ESD122は、USB Type-CおよびHDMI 2.0の回路保護用の双方向TVS ESD保護ダイオード・アレイです。ESD122は、IEC 61000-4-2国際規格に規定されている最大レベルの接触ESD衝撃(接触17kV, エアギャップ17kV)を放散できるように定格が規定されています。

このデバイスはチャネルごとのIO容量が低く、対称型の差動高速信号ルーティングに適したピン配置であるため、USB 3.1 Gen2やHDMI 2.0など、10Gbpsまでの高速インターフェイスの保護に理想的です。動的抵抗とクランピング電圧が低いため、過渡事象に対してシステムレベルの保護が保証されます。

さらに、ESD122はUSB Type-CのTx/Rxライン用の理想的なESDソリューションです。USB Type-Cネクタには2つのレイヤがあるため、4チャネルのESDデバイスを使用するとビアが必要になり、シンナル・インテグリティ(信号品質)が低下します。4つのESD122 (2チャネル)デバイスを使用することで、ビアの数を最小限にし、基板のレイアウトを簡素化できます。

ESD122 は、配線が簡単な2種類のフローセル・パッケージで供給されます。
目次

1 特長... 1
2 アプリケーション... 1
3 概要... 1
4 改訂履歴.. 2
5 Pin Configuration and Functions.................. 3
6 Specifications.. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings—JEDEC Specification........... 4
 6.3 ESD Ratings—IEC Specification................. 4
 6.4 Recommended Operating Conditions 4
 6.5 Thermal Information.................................. 4
 6.6 Electrical Characteristics....................... 5
 6.7 Typical Characteristics.......................... 6
7 Detailed Description................................... 8
 7.1 Overview.. 8
 7.2 Functional Block Diagram........................ 8
 7.3 Feature Description................................ 8
8 Application and Implementation............... 10
 8.1 Application Information........................ 10
 8.2 Typical Applications............................ 10
9 Power Supply Recommendations................. 14
10 Layout... 14
 10.1 Layout Guidelines................................. 14
 10.2 Layout Examples.................................... 14
11 デバイスおよびドキュメントのサポート........ 16
 11.1 ドキュメントのサポート........................ 16
 11.2 ドキュメントの更新通知を受け取る方法......... 16
 11.3 コミュニティ・リソース.......................... 16
 11.4 商標... 16
 11.5 静電気放電に関する注意事項................. 16
 11.6 Glossary.. 16
12 メカニカル、パッケージ、および注文情報........ 16

4 改訂履歴

2017年6月発行のものから更新

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

 - Changed V_{BRF} From: MIN = 5.1, MAX = 7 To: MIN = 5 and MAX = 7.9 .. 5
 - Changed V_{BRR} From: MIN = -7, MAX = -5.1 To: MIN = -7.9 and MAX = -5 .. 5
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>IO1</td>
<td>I</td>
<td>ESD protected channel</td>
</tr>
<tr>
<td>IO2</td>
<td>I</td>
<td>ESD protected channel</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical fast transient</td>
<td></td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>(IEC 61000-4-4 (5/50 ns) at 25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak pulse</td>
<td>20</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(IEC 61000-4-5 Power (t_p) - 8/20 µs) at 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_p) - 8/20 µs) at 25°C</td>
<td>2.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg}) DMD storage temperature</td>
<td>−65</td>
<td>155</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings—JEDEC Specification

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2500</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings—IEC Specification

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-2 contact discharge</td>
<td>±17000</td>
<td>V</td>
</tr>
<tr>
<td>IEC 61000-4-2 air-gap discharge</td>
<td>±17000</td>
<td>V</td>
</tr>
</tbody>
</table>

6.4 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>(V_{IO}) Input pin voltage</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3.6</td>
<td>3.6</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(T_A) Operating free-air temperature</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

6.5 Thermal Information

| THERMAL METRIC\(^{(1)}\) | ESD122
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMX (X2SON)</td>
</tr>
<tr>
<td></td>
<td>3 PINS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{UA}) Junction-to-ambient thermal resistance</td>
<td>617.8</td>
</tr>
<tr>
<td>(R_{UIC(top)}) Junction-to-case (top) thermal resistance</td>
<td>286.2</td>
</tr>
<tr>
<td>(R_{UB}) Junction-to-board thermal resistance</td>
<td>455.1</td>
</tr>
<tr>
<td>(\psi_JT) Junction-to-top characterization parameter</td>
<td>99.3</td>
</tr>
<tr>
<td>(\psi_JB) Junction-to-board characterization parameter</td>
<td>453.4</td>
</tr>
<tr>
<td>(R_{UIC(bottom)}) Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.6 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RWM}</td>
<td>Reverse stand-off voltage</td>
<td>$I_O < 10 \text{ nA}$</td>
<td>-3.6</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{BRF}</td>
<td>Breakdown voltage, any IO pin to GND$^{(1)}$</td>
<td>$I_O = 1 \text{ mA}, T_A = 25^\circ\text{C}$</td>
<td>5</td>
<td>7.9</td>
<td>V</td>
</tr>
<tr>
<td>V_{BRR}</td>
<td>Breakdown voltage, GND to any IO pin$^{(1)}$</td>
<td>$I_O = 1 \text{ mA}, T_A = 25^\circ\text{C}$</td>
<td>-7.9</td>
<td>-5</td>
<td>V</td>
</tr>
<tr>
<td>V_{HOLD}</td>
<td>Holding voltage$^{(2)}$</td>
<td>$I_O = 1 \text{ mA}$</td>
<td>5.9</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>Clamping voltage</td>
<td>$I_{PP} = 1 \text{ A}, T_A = 25^\circ\text{C}$</td>
<td>6.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{PP} = 5 \text{ A}, T_A = 25^\circ\text{C}$</td>
<td>8.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{PP} = 1 \text{ A}, T_L = 25^\circ\text{C}$</td>
<td>6.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{PP} = 5 \text{ A}, T_L = 25^\circ\text{C}$</td>
<td>8.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{LEAK}</td>
<td>Leakage current, any IO to GND</td>
<td>$V_O = \pm 2.5 \text{ V}$</td>
<td>0.5</td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td>R_{DYN}</td>
<td>Dynamic resistance</td>
<td>IO to GND, Measured between TLP I_{PP} of 10 A and 20 A, $T_A = 25^\circ\text{C}$</td>
<td>0.5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GND to IO, Measured between TLP I_{PP} of 10 A and 20 A, $T_A = 25^\circ\text{C}$</td>
<td>0.5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>C_L</td>
<td>Line capacitance</td>
<td>$V_O = 0 \text{ V}, f = 1 \text{ MHz}, T_A = 25^\circ\text{C}$</td>
<td>0.2</td>
<td>0.27</td>
<td>pF</td>
</tr>
<tr>
<td>ΔC_L</td>
<td>Variation of line capacitance</td>
<td>Difference between the capacitance of the two IO pins measured with respect to ground, $V_O = 0 \text{ V}, f = 1 \text{ MHz}, T_A = 25^\circ\text{C}, GND = 0 \text{ V}$</td>
<td>0.01</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{CROSS}</td>
<td>Channel to channel capacitance</td>
<td>Capacitance from one IO to another IO, $V_O = 0 \text{ V}, f = 1 \text{ MHz}, T_A = 25^\circ\text{C}, GND = 0 \text{ V}$</td>
<td>0.1</td>
<td>0.14</td>
<td>pF</td>
</tr>
</tbody>
</table>

1. V_{BRF} and V_{BRR} are defined as the voltage obtained at 1 mA when sweeping the voltage up, before the device latches into the snapback state.

2. V_{HOLD} is defined as the voltage when 1 mA is applied, after the device has successfully latched into the snapback state.
6.7 Typical Characteristics

Figure 1. Positive TLP Curve, IO Pin to GND

Figure 2. Negative TLP Curve, IO Pin to GND (Plotted as Positive TLP Curve GND to IO)

Figure 3. 8-kV IEC 61000-4-2 Waveform, IO Pin to GND

Figure 4. –8-kV IEC 61000-4-2 Waveform, IO Pin to GND

Figure 5. IEC 61000-4-5 Surge Curve (tp = 8/20μs), IO Pin to GND

Figure 6. Capacitance vs Bias Voltage at Multiple Temperatures, IO Pin to GND
Typical Characteristics (continued)

Figure 7. DC Voltage Sweep I-V Curve, IO Pin to GND

Figure 8. Leakage Current vs Temperature, IO Pin to GND, at 2.5 V Bias

Figure 9. Insertion Loss

Figure 10. Capacitance vs Frequency

Figure 11. DC Voltage Sweep I-V Curve, IO Pin to GND, Pre and Post 10,000 Repetitive ESD Strikes per IEC 61000-4-2 Level 4 (Contact)
7 Detailed Description

7.1 Overview
The ESD122 is a bidirectional ESD Protection Diode with ultra-low capacitance. This device can dissipate ESD strikes above the maximum level specified by the IEC 61000-4-2 International Standard. The ultra-low capacitance makes this device ideal for protecting any super high-speed signal pins. Additionally, the ESD122 has two identical protection channels with a symmetrical pin-out that is suited for the differential high-speed signal lines.

7.2 Functional Block Diagram

![Functional Block Diagram](image)

7.3 Feature Description

7.3.1 IEC 61000-4-2 ESD Protection
The I/O pins can withstand ESD events up to ±17-kV contact and air gap. An ESD-surge clamp diverts the current to ground.

7.3.2 IEC 61000-4-4 EFT Protection
The I/O pins can withstand an electrical fast transient burst of up to 80 A (5/50-ns waveform, 4 kV with 50-Ω impedance). An ESD-surge clamp diverts the current to ground.

7.3.3 IEC 61000-4-5 Surge Protection
The I/O pins can withstand surge events up to 2.5 A and 20 W (8/20-µs waveform). An ESD-surge clamp diverts this current to ground.

7.3.4 IO Capacitance
The capacitance between each I/O pin to ground is very small and supports data rates up to 10 Gbps.

7.3.5 DC Breakdown Voltage
The DC breakdown voltage of each I/O pin is a minimum of ±5.1 V. This ensures that sensitive equipment is protected from surges above the reverse standoff voltage of ±3.6 V.

7.3.6 Ultra Low Leakage Current
The I/O pins feature an ultra-low leakage current of 10 nA (maximum) with a bias of ±2.5 V.

7.3.7 Low ESD Clamping Voltage
The I/O pins feature an ESD clamp that is capable of clamping the voltage to 8.4 V (I_{PP,TLP} = 5 A).

7.3.8 Supports High Speed Interfaces
This device is capable of supporting high speed interfaces up to 10 Gbps such as USB 3.1 Gen2 and Gen1, USB 3.0, USB 2.0, Thunderbolt-1, Thunderbolt-2, PCI express 3.0, Display Port 1.3, HDMI 2.0, and HDMI 1.4, because of the extremely low IO capacitance.

7.3.9 Industrial Temperature Range
This device features an industrial operating range of –40°C to +125°C.
Feature Description (continued)

7.3.10 Easy Flow-Through Routing Package
The layout of this device makes it simple and easy to add protection to an existing layout. 2-channel setup provides easy, flexible routing and good matching between the channels.

7.4 Device Functional Modes
The ESD122 is a passive circuit that triggers when voltages are above V_{BR} or below V_{BRR}. During ESD events, voltages as high as ±17 kV (contact) can be directed to ground via the internal diode network. When the voltages on the protected line fall below the trigger levels of ESD122 (usually within 10s of nano-seconds) the device reverts to passive.

Figure 12 shows typical TLP behavior of bi-directional ESD device.

Figure 12. Generic TLP I-V Curve for a Bi-Directional ESD Device for the Illustration of V_{rwm}, V_{BR}, V_{hold} and V_{clamp}

Note 1: V_{BR-TLP} and $V_{hold-TLP}$ shown here are from the TLP measurements and not to be confused with the DC measurements of VBR, VBR, and $Vhold$ in Table 6.6

Note 2: V_{rwm} is not measured from the TLP curve. It's shown here only to show that $V_{rwm} < V_{BR-TLP}$
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The ESD122 is a diode type TVS which is used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. The low R_{DYN} of the triggered TVS holds this voltage, V_{CLAMP}, to a safe level for the protected IC.

8.2 Typical Applications

8.2.1 USB 3.1 Gen 2 Application

![USB Type-C Connector Diagram]

Figure 13. Typical Application

8.2.1.1 Design Requirements
For this design example, four ESD122 devices and two TPD4E05U06 devices are being used in a USB 3.1 Gen 2 Type-C application. This provides a complete ESD protection scheme.

Given the application, the parameters listed in Table 1 are known.
Typical Applications (continued)

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal range on Type C SuperSpeed+ lines</td>
<td>0 V to 3.6 V</td>
</tr>
<tr>
<td>Operating frequency on Type C USB 3.1 Gen 2 SuperSpeed+ lines</td>
<td>5 GHz</td>
</tr>
<tr>
<td>Signal range on CC, SBU, and DP/DM lines</td>
<td>0 V to 5 V</td>
</tr>
<tr>
<td>Operating frequency on CC, SBU, and DP/DM lines</td>
<td>up to 480 MHz</td>
</tr>
</tbody>
</table>

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Signal Range

The ESD122 supports signal ranges between –3.6 V and 3.6 V, which supports the SuperSpeed+ pairs on the USB Type-C application. The TPD4E05U06 supports signal ranges between 0 V and 5.5 V, which supports the CC, SBU, and DP/DM lines.

8.2.1.2.2 Operating Frequency

The ESD122 has a 0.27 pF (maximum) capacitance, which supports the USB 3.1 Gen 2 Type-C rate of 10 Gbps with sufficient capacitance margin. The TPD4E05U06 has a 0.5 pF (typical) capacitance, which easily supports the CC, SBU, and DP/DM data rates. The ESD122 has 2 identical protection channels for the differential HDMI high-speed signal lines. The symmetrical pin out of the device with a ground pin between the two differential signal pins makes it suitable for this application.

8.2.1.3 Application Curves

Figure 14. USB3.1 Gen2 10-Gbps Eye Diagram Without ESD122

Figure 15. USB3.1 Gen2 10-Gbps Eye Diagram With ESD122
8.2.2 HDMI 2.0 Application

8.2.2.1 Design Requirements

For this design example, the four ESD122 devices for the HDMI 2.0 high-speed lines, and four TPD1E05U06 devices on the control lines HDMI 2.0 control lines. This provides a complete port protection scheme.

Given the HDMI 2.0 application, the parameters listed in Table 2 are known.

Table 2. Design Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal voltage range on the high-speed pins</td>
<td>0 V to 3.3 V</td>
</tr>
<tr>
<td>Signal voltage range on the control pins</td>
<td>0 V to 5 V</td>
</tr>
<tr>
<td>Max operating frequency of high-speed lines</td>
<td>3 GHz</td>
</tr>
</tbody>
</table>
8.2.2.2 Detailed Design Procedure

8.2.2.2.1 Signal Range
The ESD122 supports signal ranges between –3.6 V and 3.6 V, which supports the high-speed lines on the HDMI 2.0 application. The TPD1E05U06 supports signal ranges between 0 V and 5.5 V, which supports the HDMI control lines.

8.2.2.2.2 Operating Frequency
The ESD122 has a 0.27 pF (maximum) capacitance, which supports the HDMI 2.0 rate of 6 Gbps with sufficient capacitance margin. The TPD1E05U06 has a 0.42 pF (typical) capacitance, which easily supports the control lines. The ESD122 has 2 identical protection channels for the differential HDMI high-speed signal lines. The symmetrical pin out of the device with a ground pin between the two differential signal pins makes it suitable for this application.

8.2.2.3 Application Curves

![Figure 17. HDMI 2.0 6-Gbps Eye Diagram Without ESD122](image)

![Figure 18. HDMI 2.0 6-Gbps Eye Diagram With ESD122](image)
9 Power Supply Recommendations

This device is a passive ESD device so there is no need to power it. Take care not to violate the recommended I/O specification (–3.6 V to 3.6 V) to ensure the device functions properly.

10 Layout

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible. Use as few vias as possible for 10-Gbps application.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

10.2 Layout Examples

![Diagram showing USB 3.1 Gen 2 SuperSpeed Lines Protected by ESD122](image)

Figure 19. USB 3.1 Gen 2 SuperSpeed Lines Protected by ESD122
Figure 20. HDMI2_Layout
11 デバイスおよびドキュメントのサポート

11.1 ドキュメントのサポート

11.1.1 関連資料

関連資料については、以下を参照してください。
『ESD122評価モジュール』

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ TIのE2E (Engineer-to-Engineer) コミュニティ。エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立つことができます。

設計サポート TIの設計サポート 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

11.4 商標

E2E is a trademark of Texas Instruments.
SATA is a trademark of others.
All other trademarks are the property of their respective owners.

11.5 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しないことがあるがあります。

11.6 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD122DMXR</td>
<td>ACTIVE</td>
<td>X2SON</td>
<td>DMX</td>
<td>3</td>
<td>10000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>6U</td>
<td></td>
</tr>
<tr>
<td>ESD122DMYR</td>
<td>ACTIVE</td>
<td>X2SON</td>
<td>DMY</td>
<td>3</td>
<td>10000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>6V</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

_OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.

RoHS Exempt: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Device | **Package Type** | **Package Drawing** | **Pins** | **SPQ** | **Reel Diameter (mm)** | **Reel Width (W1) (mm)** | **A0 (mm)** | **B0 (mm)** | **K0 (mm)** | **P1 (mm)** | **W (mm)** | **Pin1 Quadrant**
---|---|---|---|---|---|---|---|---|---|---|---|---|---
ESD122DMXR | X2SON | DMX | 3 | 10000 | 180.0 | 9.5 | 0.72 | 1.12 | 0.43 | 2.0 | 8.0 | Q1
ESD122DMYR | X2SON | DMY | 3 | 10000 | 180.0 | 9.5 | 0.72 | 1.42 | 0.43 | 2.0 | 8.0 | Q1

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD122DMXR</td>
<td>X2SON</td>
<td>DMX</td>
<td>3</td>
<td>10000</td>
<td>189.0</td>
<td>185.0</td>
<td>36.0</td>
</tr>
<tr>
<td>ESD122DMYR</td>
<td>X2SON</td>
<td>DMY</td>
<td>3</td>
<td>10000</td>
<td>189.0</td>
<td>185.0</td>
<td>36.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
EXAMPLE BOARD LAYOUT

DMX0003A

X2SON - 0.4 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
重要なお知らせと免責事項

TI は、技術データと信頼性データ（データシートを含みます）、アプリケーションや設計に関する各種アドバイス、Webツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「现状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI製品を使用する設計の経験を積んだ開発者への提供を意図したものです。1) お客様のアプリケーションに適したTI製品の選定、2) お客様のアプリケーションの設計、検証、試験、3) お客様のアプリケーションに適用される各種規格や、その他のあらゆる安全性、セキュリティ、およびその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているTI製品を使用するアプリケーションの開発の目的のみ、TIはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TIや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TIおよびその代理人を完全に補償するものとし、TIは一切の責任を拒否します。

TIの製品は、TIの販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、またはti.comやかかるTI製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TIがこれらのリソースを提供することは、適用されるTIの保証または他の保証の拡大や変更を意味するものではありません。

Copyright © 2019, Texas Instruments Incorporated
日本語版 日本テキサス・インスツルメンツ株式会社