### 54ACT16823, 74ACT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCAS160B - APRIL 1991 - REVISED NOVEMBER 1999

| ● <i>EPIC</i> <sup>™</sup> (Enhanced-Performance Implanted CMOS) 1-μm Process                         | 74ACT16823.                      | WD PACKAGE<br>DL PACKAGE<br>VIEW)           |
|-------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|
| <ul> <li>Members of the Texas Instruments<br/>Widebus<sup>™</sup> Family</li> </ul>                   |                                  | 56] 1CLK                                    |
| Inputs Are TTL-Voltage Compatible                                                                     |                                  | 55 1 1CLKEN                                 |
| Provide Extra Data Width Necessary for                                                                | 1Q1 🛛 3                          | 54 1D1                                      |
| Wider Address/Data Paths or Buses With                                                                | GND 🛛 4                          | 53 GND                                      |
| Parity                                                                                                | 1Q2 🛛 5                          | <sup>52</sup> 1D2                           |
| • Flow-Through Architecture Optimizes PCB                                                             | 1Q3 <b>[</b> ]6                  | <sup>51</sup> 1D3                           |
| Layout                                                                                                | V <sub>CC</sub> 7                | 50 V <sub>CC</sub>                          |
| <ul> <li>Distributed V<sub>CC</sub> and GND-Pin Configuration</li> </ul>                              |                                  | 49 1D4                                      |
| Minimizes High-Speed Switching Noise                                                                  | 1Q5 [ 9<br>1Q6 [ 10              | <sup>48</sup> 1D5<br>47 1D6                 |
| Package Options Include Plastic Shrink                                                                | GND [ 11                         | 46 GND                                      |
| Small-Outline (DL) Packages Using 25-mil                                                              | 1Q7 [ 12                         | 45 1D7                                      |
| Center-to-Center Pin Spacings and 380-mil                                                             | 1Q8 [ 13                         | 44 1 1D8                                    |
| Fine-Pitch Ceramic Flat (WD) Packages                                                                 | 1Q9 [ 14                         | 43 ] 1D9                                    |
| Using 25-mil Center-to-Center Pin Spacings                                                            | 2Q1 🛛 15                         | 42 2D1                                      |
| description                                                                                           | 2Q2 🛛 16                         | 41 2D2                                      |
|                                                                                                       | 2Q3 🛛 17                         | <sup>40</sup> 2D3                           |
| These 18-bit flip-flops feature 3-state outputs                                                       |                                  | <sup>39</sup> GND                           |
| designed specifically for driving highly-capacitive                                                   | 2Q4 19                           | 38 2D4                                      |
| or relatively low-impedance loads. They are                                                           | 2Q5 20                           | 37 2D5                                      |
| particularly suitable for implementing wider buffer registers, I/O ports, parity bus interfacing, and | 2Q6 21                           | 36 2D6                                      |
| working registers.                                                                                    | V <sub>CC</sub> [ 22<br>2Q7 [ 23 | <sup>35</sup> ] V <sub>CC</sub><br>34 ] 2D7 |
|                                                                                                       | 2Q7 [] 23<br>2Q8 [] 24           | 33 2D8                                      |
| The 'ACT16823 devices can be used as two 9-bit                                                        | GND 225                          | 32 GND                                      |
| flip-flops or one 18-bit flip-flop. With the                                                          | 2Q9 [ 26                         | 31 2D9                                      |
| clock-enable (CLKEN) input low, the D-type<br>flip-flops enter data on the low-to-high transitions    | 20E 27                           | 30 200 200 200 200 200 200 200 200 200 2    |
| of the clock. Taking CLKEN high disables the                                                          | 2CLR 28                          | 29 20LK                                     |

A buffered output-enable ( $\overline{OE}$ ) input can be used to place the outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 54ACT16823 is characterized for operation over the full military temperature range of –55°C to 125°C. The 74ACT16823 is characterized for operation from –40°C to 85°C



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

of the clock. Taking CLKEN high disables the clock buffer, thus latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go

low independently of the clock.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

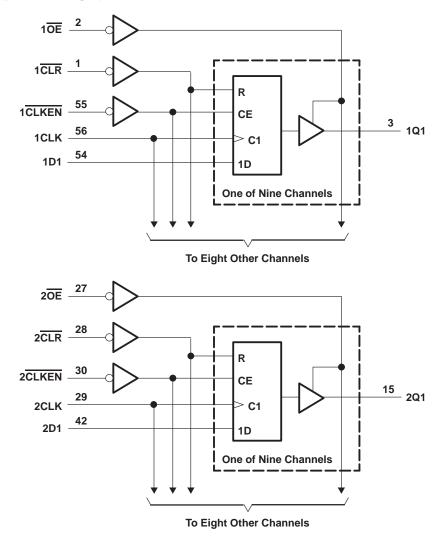


Copyright © 1999, Texas Instruments Incorporated

# 54ACT16823, 74ACT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCAS160B – APRIL 1991 – REVISED NOVEMBER 1999

#### **FUNCTION TABLE** (each 9-bit stage)

| (odoli o bit otago) |        |       |            |   |                                  |  |  |  |  |
|---------------------|--------|-------|------------|---|----------------------------------|--|--|--|--|
|                     | OUTPUT |       |            |   |                                  |  |  |  |  |
| OE                  | CLR    | CLKEN | CLK        | D | Q                                |  |  |  |  |
| L                   | L      | Х     | Х          | Х | L                                |  |  |  |  |
| L                   | Н      | L     | $\uparrow$ | Н | н                                |  |  |  |  |
| L                   | Н      | L     | $\uparrow$ | L | L                                |  |  |  |  |
| L                   | Н      | L     | L          | Х | Q <sub>0</sub>                   |  |  |  |  |
| L                   | Н      | Н     | Х          | Х | Q <sub>0</sub><br>Q <sub>0</sub> |  |  |  |  |
| Н                   | Х      | Х     | Х          | Х | Z                                |  |  |  |  |
|                     | ~      | ~     | ~          | ~ | 2                                |  |  |  |  |


### logic symbol<sup>†</sup>

| 1 <mark>0E</mark> | 2  | EN1      |    |            |
|-------------------|----|----------|----|------------|
| 1CLR              | 1  | - R2     |    |            |
| 1CLKEN            | 55 | - G3     |    |            |
| 1CLK              | 56 | -> 3C4   |    |            |
| 2 <u>0E</u>       | 27 | EN5      |    |            |
| 20L               | 28 | R6       |    |            |
| 2CLR<br>2CLKEN    | 30 | G7       |    |            |
|                   | 29 | 1        |    |            |
| 2CLK              |    | -> 7C8   |    |            |
| 1D1               | 54 | 4D 1,2 ▽ | 3  | 1Q1        |
| 1D2               | 52 |          | 5  | 1Q2        |
| 1D3               | 51 |          | 6  | 1Q3        |
| 1D4               | 49 |          | 8  | 1Q4        |
| 1D4               | 48 |          | 9  | 1Q5        |
| 1D6               | 47 |          | 10 | 1Q6        |
| 1D0<br>1D7        | 45 |          | 12 | 1Q7        |
| 1D7               | 44 |          | 13 | 1Q8        |
| 1D0<br>1D9        | 43 |          | 14 | 1Q9        |
| 2D1               | 42 | 8D 5,6 ▽ | 15 | 2Q1        |
| 2D1<br>2D2        | 41 | 8D 5,6 ⊽ | 16 | 2Q2        |
| 2D2<br>2D3        | 40 | }        | 17 | 2Q2<br>2Q3 |
| 2D3<br>2D4        | 38 |          | 19 |            |
|                   | 37 |          | 20 | 2Q4        |
| 2D5               | 36 |          | 21 | 2Q5        |
| 2D6               | 34 | ┣────┥   | 23 | 2Q6        |
| 2D7               | 33 | <b> </b> | 24 | 2Q7        |
| 2D8               | 31 | <b> </b> | 26 | 2Q8        |
| 2D9               |    | 1        |    | 2Q9        |

<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



### logic diagram (positive logic)



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub>                          |                                                                    |
|----------------------------------------------------------------|--------------------------------------------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)               | $\dots \dots \dots \dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ |
| Output voltage range, V <sub>O</sub> (see Note 1)              | $-0.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$                       |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ )  | ±20 mA                                                             |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{CC}$ ) | ±50 mA                                                             |
| Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$  | ±50 mA                                                             |
| Continuous current through V <sub>CC</sub> or GND              | ±450 mA                                                            |
| Package thermal impedance, $\theta_{JA}$ (see Note 2)          | 56°C/W                                                             |
| Storage temperature range, T <sub>stg</sub>                    | –65°C to 150°C                                                     |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.



### 54ACT16823, 74ACT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCAS160B – APRIL 1991 – REVISED NOVEMBER 1999

recommended operating conditions (see Note 3)

|                     |                                    | 54ACT16823 |     | 74ACT16823 |     |     |     |      |
|---------------------|------------------------------------|------------|-----|------------|-----|-----|-----|------|
|                     |                                    | MIN        | NOM | MAX        | MIN | NOM | MAX | UNIT |
| VCC                 | Supply voltage                     | 4.5        | 5   | 5.5        | 4.5 | 5   | 5.5 | V    |
| VIH                 | High-level input voltage           | 2          |     | h          | 2   |     |     | V    |
| VIL                 | Low-level input voltage            |            | ľ.  | 0.8        |     |     | 0.8 | V    |
| VI                  | Input voltage                      | 0          | RE  | VCC        | 0   |     | VCC | V    |
| VO                  | Output voltage                     | 0          | 1   | VCC        | 0   |     | VCC | V    |
| ЮН                  | High-level output current          |            | 22  | -24        |     |     | -24 | mA   |
| IOL                 | Low-level output current           | C C        | 5   | 24         |     |     | 24  | mA   |
| $\Delta t/\Delta v$ | Input transition rise or fall rate |            |     | 10         | 0   |     | 10  | ns/V |
| Тд                  | Operating free-air temperature     | -55        |     | 125        | -40 |     | 85  | °C   |

NOTE 3: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETED       | TEST CONDITIONS                                            | Vee   | T <sub>A</sub> = 25°C |     |      | 54ACT                                   | 16823 | 74ACT | UNIT |      |
|-----------------|------------------------------------------------------------|-------|-----------------------|-----|------|-----------------------------------------|-------|-------|------|------|
| PARAMETER       | TEST CONDITIONS                                            | Vcc   | MIN                   | TYP | MAX  | MIN                                     | MAX   | MIN   | MAX  | UNIT |
|                 | I <sub>OH</sub> = -50 μA                                   | 4.5 V | 4.4                   |     |      | 4.4                                     |       | 4.4   |      |      |
|                 | ΙΟΗ = -30 μΑ                                               | 5.5 V | 5.4                   |     |      | 5.4                                     |       | 5.4   |      |      |
| VOH             | I <sub>OH</sub> = -24 mA                                   | 4.5 V | 3.94                  |     |      | 3.8                                     |       | 3.8   |      | V    |
|                 | IOH = -24  mA                                              | 5.5 V | 4.94                  |     |      | 4.8                                     |       | 4.8   |      |      |
|                 | I <sub>OH</sub> = -75 mA <sup>†</sup>                      | 5.5 V |                       |     |      | 3.85                                    | 2     | 3.85  |      |      |
|                 | I <sub>OL</sub> = 50 μA                                    | 4.5 V |                       |     | 0.1  |                                         | 0.1   |       | 0.1  |      |
|                 |                                                            | 5.5 V |                       |     | 0.1  |                                         | 0.1   |       | 0.1  |      |
| V <sub>OL</sub> | I <sub>OL</sub> = 24 mA                                    | 4.5 V |                       |     | 0.36 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0.44  |       | 0.44 | V    |
|                 |                                                            | 5.5 V |                       |     | 0.36 | UC<br>UC                                | 0.44  |       | 0.44 |      |
|                 | $I_{OL} = 75 \text{ mA}^{\dagger}$                         | 5.5 V |                       |     |      | 20                                      | 1.65  |       | 1.65 |      |
| lj              | $V_{I} = V_{CC} \text{ or } GND$                           | 5.5 V |                       |     | ±0.1 | 50                                      | ±1    |       | ±1   | μA   |
| IOZ             | $V_{O} = V_{CC} \text{ or } GND$                           | 5.5 V |                       |     | ±0.5 |                                         | ±5    |       | ±5   | μA   |
| ICC             | $V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$         | 5.5 V |                       |     | 8    |                                         | 80    |       | 80   | μA   |
| ∆ICC‡           | One input at 3.4 V, Other inputs at V <sub>CC</sub> or GND | 5.5 V |                       |     | 0.9  |                                         | 1     |       | 1    | mA   |
| Ci              | $V_I = V_{CC}$ or GND                                      | 5 V   |                       | 3   |      |                                         |       |       |      | pF   |
| Co              | $V_{O} = V_{CC}$ or GND                                    | 5 V   |                       | 12  |      |                                         |       |       |      | pF   |

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

<sup>‡</sup>This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V<sub>CC</sub>.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

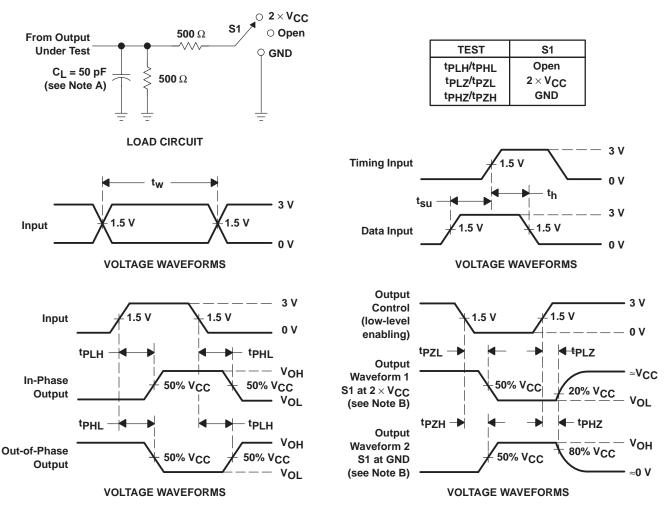


## timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)

|                               |                        |                   | T <sub>A</sub> = 25°C |     | 54ACT16823 |     | 74ACT16823 |     | UNIT |
|-------------------------------|------------------------|-------------------|-----------------------|-----|------------|-----|------------|-----|------|
|                               |                        |                   | MIN                   | MAX | MIN        | MAX | MIN        | MAX | UNIT |
| fclock                        | Clock frequency        |                   |                       | 90  |            | 90  |            | 90  | MHz  |
| t <sub>w</sub> Pulse duration | Pulso duration         | CLR low           | 3.3                   |     | 3.3        | EN  | 3.3        |     | ns   |
|                               | Fuise duration         | CLK high or low   | 5.5                   |     | 5.5        | EN  | 5.5        |     | 115  |
|                               |                        | CLR inactive      | 0.5                   |     | 0.5 🗸      | 4   | 0.5        |     |      |
| t <sub>su</sub>               | Setup time before CLK↑ | Data              | 7                     |     | J          |     | 7          |     | ns   |
|                               |                        | CLKEN low         | 3.5                   |     | 3.5        |     | 3.5        |     |      |
| +                             | Hold time after CLK↑   | Data              | 0.5                   |     | 0.5        |     | 0.5        |     |      |
| <sup>t</sup> h                |                        | CLKEN high or low | 2.5                   |     | 2.5        |     | 2.5        |     | ns   |

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM    | то       | TO T <sub>A</sub> = 25°C |     | 54ACT16823 |       | 74ACT16823 |     | UNIT |      |
|------------------|---------|----------|--------------------------|-----|------------|-------|------------|-----|------|------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN                      | TYP | MAX        | MIN   | MAX        | MIN | MAX  | UNIT |
| f <sub>max</sub> |         |          | 90                       |     |            | 90    |            | 90  |      | MHz  |
| <sup>t</sup> PLH | CLK     | Q        | 4.2                      | 7.5 | 10.6       | 4.2   | 12,1       | 4.2 | 12.1 | ns   |
| <sup>t</sup> PHL |         |          | 4.8                      | 8.3 | 11.5       | 4.8   | 12.9       | 4.8 | 12.9 | 115  |
| <sup>t</sup> PHL | CLR     | Q        | 3.4                      | 7.3 | 11.2       | 3.4 🗸 | 12.5       | 3.4 | 12.5 | ns   |
| <sup>t</sup> PZH | OE      | 0        | 2.4                      | 5.9 | 9.5        | 2.4   | 10.7       | 2.4 | 10.7 | 20   |
| <sup>t</sup> PZL | UE      | Q        | 3.3                      | 7.1 | 11.3       | 3.3   | 12.8       | 3.3 | 12.8 | ns   |
| <sup>t</sup> PHZ |         | Q        | 5.5                      | 7.6 | 9.7        | 5.5   | 10.3       | 5.5 | 10.3 | 20   |
| <sup>t</sup> PLZ | OE      | Q        | 4.6                      | 6.7 | 8.8        | 4.6   | 9.4        | 4.6 | 9.4  | ns   |


### operating characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = $25^{\circ}$ C

| PARAMETER                                     |                 |                         | TEST CO                 | TYP | UNIT |
|-----------------------------------------------|-----------------|-------------------------|-------------------------|-----|------|
| C <sub>pd</sub> Power dissipation capacitance | Outputs enabled | $C_{1} = 50 \text{ pc}$ | f = 1 MHz               | 42  | рЕ   |
|                                               |                 | Outputs disabled        | C <sub>L</sub> = 50 pF, |     | 24   |



## 54ACT16823, 74ACT16823 **18-BIT BUS-INTERFACE FLIP-FLOPS** WITH 3-STATE OUTPUTS

SCAS160B - APRIL 1991 - REVISED NOVEMBER 1999



#### PARAMETER MEASUREMENT INFORMATION

NOTES: A.  $C_L$  includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>Q</sub> = 50  $\Omega$ , t<sub>f</sub> = 3 ns, t<sub>f</sub> = 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated