

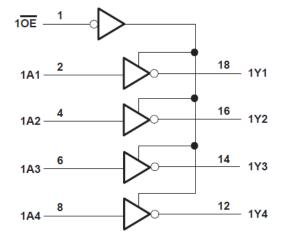
SN54HC240, SN74HC240

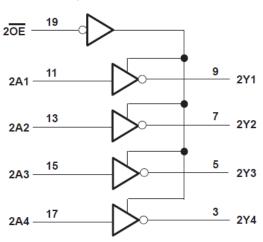
SCLS128H - DECEMBER 1982 - REVISED AUGUST 2024

SNx4HC240 Octal Buffers and Line Drivers With 3-State Outputs

1 Features

- Wide operating voltage range of 2V to 6V
- High-current outputs drive up to 15 LSTTL loads
- Low power consumption, 80µA max I_{CC}
- Typical t_{pd} = 9ns
- ±6mA output drive at 5V
- Low input current of 1µA max
- 3-state outputs drive bus lines or buffer memory address registers


2 Description


These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The 'HC240 devices are organized as two 4-bit buffers/drivers with separate output-enable (OE) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)
	DW (SOIC, 20)	12.80mm x 10.3mm	12.80mm x 7.50mm
	DB (SSOP, 20)	7.2mm x 7.8mm	7.2mm x 5.30mm
SN74HC240	DGS (VSSOP, 20)	5.1mm × 4.9mm	5.1mm × 3mm
SN74HC240	PDIP (20)	24.33mm × 9.4mm	24.33mm × 6.35mm
	NS (SOP, 20)	12.6mm x 7.8mm	12.6mm x 5.3mm
	PW (TSSOP, 20)	6.50mm x 6.4mm	6.50mm x 4.40mm
	J (CDIP, 20)	24.2mm x 7.62mm	24.2 mm x 6.92mm
SNx4HC240	FK (LCCC, 20)	8.9mm x 8.9mm	8.9mm x 8.9mm
	W (CFP, 20)	13.09mm x 8.13mm	13.09mm x 6.92mm

- For more information, see Mechanical, Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

Functional Block Diagram

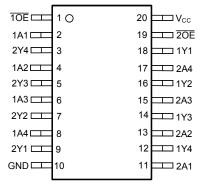
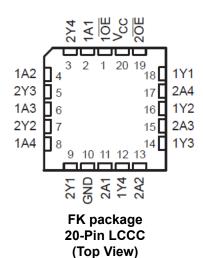


Table of Contents


1 Features	1	6.3 Device Functional Modes	9
2 Description	1	7 Application and Implementation	10
3 Pin Configuration and Functions		7.1 Power Supply Recommendations	
4 Specifications	4	7.2 Layout	10
4.1 Absolute Maximum Ratings		8 Device and Documentation Support	
4.2 Recommended Operating Conditions	4	8.1 Documentation Support	1
4.3 Thermal Information		8.2 Receiving Notification of Documentation Updates	
4.4 Electrical Characteristics	5	8.3 Support Resources	1
4.5 Switching Characteristics	5	8.4 Trademarks	
4.6 Switching Characteristics	7	8.5 Electrostatic Discharge Caution	1
4.7 Operating Characteristics		8.6 Glossary	1
5 Parameter Measurement Information		9 Revision History	
6 Detailed Description	9	10 Mechanical, Packaging, and Orderable	
6.1 Overview	9	Information	1
6.2 Functional Block Diagram			

3 Pin Configuration and Functions

J, W, DB, DGS, DW, N, NS, or PW package 20-Pin CDIP, CFP, SSOP. SOIC, PDIP, SO, TSSOP (Top View)

Table 3-1. Pin Functions

NAME1	PIN	TYPE	DESCRIPTION
10E	1	I	Output enable 1
1A1	2	I	1A1 input
2Y4	3	0	2Y4 output
1A2	4	I	1A2 input
2Y3	5	0	2Y3 output
1A3	6	I	1A3 input
2Y2	7	0	2Y2 output
1A4	8	I	1A4 input
2Y1	9	0	2Y1 output
GND	10	_	Ground pin
2A1	11	I	2A1 input
1Y4	12	0	1Y4 output
2A2	13	I	2A2 input
1Y3	14	0	1Y3 output
2A3	15	1	2A3 input
1Y2	16	0	1Y2 output
2A4	17	1	2A4 input
1Y1	18	0	1Y1 output
20E	19	I	Output enable 2
VCC	20	_	Power pin

1. I = input, O = output, P = power, FB = feedback, GND = ground, N/A = not applicable

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	V _I < 0 or V _I > V _{CC}		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND			±70	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C
	Lead temperature (Soldering 10s) (SOIC - Lead Tips O	nly)		300	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN	SN54HC240			74HC240		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
V_{IH}	H High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 6 V	4.2			4.2			
	V _{CC} = 2 V			0.5			0.5		
V_{IL}	√ _{IL} Low-level input voltage	V _{CC} = 4.5 V			1.35			1.35	V
		V _{CC} = 6 V			1.8			1.8	
VI	Input voltage		0		V _{CC}	0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	0		V _{CC}	V
		V _{CC} = 2 V			1000			1000	
Δt/Δν	$\Delta t/\Delta v$ Input transition rise and fall time	V _{CC} = 4.5 V			500			500	ns
		V _{CC} = 6 V			400			400	
T _A	Operating free-air temperature	1	-55		125	-40		85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4.3 Thermal Information

				SN74H	IC240			
		DW (SOIC)	DB (SSOP)	DGS (VSSOP)	N (PDIP)	NS (SOP)	PW (TSSOP)	
THERMAL	. METRIC	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance (1)	109.1	122.7	130.6	84.6	113.4	131.8	°C/W
R _{θJC (top)}	Junction-to-case (top) thermal resistance	76	81.6	68.7	72.5	78.6	72.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	77.6	77.5	85.4	65.3	78.4	82.8	°C/W

Product Folder Links: SN54HC240 SN74HC240

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

4.3 Thermal Information (continued)

			SN74HC240								
		DW (SOIC)	DB (SSOP)	DGS (VSSOP)	N (PDIP)	NS (SOP)	PW (TSSOP)				
THERMA	L METRIC	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	UNIT			
Ψ_{JT}	Junction-to-top characterization parameter	51.5	46.1	10.5	55.3	47.1	21.5	°C/W			
Ψ_{JB}	Junction-to-board characterization parameter	77.1	77.1	85.0	65.2	78.1	82.4	°C/W			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	N/A	°C/W			

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

4.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	TEST CONDITIONS		٦	T _A = 25°C		SN54H0	240	SN74HC	240	UNIT
PARAMETER	1231 001	NDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONIT
			2 V	1.9	1.998		1.9		1.9		
		$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4		
V_{OH}	V_{OH} $V_{I} = V_{IH} \text{ or } V_{IL}$		6 V	5.9	5.999		5.9		5.9		V
		$I_{OH} = -6 \text{ mA}$ $I_{OH} = -7.8 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
			6 V	5.48	5.8		5.2		5.34		
		I _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1		0.1		0.1	
V_{OL}	$V_I = V_{IH}$ or V_{IL}		6 V		0.001	0.1		0.1		0.1	V
		I _{OL} = 6 mA	4.5 V		0.17	0.26		0.4		0.33	
		I _{OL} = 7.8 mA	6 V		0.15	0.26		0.4		0.33	
I _I	V _I = V _{CC} or 0		6 V		±0.1	±100		±1000		±1000	nA
l _{oz}	$V_O = V_{CC}$ or 0		6 V		±0.01	±0.5		±10		±5	μΑ
I _{CC}	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ
C _i			2 V to 6 V		3	10		10		10	pF

4.5 Switching Characteristics

over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 5-1)

PARAMETER	FROM	то	V _{cc}	TA	= 25°C		SN54HC2	240	SN74HC	240	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V CC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
			2 V		50	100		150		125	
t _{pd}	Α	Y	4.5 V		10	20		30		25	ns
			6 V		9	17		25		21	
		DE Y	2 V		75	150		225		190	
t _{en}	ŌĒ		4.5 V		15	30		45		38	ns
			6 V		13	26		38		32	
			2 V		44	150		225		190	
t _{dis}	ŌĒ	Y	4.5 V		22	30		45		38	ns
			6 V		21	26		38		32	

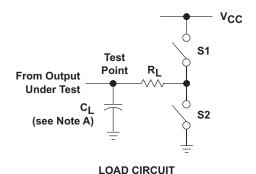
over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 5-1)

PARAMETER	FROM TO		то		λ = 25°C		SN54HC2	240	SN74HC	240	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{CC}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONII
			2 V		28	60		90		75	
t _t		Y	4.5 V		8	12		18		15	ns
			6 V		6	10		15		13	

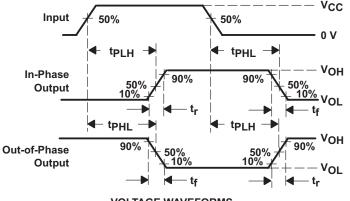
4.6 Switching Characteristics

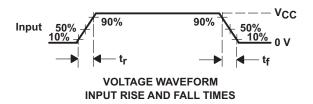
over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 5-1)

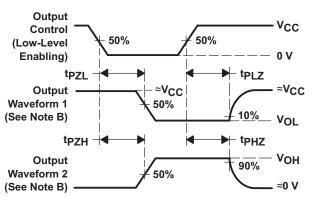
PARAMETER	FROM	то		T	_A = 25°C		SN54HC240	SN74HC240	UNIT			
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN MA	MIN MAX	UNII			
			2 V		75	150	22	5 190				
t _{pd}	Α	Y	4.5 V		15	30	4	5 38	ns			
			6 V		13	26	3	32				
						2 V		100	200	30	250	
t _{en}	ŌĒ	ŌE Y	4.5 V		20	40	6	50	ns			
			6 V		17	34	5	1 43				
			2 V		45	210	31	5 265				
t _t		Y	4.5 V		17	42	6	53	ns			
					6 V		13	36	5	3 45		


4.7 Operating Characteristics

T_A = 25°C


PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance per buffer/driver	No load	35	pF


5 Parameter Measurement Information

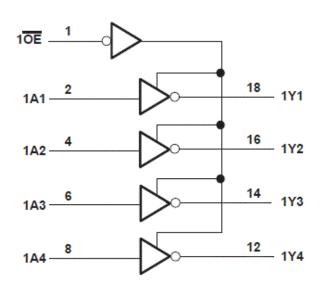


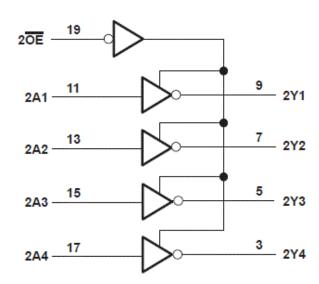
PARAI	METER	RL	CL	S1	S2	
	tPZH	1 kΩ	50 pF or	Open	Closed	
t _{en}	tpZL	1 K22	150 pF	Closed	Open	
	^t PHZ	1 kΩ	50 pF	Open	Closed	
^t dis	tPLZ	1 K22	50 pr	Closed	Open	
t _{pd} or	t _t		50 pF or 150 pF	Open	Open	

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_{O} = 50 Ω , t_{r} = 6 ns, t_{f} = 6 ns.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.


Figure 5-1. Load Circuit and Voltage Waveforms


6 Detailed Description

6.1 Overview

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The 'HC240 devices are organized as two 4-bit buffers/drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

6.2 Functional Block Diagram

6.3 Device Functional Modes

Table 6-1. Function Table (each buffer/driver)

INP	OUTPUT	
ŌĒ	Α	Y
L	Н	L
L	L	Н
Н	Х	Z

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The 0.1µF and 1µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

Product Folder Links: SN54HC240 SN74HC240

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Documentation Support

8.1.1 Related Documentation

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (April 2022) to Revision H (August 2024)

Page

Changes from Revision F (December 2021) to Revision G (April 2022)

Page

Added Application and Implementation section......10

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Sep-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
84074012A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84074012A SNJ54HC 240FK	Samples
8407401RA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8407401RA SNJ54HC240J	Samples
8407401SA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8407401SA SNJ54HC240W	Samples
JM38510/65703B2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65703B2A	Samples
JM38510/65703BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65703BRA	Samples
M38510/65703B2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65703B2A	Samples
M38510/65703BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65703BRA	Samples
SN54HC240J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC240J	Samples
SN74HC240DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC240	Samples
SN74HC240DGSR	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC240	Samples
SN74HC240DW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI	-40 to 85	HC240	
SN74HC240DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC240	Samples
SN74HC240N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC240N	Samples
SN74HC240NE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC240N	Samples
SN74HC240NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC240	Samples
SN74HC240PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC240	Samples
SN74HC240PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC240	Samples
SNJ54HC240FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84074012A SNJ54HC	Samples

www.ti.com 7-Sep-2024

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
										240FK	
SNJ54HC240J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8407401RA SNJ54HC240J	Samples
SNJ54HC240W	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8407401SA SNJ54HC240W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Sep-2024

OTHER QUALIFIED VERSIONS OF SN54HC240, SN74HC240:

• Military : SN54HC240

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated