Reference

TS5A3159A 1- Ω SPDT Analog Switch 5-V and 3.3-V Single-Channel 2:1 Multiplexer and Demultiplexer

1 Features

- Specified Break-Before-Make Switching
- Isolation in Power-Down Mode, $\mathrm{V}_{+}=0$
- Terminal Compatible With TS5A3159 Device
- Low ON-State Resistance (1 Ω)
- Control Inputs are 5.5-V Tolerant
- Low Charge Injection
- Excellent On-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- $1.65-\mathrm{V}$ to $5.5-\mathrm{V}$ Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA

Per JESD 78, Class II

- ESD Performance Tested Per JESD
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Terminals and Peripherals

3 Description

The TS5A3159A device is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V . The device offers low on-state resistance and excellent ON -state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS5A3159ADBVR	SOT-23 (6)	$2.90 \mathrm{~mm} \times 1.60 \mathrm{~mm}$
TS5A3159ADCKR	SC70 (6)	$2.00 \mathrm{~mm} \times 1.25 \mathrm{~mm}$
TS5A3159AYZPR	DSBGA (6)	$1.41 \mathrm{~mm} \times 0.91 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics for 5-V Supply 5
6.6 Electrical Characteristics for 3.3-V Supply 6
6.7 Electrical Characteristics for 2.5-V Supply 8
6.8 Electrical Characteristics for 1.8-V Supply 9
6.9 Typical Characteristics 11
7 Parameter Measurement Information 14
8 Detailed Description 18
8.1 Overview 18
8.2 Functional Block Diagram 18
8.3 Feature Description 18
8.4 Device Functional Modes 18
9 Application and Implementation 19
9.1 Application Information. 19
9.2 Typical Application 19
10 Power Supply Recommendations 20
11 Layout. 20
11.1 Layout Guidelines 20
11.2 Layout Example 20
12 Device and Documentation Support 21
12.1 Device Support 21
12.2 Documentation Support 22
12.3 Community Resources 22
12.4 Trademarks 22
12.5 Electrostatic Discharge Caution. 22
12.6 Glossary 22
13 Mechanical, Packaging, and Orderable Information 22

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision E (November 2015) to Revision F Page

- Changed the YZP package From: 8 Pins To: 6 Pins in the Thermal Information table 4
Changes from Revision D (June 2015) to Revision E Page
- Changed Pin Descriptions 3
Changes from Revision C (May 2010) to Revision D Page
- Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1

5 Pin Configuration and Functions

NO - Normally open
NC - Normally closed

Pin Functions

PIN			I/O	
NAME	SOT-23, SC-70	DSBGA		
COM	4	C2	I/O	Common switch port
GND	2	B1	-	Ground
IN	6	A2	I/O	Switch select. High = COM connected to NO; Low = COM connected to NC
NC	3	C1	I/O	Normally closed switched port
NO	1	A1	-	Normally open switch port
V+	5	B2	I	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)(2)}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(3) All voltages are with respect to ground, unless otherwise specified.
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(5) This value is limited to 5.5 V maximum.
(6) Pulse at 1 -ms duration $<10 \%$ duty cycle.
(7) The lifetime of the device will be reduced if the device operates continually at this temperature.

6.2 ESD Ratings

		VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	V
$\mathrm{V}_{(\text {(ESD) }}$ Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22C101 ${ }^{(2)}$	± 1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX
$\mathrm{V}_{\text {IO }}$	Switch input/output voltage	0	$\mathrm{~V}_{+}$
V_{+}	Supply voltage	V	
V_{1}	Control input voltage	1.65	5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature	V	

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TS5A3159A			UNIT
		DBV (SOT-23)	DCK (SC-70)	YZP (DSBGA)	
		6 PINS	6 PINS	6 PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	165	259	123	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

TS5A3159A
www.ti.com

6.5 Electrical Characteristics for 5-V Supply

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC }}$	Analog signal					0		V_{+}	V
$\mathrm{r}_{\text {peak }}$	Peak ON resistance	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, see Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		0.8	1.1	Ω
				Full				1.5	
$\mathrm{r}_{\text {on }}$	ON-state resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, see Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		0.7	0.9	Ω
				Full				1.1	
$\Delta r_{\text {on }}$	ON-state resistance match between channels	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.5 \mathrm{~V}$, $\mathrm{I}_{\text {COM }}=-100 \mathrm{~mA}$,	Switch on, see Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		0.05	0.1	Ω
				Full				0.1	
$\mathrm{r}_{\text {on(flat) }}$	ON-state resistance flatness	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, see Figure 14	$25^{\circ} \mathrm{C}$	4.5 V	0.15			Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{CoM}}=-100 \mathrm{~mA} \text {, } \end{aligned}$	Switch on, see Figure 14	$25^{\circ} \mathrm{C}$			0.1	0.25	
				Full				0.25	
	NC, NO OFF leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V}, \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V} \text {, } \end{aligned}$	Switch off, see Figure 15	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
$\mathrm{l}_{\text {NO(OFF) }}$				Full		-100		100	
$\mathrm{I}_{\text {NC(PWROFF) }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 5.5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{COM}}=5.5 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch off, see Figure 15	$25^{\circ} \mathrm{C}$	0 V	-1	0.2	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {No(PWROFF) }}$				Full		-20		20	
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COM}}=$ Open, or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open,	Switch on, see Figure 16	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-100		100	
$\mathrm{I}_{\text {COM(PWROFF })}$	COM OFF leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to 5.5 V , $\mathrm{V}_{\text {COM }}=5.5 \mathrm{~V}$ to 0 ,	Switch off, see Figure 15	25°	0 V	-1	0.1	1	$\mu \mathrm{A}$
				Full		-20		20	
$\mathrm{I}_{\text {COM (ON) }}$	COM ON leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}$, or $\mathrm{V}_{\text {NC }}$ or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}$,	Switch on, see Figure 16	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-100		100	
DIGITAL INPUT (IN)									
$\mathrm{V}_{1 \mathrm{H}}$	Input logic high			Full		2.4		5.5	V
V_{IL}	Input logic low			Full		0		0.8	
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	Input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	5.5 V	-2		2	nA
				Full		100		100	
DYNAMIC									
t_{ON}	Turnon time	$\begin{aligned} & \mathrm{V}_{\text {сом }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ see Figure 18	$25^{\circ} \mathrm{C}$	5 V	1	12	30	ns
				Full	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { to } 5.5 \\ \mathrm{~V} \end{gathered}$	1		35	
toff	Turnoff time	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ see Figure 18	$25^{\circ} \mathrm{C}$	5 V	1	5	20	ns
				Full	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { to } 5.5 \\ \mathrm{~V} \end{gathered}$	1		30	
$\mathrm{t}_{\text {BBM }}$	Break-before-make time	$\begin{aligned} & V_{N C}=V_{N O}=V_{+}, \\ & R_{L}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ see Figure 19	$25^{\circ} \mathrm{C}$	5 V		6		ns
				Full	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { to } 5.5 \\ \mathrm{~V} \end{gathered}$	1		20	
Q_{C}	Charge injection	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see Figure 23	$25^{\circ} \mathrm{C}$	5 V		-20		pC
$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	NC, NO OFF capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch off, see Figure 17	$25^{\circ} \mathrm{C}$	5 V		18		pF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch on, see Figure 17	$25^{\circ} \mathrm{C}$	5 V		55		pF
$\mathrm{C}_{\text {COM(ON) }}$	COM ON capacitance	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch on, see Figure 17	$25^{\circ} \mathrm{C}$	5 V		55		pF
Cl_{1}	Digital input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	5 V		2		pF
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch on, see Figure 20	$25^{\circ} \mathrm{C}$	5 V		100		MHz

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 5-V Supply (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN TYP	MAX	UNIT
$\mathrm{O}_{\text {ISo }}$	Off isolation	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch off, see Figure 21	$25^{\circ} \mathrm{C}$	5 V	-64		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch on, see Figure 22	$25^{\circ} \mathrm{C}$	5 V	-64		dB
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=200 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ see Figure 24	$25^{\circ} \mathrm{C}$	5 V	0.004\%		
SUPPLY								
I_{+}	Positive supply current	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	Switch on or off	$25^{\circ} \mathrm{C}$	5.5 V	10	50	nA
				Full			500	

6.6 Electrical Characteristics for 3.3-V Supply

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}} \end{aligned}$	Analog signal range					0		V_{+}	V
$\mathrm{r}_{\text {peak }}$	Peak ON resistance	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		1.3	1.6	Ω
				Full				2	
$\mathrm{r}_{\text {on }}$	ON-state resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		1.2	1.5	Ω
				Full				1.7	
$\Delta r_{\text {on }}$	ON-state resistance match between channels	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		0.1	0.15	Ω
				Full				0.15	
$\mathrm{r}_{\text {on(flat) }}$	ON-state resistance flatness	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	3 V	0.2			Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA} \text {, } \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$			0.15	0.3	
				Full				0.3	
	NC, NO off leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} \\ & \text { to } 3 \mathrm{~V} \text {, or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} \\ & \text { to } 3 \mathrm{~V} \text {, } \end{aligned}$	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	3.6 V	-20	2	20	nA
$\mathrm{I}_{\text {NO(OFF) }}$				Full		-50		50	
$\mathrm{I}_{\text {NC(PWROFF) }}$,		$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 3.6 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{COM}}=3.6 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	0 V	-1	0.2	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {NO(PWROFF) }}$				Full		-15		15	
$I_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO on leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open, or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open,	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V	-10	2	10	nA
				Full		-20		20	
$\mathrm{I}_{\text {COM(PWROFF) }}$	COM off leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3.6 \mathrm{~V} \text { to } 0, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \text { to } 3.6 \mathrm{~V} \text {, } \end{aligned}$	Switch off, See Figure 15	25°	0 V	-1	0.2	1	$\mu \mathrm{A}$
				Full		-15		15	
$\mathrm{I}_{\text {COM (ON })}$	COM on leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}$, or $\mathrm{V}_{\text {NC }}$ or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}$,	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V	-10	2	10	nA
				Full		-20		20	
DIGITAL INPUT (IN)									
V_{IH}	Input logic high			Full		2.4		5.5	V
V_{IL}	Input logic low			Full		0		0.8	
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	Input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V	-2		2	nA
				Full		-100		100	
DYNAMIC									
t_{ON}	Turnon time	$\begin{aligned} & \mathrm{V}_{\text {Сом }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V	5	16	35	ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	3		50	
$\mathrm{t}_{\text {OFF }}$	Turnoff time	$\begin{aligned} & \mathrm{V}_{\text {сом }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V	1	9	20	ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1		30	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

TS5A3159A
www.ti.com

Electrical Characteristics for 3.3-V Supply (continued)

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

	PARAMETER	TEST CONDITIONS		T ${ }_{\text {A }}$	V_{+}	MIN TYP	MAX	UNIT
$t_{\text {BBM }}$	Break-before-make time	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 19	$25^{\circ} \mathrm{C}$	3.3 V	9		ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1	40	
Q_{C}	Charge injection	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	3.3 V	-11		pC
$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	NC, NO OFF capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch off, See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	18		pF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	55		pF
$\mathrm{C}_{\text {COM(ON) }}$	COM ON capacitance	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	55		pF
C_{1}	Digital input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	2		pF
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch on, See Figure 20	$25^{\circ} \mathrm{C}$	3.3 V	100		MHz
$\mathrm{O}_{\text {ISO }}$	Off isolation	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch off, See Figure 21	$25^{\circ} \mathrm{C}$	3.3 V	-64		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch on, See Figure 22	$25^{\circ} \mathrm{C}$	3.3 V	-64		dB
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 24	$25^{\circ} \mathrm{C}$	3.3 V	0.01\%		
SUPPLY								
I_{+}	Positive supply current	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	Switch on or off	$25^{\circ} \mathrm{C}$	3.6 V	10	25	nA
				Full			100	

6.7 Electrical Characteristics for 2.5-V Supply

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to 2.7, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(\right.$ unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC }}$	Analog signal range					0		V_{+}	V
$\mathrm{r}_{\text {peak }}$	Peak ON resistance	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		1.8	2.5	Ω
				Full				2.7	
$\mathrm{r}_{\text {on }}$	ON-state resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		1.5	2	Ω
				Full				2.4	
$\Delta r_{\text {on }}$	ON-state resistance match between channels	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		0.15	0.2	Ω
				Full				0.2	
$\mathrm{r}_{\text {on(flat) }}$	ON-state resistance flatness	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\text {Сом }}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		0.6		Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$			0.6	1	
				Full				1	
$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC, NO OFF leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}$, $\mathrm{V}_{\text {COM }}=0.5 \mathrm{~V}$ to 2.3 V , or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}$ to 2.3 V ,	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	2.7 V	-20	2	20	nA
				Full		-50		50	
$\mathrm{I}_{\text {NC(PWROFF) }}$, $\mathrm{I}_{\text {NO(PWROFF) }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3.6 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	0 V	-1	0.1	1	$\mu \mathrm{A}$
				Full		-10		10	
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	2.7 V	-10	2	10	nA
				Full		-20		20	
$\mathrm{I}_{\text {COM(PWROFF) }}$	COM OFF leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.7 \mathrm{~V} \text { to } 0, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \text { to } 2.7 \mathrm{~V}, \end{aligned}$	Switch off, See Figure 15	25°	0 V	-1	0.1	10	$\mu \mathrm{A}$
				Full		-10		20	
$\mathrm{I}_{\text {COM(ON }}$	COM ON leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V} \text {, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=2.2 \mathrm{~V}, \end{aligned}$	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	2.7 V	-10	2	10	nA
				Full		-20		20	
DIGITAL INPUT (IN)									
V_{IH}	Input logic high			Full		1.8		5.5	V
V_{IL}	Input logic low			Full		0		0.6	
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	Input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V	-2		2	nA
				Full		20		20	
DYNAMIC									
t_{ON}	Turnon time	$\begin{aligned} & \mathrm{V}_{\text {сом }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V	5	22	40	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	5		50	
$\mathrm{t}_{\text {OFF }}$	Turnoff time	$\begin{aligned} & \mathrm{V}_{\text {COM }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V	2	6	35	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	2		50	
$t_{\text {BBM }}$	Break-before-make time	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, }$ See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V	2	13	35	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	2		45	
Q_{C}	Charge injection	$\begin{aligned} & V_{G E N}=0, \\ & R_{G E N}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	2.5 V		-7		pC
$\mathrm{C}_{\mathrm{NC} \text { (OFF), }}$ $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	NC, NO OFF capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch off, See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		18		pF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		55		pF
$\mathrm{C}_{\text {Com(ON) }}$	COM ON capacitance	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		55		pF
C_{1}	Digital input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		2		pF
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch on, See Figure 20	$25^{\circ} \mathrm{C}$	2.5 V		100		MHz

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 2.5-V Supply (continued)

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

6.8 Electrical Characteristics for 1.8-V Supply

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
$\begin{array}{\|l} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \\ \hline \end{array}$	Analog signal range					0		V_{+}	V
$\mathrm{r}_{\text {peak }}$	Peak ON resistance	$\begin{aligned} & 0 \leq\left(V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.65 \\ V \end{gathered}$	5			Ω
				Full				15	
$\mathrm{r}_{\text {on }}$	ON-state resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.65 \\ V \end{gathered}$		2	2.5	Ω
				Full				3.5	
$\Delta r_{\text {on }}$	ON-state resistance match between channels	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	$\stackrel{1.65}{\mathrm{~V}}$		0.15	0.4	Ω
				Full				0.4	
$\mathrm{r}_{\text {on(flat) }}$	ON-state resistance flatness	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.65 \\ V \end{gathered}$	5			Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch on, See Figure 14	$25^{\circ} \mathrm{C}$			4.5		
				Full					
	NC, NO OFF leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}$, $\mathrm{V}_{\text {COM }}=0.3 \mathrm{~V}$ to 1.65 V , or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$ to 1.65 V ,	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.95 \\ V \end{gathered}$	-5	2	5	nA
$\mathrm{I}_{\text {NO(OFF) }}$				Full		-20		20	
$\mathrm{I}_{\text {NC(PWROFF) }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 1.95 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=1.95 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch off, See Figure 15	$25^{\circ} \mathrm{C}$	0 V	-1	0.1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {No(PWROFF) }}$				Full		-5		5	
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON}),}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open, or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.95 \\ \mathrm{~V} \end{gathered}$	-5	2	5	nA
				Full		-20		20	
ICOM(PWROFF)	COM OFF leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.95 \mathrm{~V} \text { to } 0, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \text { to } 1.95 \mathrm{~V}, \end{aligned}$	Switch off, See Figure 15	25°	0 V	-1	0.1	7	$\mu \mathrm{A}$
				Full		-5		5	
$\mathrm{I}_{\text {COM (ON }}$	COM ON leakage current	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$, or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=1.65 \mathrm{~V}$	Switch on, See Figure 16	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.95 \\ \mathrm{~V} \end{gathered}$	-5	2	5	nA
				Full		-20		20	
DIGITAL INPUT (IN)									
V_{IH}	Input logic high			Full		1.5		5.5	V
$\mathrm{V}_{\text {IL }}$	Input logic low			Full		0		0.6	
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	Input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.95 \\ \mathrm{~V} \end{gathered}$	-2		2	nA
				Full		20		20	
DYNAMIC									
t_{ON}	Turnon time	$\begin{array}{ll} \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, & \text { See Figure } 18 \end{array}$		$25^{\circ} \mathrm{C}$	1.8 V	10	35	70	ns
				Full	$\begin{gathered} 1.65 \\ \mathrm{~V} \text { to } \\ 1.95 \\ \mathrm{~V} \end{gathered}$	10		75	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 1.8-V Supply (continued)

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

	PARAMETER	TEST CONDITIONS		T_{A}	V_{+}	MIN TYP	MAX	UNIT
toff	Turnoff time	$\begin{aligned} & \mathrm{V}_{\text {COM }}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ See Figure 18	$25^{\circ} \mathrm{C}$	1.8 V	215	40	
				Full	$\begin{gathered} 1.65 \\ \mathrm{~V} \text { to } \\ 1.95 \\ \mathrm{~V} \end{gathered}$	2	50	ns
$\mathrm{t}_{\text {BBM }}$	Break-before-make time	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V	22		ns
				Full	$\begin{gathered} 1.65 \\ \mathrm{~V} \text { to } \\ 1.95 \\ \mathrm{~V} \end{gathered}$	2	70	
Q_{C}	Charge injection	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	1.8 V	-4		pC
$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	NC, NO OFF capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch off, See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	18		pF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON}) \text {, }}$ $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	NC, NO ON capacitance	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	55		pF
$\mathrm{C}_{\text {COM(ON) }}$	COM ON capacitance	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch on, See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	55		pF
C_{1}	Digital input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	2		pF
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch on, See Figure 20	$25^{\circ} \mathrm{C}$	1.8 V	105		MHz
$\mathrm{O}_{\text {ISO }}$	Off isolation	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch off, See Figure 21	$25^{\circ} \mathrm{C}$	1.8 V	64		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch on, See Figure 22	$25^{\circ} \mathrm{C}$	1.8 V	64		dB
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 24	$25^{\circ} \mathrm{C}$	1.8 V	0.06\%		
SUPPLY								
I_{+}	Positive supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch on or off	$25^{\circ} \mathrm{C}$	$\stackrel{1.95}{V}$	5	15	$\mu \mathrm{A}$
				Full			50	

