  |
| United Chemi-Con PXA (SMD)               | 16                        | 150                                | 0.026                                           | 3430                                                             | 10 X 7,7                 | 1            | 1                 | PXA16VC151MJ80TP (V <sub>0</sub> ≤ 13 V)       |  |
| PS                                       | 25                        | 100                                | 0.020                                           | 4320                                                             | 10 X 12,5                | 1            | 1                 | 25PS100MJ12                                    |  |
| LXZ                                      | 25                        | 100                                | 0.250                                           | 290                                                              | 6,3 X 11,5               | 1            | 1                 | LXZ25VB101M6X11LL                              |  |
| MVY(SMD)                                 | 35                        | 100                                | 0.300                                           | 450                                                              | 8 X 10                   | 1            | 1                 | MVY35VC101MH10TP                               |  |
| Nichicon UWG (SMD)                       | 50                        | 100                                | 0.300                                           | 500                                                              | 10 X 10                  | 1            | 1                 | UWG1H101MNR1GS                                 |  |
| F559 (Tantalum)                          | 10                        | 100                                | 0.055                                           | 2000                                                             | 7,7 X 4,3                | 1            | 1 (1)             | F551A107MN (V <sub>O</sub> ≤ 5 V)              |  |
| HD                                       | 25                        | 100                                | 0.130                                           | 405                                                              | 6,3 X 11                 | 1            | 1                 | UHD1E101MER                                    |  |
| Sanyo Os-Con SVP (SMD)                   | 20                        | 100                                | 0.024                                           | 2500                                                             | 8 X 12                   | 1            | 1                 | 20SVP100M                                      |  |
| SP                                       | 16                        | 100                                | 0.032                                           | 2890                                                             | 10 X 5                   | 1            | 1 (1)             | 16SP100M<br>(V <sub>O</sub> ≤ 14 V)            |  |
| AVV Tantalium TDC (CMD)                  | 20                        | 100                                | 0.085                                           | 1543                                                             | 7,3L X 4,3W<br>X 4,1H    | 1            | ≤1 <sup>(1)</sup> | TPSV107M020R0085<br>(V <sub>O</sub> ≤ 10 V)    |  |
| AVX Tantalum TPS (SMD)                   | 20                        | 100                                | 0.200                                           | > 817                                                            |                          | 1            | ≤1 <sup>(1)</sup> | TPSE107M020R0200<br>(V <sub>O</sub> ≤ 10 V)    |  |
| Murata X5R Ceramic                       | 6.3                       | 100                                | 0.002                                           | >1000                                                            | 3225                     | 1            | ≤1 <sup>(1)</sup> | GRM32ER60J107M<br>(V <sub>O</sub> ≤ 5.5 V)     |  |
| TDK X5R Ceramic                          | 6.3                       | 100                                | 0.002                                           | >1000                                                            | 3225                     | 1            | ≤1 <sup>(1)</sup> | C3225X5R0J107MT<br>(V <sub>O</sub> ≤ 5.5 V)    |  |
| Murata X5R Ceramic                       | 16                        | 47                                 | 0.002                                           | >1000                                                            | 3225                     | 2            | ≤2 (1)            | GRM32ER61C476M<br>(V₀≤ 13.5 V)                 |  |
| Kemet X5R Ceramic                        | 6.3                       | 47                                 | 0.002                                           | >1000                                                            | 3225                     | 2            | ≤2 (1)            | C1210C476K9PAC<br>(V <sub>O</sub> ≤ 5.5 V)     |  |
| TDK X5R Ceramic                          | 6.3                       | 47                                 | 0.002                                           | >1000                                                            | 3225                     | 2            | ≤2 (1)            | C3225X5R0J476MT<br>(V <sub>O</sub> ≤ 5.5 V)    |  |
| Murata X5R Ceramic                       | 6.3                       | 47                                 | 0.002                                           | >1000                                                            | 3225                     | 2            | ≤2 (1)            | GRM422X5R476M6.3<br>(V <sub>O</sub> ≤ 5.5 V)   |  |
| TDK X5R Ceramic                          | 16                        | 22                                 | 0.002                                           | >1000                                                            | 3225                     | 5            | ≤5 <sup>(1)</sup> | C3225X5R1E2265KT/MT<br>(V <sub>O</sub> ≤ 14 V) |  |
| Murata X7R Ceramic                       | 25                        | 22                                 | 0.002                                           | >1000                                                            | 3225                     | 5            | ≤5                | GRM32ER61C226K                                 |  |
| Kemet X7R Ceramic                        | 16                        | 22                                 | 0.002                                           | >1000                                                            | 3225                     | 5            | ≤5 <sup>(1)</sup> | C1210C226K3PAC<br>(V <sub>O</sub> ≤ 14 V)      |  |

<sup>(1)</sup> The maximum voltage rating of the capacitor must be selected for the desired set-point voltage (V<sub>O</sub>). To operate at a higher output voltage, select a capacitor with a higher voltage rating.



# **Power-Up Characteristics**

When configured per the standard application, the PTN04050A power module produces a regulated output voltage following the application of a valid input source voltage. During power up, internal soft-start circuitry slows the rate that the output voltage rises, thereby limiting the amount of in-rush current that can be drawn from the input source. The soft-start circuitry introduces a time delay (typically 60 ms) into the power-up characteristic. This is from the point that a valid input source is recognized. Figure 16 shows the power-up waveforms for a PTN04050A, operating from a 5-V input and with the output voltage adjusted to -12 V. The waveforms were measured with a 500-mA resistive load.

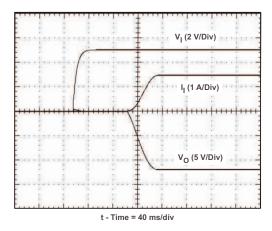



Figure 16. Power-Up Waveforms

# **Undervoltage Lockout**

The undervoltage lockout (UVLO) circuit prevents the module from attempting to power up until the input voltage is above the UVLO threshold. This prevents the module from drawing excessive current from the input source at power up. Below the UVLO threshold, the module is held off.

# **Current Limit Protection**

The PTN04050 modules protect against load faults with a continuous current limit characteristic. Under a load fault condition, the output current cannot exceed the current limit value. Attempting to draw current that exceeds the current limit value causes the module to progressively reduce its output voltage. Current is continuously supplied to the fault until it is removed. On removal of the fault, the output voltage promptly recovers. When limiting output current, the regulator experiences higher power dissipation, which increases its temperature. If the temperature increase is excessive, the module's overtemperature protection begins to periodically turn the output voltage completely off.

#### **Overtemperature Protection**

A thermal shutdown mechanism protects the module's internal circuitry against excessively high temperatures. A rise in temperature may be the result of a drop in airflow, a high ambient temperature, or a sustained current-limit condition. If the junction temperature of the internal control IC rises excessively, the module turns itself off, reducing the output voltage to zero. The module instantly restarts when the sensed temperature decreases by a few degrees.

**Note:** Overtemperature protection is a last-resort mechanism to prevent damage to the module. It should not be relied on as permanent protection against thermal stress. Always operate the module within its temperature derated limits, for the worst-case operating conditions of output current, ambient temperature, and airflow. Operating the module above these limits, albeit below the thermal shutdown temperature, reduces the long-term reliability of the module.



#### **Output On/Off Inhibit**

For applications requiring output voltage on/off control, the PTN04050A power module incorporates an output on/off Inhibit control (pin 3). The inhibit feature can be used wherever there is a requirement for the output voltage from the regulator to be turned off.

The power module functions normally when the Inhibit pin is left open-circuit, providing a regulated output whenever a valid source voltage is connected to V<sub>I</sub> with respect to GND.

Figure 17 shows the typical application of the inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pullup to  $V_I$ . An open-collector or open-drain (non-TTL) device is required to control this input.

Turning Q1 on applies a low voltage to the Inhibit control pin and disables the output of the module. If Q1 is then turned off, the module executes a soft-start power-up sequence. Figure 18 shows the typical rise in the output voltage, following the turn off of Q1. The turn off of Q1 corresponds to the rise in the waveform, V<sub>INH</sub>. The waveforms were measured with a 500-mA resistive load.

**Note:** The PTN04050A Inhibit control circuitry must not be shared with another module. Never connect a resistor between the Inhibit pin and any voltage reference or GND.

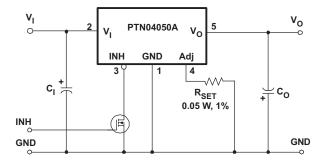



Figure 17. Inhibit Circuit

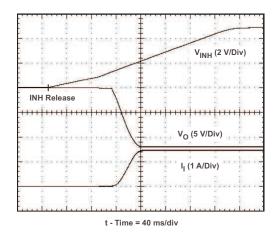



Figure 18. Inhibit Waveform



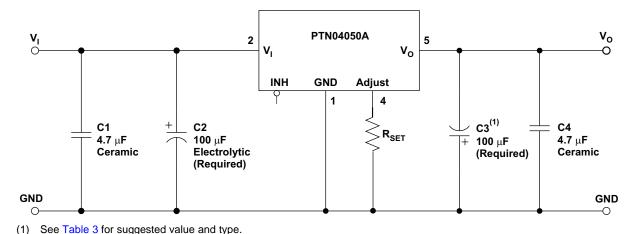
# **Optional Input/Output Filters**

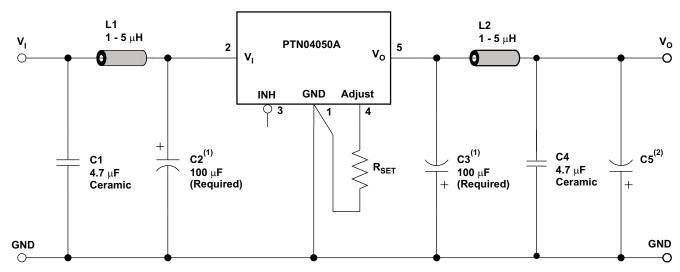
Power modules include internal input and output ceramic capacitors in all their designs. However, some applications require much lower levels of either input reflected or output ripple/noise. This application describes various filters and design techniques found to be successful in reducing both input and output ripple/noise.

### **Input/Output Capacitors**

The easiest way to reduce output ripple and noise is to add one or more 4.7-µF ceramic capacitors, such as C4 shown in Figure 19. Ceramic capacitors should be placed close to the output power terminals. A single 4.7-µF capacitor reduces the output ripple/noise by 10% to 30%. (Note: C3 is required to improve the regulators transient response and does not reduce output ripple and noise.)

Switching regulators draw current from the input line in pulses at their operating frequency. The amount of reflected (input) ripple/noise generated is directly proportional to the equivalent source impedance of the power source including the impedance of any input lines. The addition of C1, minimum 4.7-µF ceramic capacitor, near the input power pins, reduces reflected conducted ripple/noise by 20% to 30%.





Figure 19. Adding High-Frequency Bypass Capacitors to the Input and Output

#### $\pi$ Filters

If a further reduction in ripple/noise level is required for an application, higher order filters must be used. A  $\pi$  (pi) filter, employing a ferrite bead (Fair-Rite Pt. No. 2673000701 or equivalent) in series with the input or output terminals of the regulator reduces the ripple/noise by at least 20 db (see Figure 20 and Figure 21). In order for the inductor to be effective in reduction of ripple and noise ceramic capacitors are required. (See the Capacitor Recommendations for the PTN04050A for additional information on vendors and component suggestions.)

These inductors plus ceramic capacitors form an excellent filter because of the rejection at the switching frequency (650 kHz - 1 MHz). The placement of this filter is critical. It must be located as close as possible to the input or output pins to be effective. The ferrite bead is small (12,5 mm  $\times$  3 mm), easy to use, low cost, and has low dc resistance. Fair-Rite also manufactures a surface-mount bead (part number 2773021447), through hole (part number 2673000701) rated to 5 A. Alternatively, 1- $\mu$ H to 5- $\mu$ H inductors can be used in place of the ferrite inductor bead.





- (1) See Table 3 for suggested value and type.
- (2) Recommended for application with load transients.

Figure 20. Adding  $\pi$  Filters

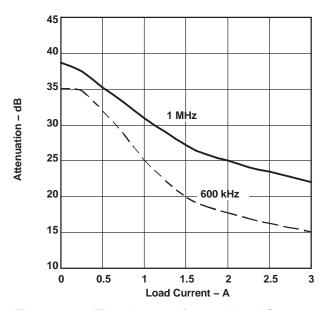



Figure 21.  $\pi$ -Filter Attenuation vs. Load Current

11-Nov-2025

www.ti.com

### PACKAGING INFORMATION

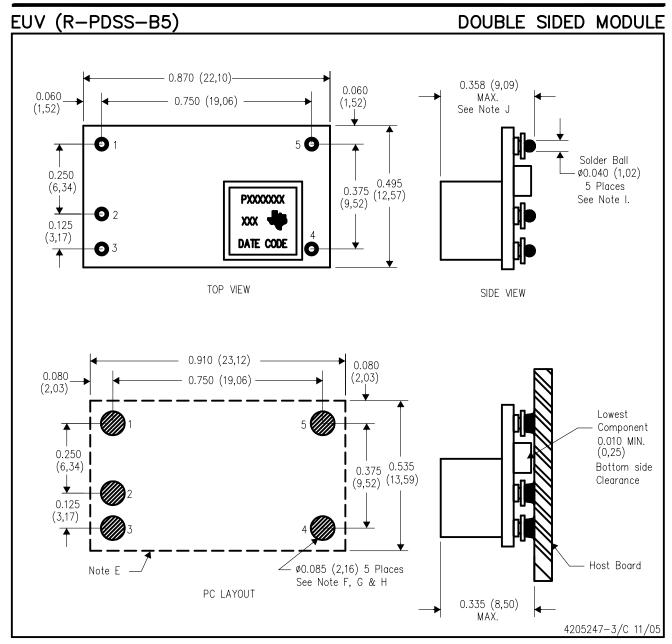
| Orderable part number | Status   | Material type | Package   Pins                    | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|----------|---------------|-----------------------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------|
|                       |          |               |                                   |                       |                 | (4)                           | (5)                        |              |                  |
| PTN04050AAH           | Obsolete | Production    | Through-Hole                      | -                     | -               |                               |                            | -40 to 85    |                  |
|                       |          |               | Module (EUU)   5                  |                       |                 |                               |                            |              |                  |
| PTN04050AAS           | Obsolete | Production    | Surface Mount<br>Module (EUV)   5 | -                     | -               |                               |                            | -40 to 85    |                  |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

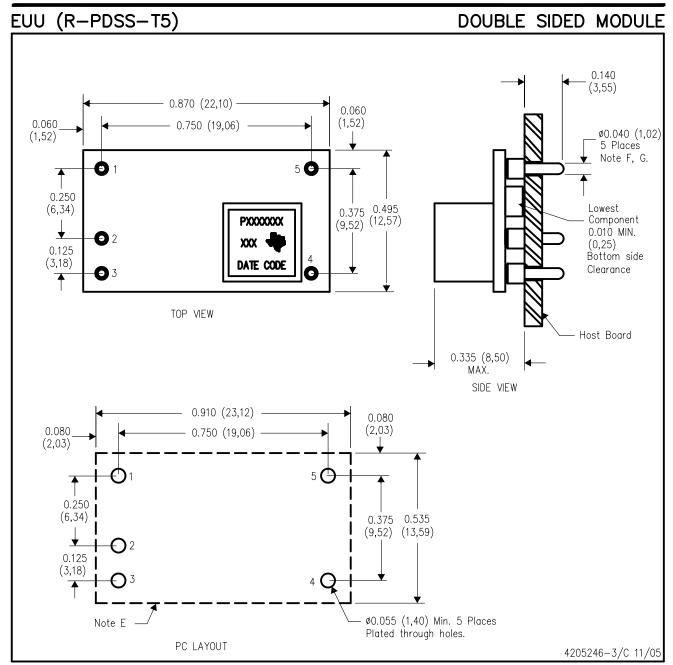
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.



- NOTES: A. All linear dimensions are in inches (mm).
  - B. This drawing is subject to change without notice.
  - C. 2 place decimals are  $\pm 0.030$  ( $\pm 0.76$ mm).
  - D. 3 place decimals are  $\pm 0.010$  ( $\pm 0.25$ mm).
  - E. Recommended keep out area for user components.
  - F. Power pin connection should utilize two or more vias to the interior power plane of 0.025 (0,63) I.D. per input, ground and output pin (or the electrical equivalent).
- G. Paste screen opening: 0.080 (2,03) to 0.085 (2,16).
  Paste screen thickness: 0.006 (0,15).
- H. Pad type: Solder mask defined.
- I. All pins: Material Copper Alloy
  Finish Tin (100%) over Nickel plate
  Solder Ball See product data sheet.
- J. Dimension prior to reflow solder.





NOTES:

- A. All linear dimensions are in inches (mm).
- B. This drawing is subject to change without notice.
- C. 2 place decimals are  $\pm 0.030$  ( $\pm 0.76$ mm). D. 3 place decimals are  $\pm 0.010$  ( $\pm 0.25$ mm).
- E. Recommended keep out area for user components.
- F. Pins are 0.040" (1,02) diameter with 0.070" (1,78) diameter standoff shoulder.
- G. All pins: Material Copper Alloy Finish - Tin (100%) over Nickel plate



# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025