TS5A3159A
www.ti.com

6.9 Typical Characteristics

Figure 1. Logic Threshold vs Power Supply

Figure 3. $\mathrm{r}_{\mathrm{on}} \mathrm{vs} \mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=3.3 \mathrm{~V}\right)$

Figure 5. Leakage Current vs Temperature ($\mathrm{V}_{+}=3.3 \mathrm{~V}$)

Figure 2. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}$

Figure 4. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 6. Leakage Current vs Temperature
($\mathrm{V}_{+}=5 \mathrm{~V}$)

Typical Characteristics (continued)

Typical Characteristics (continued)

Figure 13. Total Harmonic Distortion vs Frequency ($\mathrm{V}_{+}=5 \mathrm{~V}$)

7 Parameter Measurement Information

Figure 14. ON-State Resistance (r_{on})

$$
\begin{aligned}
& \text { Off-State Leakage Current } \\
& \text { Channel Off } \\
& V_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}
\end{aligned}
$$

Figure 15. OFF-State Leakage Current ($\left.I_{\text {NC(OFF) }}, I_{\mathrm{IC}(\mathrm{PWROFF})}, I_{\text {NO(OFF) }}, I_{\text {NO(PWROFF) }}, I_{\text {Com(OFF) }}, I_{\text {COM(PWROFF) }}\right)$

Figure 16. ON-State Leakage Current ($\left.I_{C O M(O N),} I_{\mathrm{NC}(\mathrm{ON})}, \mathrm{I}_{\mathrm{NO}(\mathrm{ON})}\right)$

Parameter Measurement Information (continued)

$\mathrm{V}_{\text {BIAS }}=\mathrm{V}_{+}$or GND
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND
Capacitance is measured at NC,
NO, COM, and IN inputs during
on and off conditions.

Figure 17. Capacitance ($\left.\mathrm{C}_{\mathrm{l}}, \mathrm{C}_{\mathrm{COM}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

Figure 18. Turnon (t_{ON}) and Turnoff Time ($\mathrm{t}_{\mathrm{OFF}}$)

Parameter Measurement Information (continued)

$$
\begin{aligned}
& \begin{array}{l}
\text { Output } \\
\text { (V } \mathrm{COM} \text {) }
\end{array} \\
& \begin{array}{l}
\mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \\
\mathrm{R}_{\mathrm{L}}=50 \Omega \\
\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}
\end{array}
\end{aligned}
$$

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 19. Break-Before-Make Time ($\mathrm{t}_{\text {ввм }}$)

Figure 20. Bandwidth (BW)

Channel Off: NC to COM $\mathbf{V}_{\mathbf{I}}=\mathbf{V}_{+}$or GND

Network Analyzer Setup
Source Power $=0 \mathrm{dBm}$ (632-mV P-P at 50- Ω load)
DC Bias $=\mathbf{3 5 0} \mathbf{~ m V}$

Figure 21. OFF Isolation ($\mathrm{O}_{\mathrm{ISO}}$)

TS5A3159A
www.ti.com SCDS200F -JUNE 2005-REVISED JANUARY 2018

Parameter Measurement Information (continued)

Figure 22. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

Figure 23. Charge Injection $\left(Q_{C}\right)$

(1) C_{L} includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

8 Detailed Description

8.1 Overview

The TS5A3159A is a single-pole-double-throw (SPDT) solid-state analog switch. The TS5A3159A, like all analog switches, is bidirectional. When powered on, each COM pin is connected to the NC pin. For this device, NC stands for normally closed and NO stands for normally open. If IN is low, COM is connected to NC. If IN is high, COM is connected to NO.

The TS5A3159A is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other.

8.2 Functional Block Diagram

8.3 Feature Description

The low ON-state resistance, ON-state resistance matching, and charge injection in the TS5A3159A make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device.
The $1.65-\mathrm{V}$ to $5.5-\mathrm{V}$ operation allows compatibility with more logic levels, and the bidirectional I / Os can pass analog signals from 0 V to V_{+}with low distortion.

8.4 Device Functional Modes

Table 1 lists the functional modes of the TS5A3159A.
Table 1. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS5A3159A can be used in a variety of customer systems. The TS5A3159A can be used anywhere multiple analog or digital signals must be selected to pass across a single line.

9.2 Typical Application

Figure 25. System Schematic for TS5A3159A

9.2.1 Design Requirements

In this particular application, V_{+}was 5 V , although V_{+}is allowed to be any voltage specified in Recommended Operating Conditions. A decoupling capacitor is recommended on the V_{+}pin. See Power Supply Recommendations for more details.

9.2.2 Detailed Design Procedure

In this application, IN is, by default, pulled low to GND. Choose the resistor size based on the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if applicable). If the GPIO is open-drain, use pullup resistors instead.

9.2.3 Application Curve

Figure 26. Power-Supply Current vs Temperature

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions.
Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a $0.1-\mu \mathrm{F}$ bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a $0.01-\mu \mathrm{F}$ or $0.022-\mu \mathrm{F}$ capacitor is recommended for each V_{Cc} because the VCC pins are tied together internally. For devices with dual-supply pins operating at different voltages, for example V_{CC} and V_{DD}, a $0.1-\mu \mathrm{F}$ bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. $0.1-\mu \mathrm{F}$ and $1-\mu \mathrm{F}$ capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace - resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Figure 27 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.
Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN pin must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels, floating control inputs can cause increased I_{CC} or unknown switch selection states.

11.2 Layout Example

Figure 27. Trace Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

Table 2. Parameter Description

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {COM }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
$\mathrm{r}_{\text {on }}$	Resistance between COM and NC or COM and NO ports when the channel is on
$\mathrm{r}_{\text {peak }}$	Peak ON-state resistance over a specified voltage range
$\Delta \mathrm{r}_{\text {on }}$	Difference of $r_{\text {on }}$ between channels
$\mathrm{r}_{\text {on(flat) }}$	Difference between the maximum and minimum value of $r_{\text {on }}$ in a channel over the specified range of conditions
$\mathrm{I}_{\text {NC(OFF) }}$	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the off state under worst-case input and output conditions
$\mathrm{I}_{\text {NC(PWROFF) }}$	Leakage current measured at the NC port during the power-down condition, $\mathrm{V}_{+}=0$
$\mathrm{I}_{\text {NO(OFF) }}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the off state under worst-case input and output conditions
$\mathrm{I}_{\text {NO(PWROFF) }}$	Leakage current measured at the NO port during the power-down condition, $\mathrm{V}_{+}=0$
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the on state and the output (COM) being open
$\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the on state and the output (COM) being open
$\mathrm{I}_{\text {COM }(\mathrm{ON})}$	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the on state and the output (NC or NO) being open
$\mathrm{I}_{\text {COM(PWROFF) }}$	Leakage current measured at the COM port during the power-down condition, $\mathrm{V}_{+}=0$
V_{IH}	Minimum input voltage for logic high for the control input (IN)
$\mathrm{V}_{\text {IL }}$	Maximum input voltage for logic low for the control input (IN)
V_{1}	Voltage at (IN)
$I_{\text {IH }}, \mathrm{I}_{\text {IL }}$	Leakage current measured at (IN)
t_{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning on.
toff	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning off.
$t_{\text {BBM }}$	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $\mathrm{Q}_{\mathrm{C}}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}, \mathrm{C}_{\mathrm{L}}$ is the load capacitance and $\Delta \mathrm{V}_{\mathrm{O}}$ is the change in analog output voltage.
$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is off
$\mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is off
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	Capacitance at the NC port when the corresponding channel (NC to COM) is on
$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is on
$\mathrm{C}_{\text {COM(ON) }}$	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is on
$\mathrm{C}_{\text {IN }}$	Capacitance of (IN)
OISO	OFF isolation of the switch is a measurement OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the off state.
$\mathrm{X}_{\text {TALK }}$	Crosstalk is a measurement of unwanted signal coupling from an on channel to an off channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB .

Table 2. Parameter Description (continued)

SYMBOL	DESCRIPTION
BW	Bandwidth of the switch. This is the frequency in which the gain of an on channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio or root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I_{+}	Static power supply current with the control (IN) terminal at V_{+}or GND

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:
Implications of Slow or Floating CMOS Inputs, SCBA004

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.
TI E2E ${ }^{\text {TM }}$ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support Tl's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

A These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Texas
InSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS5A3159ADBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JAJR JAJH	Samples
TS5A3159ADBVRE4	LIFEBUY	SOT-23	DBV	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JAJR JAJH	
TS5A3159ADBVRG4	LIFEBUY	SOT-23	DBV	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { JAJR } \\ & \text { JAJH } \end{aligned}$	
TS5A3159ADBVT	LIFEBUY	SOT-23	DBV	6	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAJK, JAJR) JAJH	
TS5A3159ADBVTE4	LIFEBUY	SOT-23	DBV	6	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAJK, JAJR) JAJH	
TS5A3159ADCKR	ACTIVE	SC70	DCK	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (JJK, JJR) } \\ & \text { JJH } \end{aligned}$	Samples
TS5A3159ADCKRE4	LIFEBUY	SC70	DCK	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (JJK, JJR) } \\ & \text { JJH } \end{aligned}$	
TS5A3159ADCKRG4	LIFEBUY	SC70	DCK	6	3000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (JJK, JJR) } \\ & \text { JJH } \end{aligned}$	
TS5A3159ADCKT	LIFEBUY	SC70	DCK	6	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (JJK, JJR) } \\ & \text { JJH } \end{aligned}$	
TS5A3159AYZPR	ACTIVE	DSBGA	YZP	6	3000	RoHS \& Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	JJN	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

L Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 (mm)	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TS5A3159ADBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS5A3159ADBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS5A3159ADCKR	SC70	DCK	6	3000	180.0	8.4	2.3	2.55	1.2	4.0	8.0	Q3
TS5A3159ADCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TS5A3159ADCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TS5A3159ADCKT	SC70	DCK	6	250	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
TS5A3159AYZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3159ADBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
TS5A3159ADBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
TS5A3159ADCKR	SC70	DCK	6	3000	205.0	200.0	33.0
TS5A3159ADCKR	SC70	DCK	6	3000	202.0	201.0	28.0
TS5A3159ADCKT	SC70	DCK	6	250	202.0	201.0	28.0
TS5A3159ADCKT	SC70	DCK	6	250	205.0	200.0	33.0
TS5A3159AYZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

ALTERNATIVE PACKAGE SINGULATION VIEW

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.
4. Leads $1,2,3$ may be wider than leads $4,5,6$ for package orientation.
5. Refernce JEDEC MO-178.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. NanoFree ${ }^{T M}$ package configuration.

NOTES: (continued)
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.

For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL SCALE:40X

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

ALTERNATIVE PACKAGE SINGULATION VIEW

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Falls within JEDEC MO-203 variation AB.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 THICK STENCIL

SCALE:18X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

