TMUX1511 低容量、1:1 (SPST) 4チャネル、1.8Vロジックで電源オフ保護されたスイッチ

1 特長
- 広い電源電圧範囲: 1.5V〜5.5V
- 小さいオン容量: 3.3pF
- 低いオン抵抗: 2Ω
- 高い帯域幅: 3GHz
- -40℃〜+125℃の動作温度範囲
- 1.8Vロジック互換
- 電源電圧を超える入力電圧に対応
- ロジック・ピンにプルダウン抵抗を内蔵
- 双方向の信号パス
- フェイルセーフ・ロジック
- 電源オフ保護 最大3.6V
 - SN74CBTLV3126とピン配置互換
 - SN74CBTLV3125とピン配置互換（ロジック・バリエーション）

2 アプリケーション
- サーバー
- 有線ネットワーク
- ワイヤレス・インフラ
- データ・センターのスイッチおよびルーター
- PC/ノートPC
- ビルディング・オートメーション
- ePOS
- モータ駆動
- 家電製品
- バッテリ駆動の機器
- JTAG絶縁
- SPI絶縁

アプリケーションの例

3 概要
TMUX1511は、相補型金属酸化膜半導体(CMOS)スイッチです。TMUX1511は、4チャネルの1:1 SPSTスイッチ構成を提供し、各チャネルは独立に制御されます。動作電圧範囲が1.5V〜5.5Vと広いため、サーバーや通信機器から産業用途まで、広範なアプリケーションに使用できます。このデバイスは、ソース(Sx)ピンとドレイン(Dx)ピンで双方向のアナログおよびデジタル信号をサポートし、電源電圧を超えて、最大でVDDx2（最大入出力電圧は5.5V）の信号を通すことができます。

TMUX1511の信号経路には最大3.6Vの電源オフ保護が備えられ、電源電圧が取り除かれたとき(VDD = 0V)も絶縁を提供します。この保護機能がないと、内部ESDダイオード経由でスイッチから電源レールに電流が流れ込み、システムに損傷を引き起こすおそれがあります。

フェイルセーフ・ロジック 回路により、電源ピンよりも前にロジック制御ピンに電圧が印加されるため、デバイスへの損傷の可能性が避けられます。すべてのロジック制御入力には1.8Vロジック互換のスレッショルドがあり、有効な電源電圧範囲で動作していれば、TTLとCMOSの両方のロジックと互換性が保証されます。

製品情報(1)

<table>
<thead>
<tr>
<th>型番</th>
<th>パッケージ</th>
<th>本体サイズ(公称)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMUX1511</td>
<td>TSSOP (14)</td>
<td>5.00mm x 4.40mm</td>
</tr>
<tr>
<td></td>
<td>QFN (16)</td>
<td>2.60mm x 1.80mm</td>
</tr>
</tbody>
</table>

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にあるパッケージ・オプションについての付録を参照してください。

ブロック図

英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。TIでは翻訳の正確性および妥当性につきまして一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

English Data Sheet: SCDS390
目次

1 特長... 1
2 アプリケーション.. 1
3 概要.. 1
4 改訂履歴... 2
5 Pin Configuration and Functions.............................. 3
6 Specifications... 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings... 4
 6.3 Recommended Operating Conditions................... 4
 6.4 Thermal Information... 4
 6.5 Electrical Characteristics....................................... 5
 6.6 Dynamic Characteristics....................................... 6
 6.7 Timing Requirements.. 6
 6.8 Typical Characteristics... 7
7 Parameter Measurement Information....................... 12
 7.1 On-Resistance.. 12
 7.2 Off-Leakage Current... 12
 7.3 On-Leakage Current... 13
 7.4 IPOFF Leakage Current... 13
 7.5 Transition Time... 14
 7.6 T\textsubscript{ON} (VDD) and T\textsubscript{OFF} (VDD) Time 14
 7.7 Propagation Delay... 15
 7.8 Skew .. 15
 7.9 Charge Injection.. 16
 7.10 Capacitance... 16
7.11 Off Isolation... 17
7.12 Channel-to-Channel Crosstalk............................. 17
7.13 Bandwidth.. 18
8 Detailed Description.. 19
 8.1 Overview.. 19
 8.2 Functional Block Diagram..................................... 19
 8.3 Feature Description... 19
 8.4 Device Functional Modes....................................... 20
 8.5 Truth Tables... 20
9 Application and Implementation............................ 21
 9.1 Application Information.. 21
 9.2 Typical Application... 21
10 Power Supply Recommendations............................. 23
11 Layout... 24
 11.1 Layout Guidelines... 24
 11.2 Layout Example... 25
12 デバイスおよびドキュメントのサポート...................... 26
 12.1 ドキュメントのサポート..................................... 26
 12.2 ドキュメントの更新通知を受け取る方法................ 26
 12.3 コミュニティ・リソース.................................. 26
 12.4 商標... 26
 12.5 静電気放電に関する注意事項............................. 26
 12.6 Glossary.. 26
13 メカニカル、パッケージ、および注文情報............. 26

4 改訂履歴
資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

2018年9月発行のものから更新

・ データシートのステータスを「事前情報」から「量産データ」に変更 .. 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>TSSOP</td>
<td>UQFN</td>
</tr>
<tr>
<td>SEL1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SEL2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>D2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>N.C.</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>D3</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>S3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>SEL3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>N.C.</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>D4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>S4</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>SEL4</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>VDD</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

(1) I = input, O = output, I/O = input and output, P = power
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\) \(^{(2)}\) \(^{(3)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{DD})</td>
<td>Supply voltage</td>
<td>–0.5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>V(_{SEL})</td>
<td>Logic control input pin voltage (SEL1, SEL2, SEL3, SEL4)</td>
<td>–0.5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I(_{SEL})</td>
<td>Logic control input pin current (SEL1, SEL2, SEL3, SEL4)</td>
<td>–30</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>V({S}) or V({D})</td>
<td>Source or drain pin voltage</td>
<td>–0.5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I({S}) or I({D}) (CONT)</td>
<td>Source and drain pin continuous current: (S1 to S4, D1 to D4)</td>
<td>–25</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>T(_{stg})</td>
<td>Storage temperature</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T(_{J})</td>
<td>Junction temperature</td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(3) All voltages are with respect to ground, unless otherwise specified.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>ESD Value</th>
<th>Description</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{ESD})</td>
<td>Electrostatic discharge</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±750</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{DD})</td>
<td>Supply voltage</td>
<td>1.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V({S}) or V({O})</td>
<td>Signal path input/output voltage (source or drain pin), V(_{DD}) ≥ 1.5 V(^{(1)})</td>
<td>0</td>
<td>V(_{DD}) x 2</td>
<td>V</td>
</tr>
<tr>
<td>V({S})({off}) or V({D})({off})</td>
<td>Signal path input/output voltage (source or drain pin), V(_{DD}) < 1.5 V(^{(2)})</td>
<td>0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V(_{SEL})</td>
<td>Logic control input voltage (SEL(_{x}))</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T(_{A})</td>
<td>Ambient temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Device input/output can operate up to V\(_{DD}\) x 2, with a maximum input/output voltage of 5.5 V.

(2) V\(_{S}\)\(_{off}\) and V\(_{D}\)\(_{off}\) refers to the voltage at the source or drain pins when supply is less than 1.5 V.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric(^{(1)})</th>
<th>Device</th>
<th>Device</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL METRIC(^{(1)})</td>
<td>PW (TSSOP)</td>
<td>RSV (UQFN)</td>
<td></td>
</tr>
<tr>
<td>R(_{UA})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>129.4</td>
<td>141.5</td>
</tr>
<tr>
<td>R(_{UJC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>58.8</td>
<td>77.9</td>
</tr>
<tr>
<td>R(_{UB})</td>
<td>Junction-to-board thermal resistance</td>
<td>72.4</td>
<td>67.6</td>
</tr>
<tr>
<td>(\Psi)(_{JT})</td>
<td>Junction-to-top characterization parameter</td>
<td>11.6</td>
<td>5.1</td>
</tr>
<tr>
<td>(\Psi)(_{JB})</td>
<td>Junction-to-board characterization parameter</td>
<td>71.9</td>
<td>65.5</td>
</tr>
<tr>
<td>R(_{UJC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

\(V_{DD} = 1.5 \) V to 5.5 V, GND = 0 V, \(T_A = -40^\circ C \) to +125°C,

Typical values are at \(V_{DD} = 3.3 \) V, \(T_A = 25^\circ C \), (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Power supply voltage</td>
<td>1.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Supply current</td>
<td>(V_{SEL} = 0) V, 1.4 V or (V_{DD}) (V_S = 0) V to 5.5 V</td>
<td>37</td>
<td>70</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(R_{ON})</td>
<td>On-resistance</td>
<td>(V_S = 0) V to (V_{DD})^2 (I_{SD} = 8) mA (I_{SD} = 8) mA Refer to On-State Resistance Figure</td>
<td>2</td>
<td>4.5</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(\Delta R_{ON})</td>
<td>On-resistance match between channels</td>
<td>(V_S = V_{DD}) (I_{SD} = 8) mA Refer to On-State Resistance Figure</td>
<td>0.07</td>
<td>0.28</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(R_{ON (FLAT)})</td>
<td>On-resistance flatness</td>
<td>(V_S = 0) V to (V_{DD}) (I_{SD} = 8) mA Refer to On-State Resistance Figure</td>
<td>1</td>
<td>1.8</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(I_{POFF})</td>
<td>Powered-off I/O pin leakage current</td>
<td>(V_{DD} = 0) V (V_S = 0) V to 3 V (V_D = 0) V (T_A = 25^\circ C) Refer to Ipoff Leakage Figure</td>
<td>–10</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>(I_{POFF})</td>
<td>Powered-off I/O pin leakage current</td>
<td>(V_{DD} = 0) V (V_S = 0) V to 3.6 V (V_D = 0) V Refer to Ipoff Leakage Figure</td>
<td>–2</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>(I_{S(ON)}) (I_{D(ON)})</td>
<td>OFF leakage current</td>
<td>Switch Off (V_D = 0.8V_{DD} / 0.2V_{DD}) (V_S = 0.2V_{DD} / 0.8V_{DD}) Refer to Off Leakage Figure</td>
<td>–100</td>
<td>0.03</td>
<td>100</td>
</tr>
<tr>
<td>(I_{S(ON)}) (I_{D(ON)})</td>
<td>ON leakage current</td>
<td>Switch On (V_D = 0.8V_{DD} / 0.2V_{DD}), S pins floating or (V_S = 0.8V_{DD} / 0.2V_{DD}), D pins floating Refer to On Leakage Figure</td>
<td>–50</td>
<td>0.01</td>
<td>50</td>
</tr>
</tbody>
</table>

LOGIC INPUTS					
\(V_{IH} \)	Input logic high	1.2	5.5	V	
\(V_{IL} \)	Input logic low	0	0.45	V	
\(I_{IH} \)	Input high leakage current	\(V_{SEL} = 1.8 \) V, \(V_{DD} \)	1	±2	\(\mu A \)
\(I_{IL} \)	Input low leakage current	\(V_{SEL} = 0 \) V	0.2	±2	\(\mu A \)
\(R_{PD} \)	Internal pull-down resistor on logic input pins	6	M\(\Omega \)		
\(C_L \)	Logic input capacitance	\(V_{SEL} = 0 \) V, 1.8 V or \(V_{DD} \) \(f = 1 \) MHz	3	pF	

Copyright © 2018, Texas Instruments Incorporated
6.6 Dynamic Characteristics

$V_{DD} = 1.5$ V to 5.5 V, $GND = 0$ V, $T_A = -40°C$ to $+125°C$,
Typical values are at $V_{DD} = 3.3$ V, $T_A = 25°C$, (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{OFF}</td>
<td>Source and drain off capacitance</td>
<td>$V_S = V_{DD} / 2$</td>
<td>Switch OFF</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SEL} = 0$ V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 1$ MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Capacitance Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{ON}</td>
<td>Source and drain on capacitance</td>
<td>$V_S = V_{DD} / 2$</td>
<td>Switch ON</td>
<td>3.3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SEL} = V_{DD}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 1$ MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Capacitance Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_C</td>
<td>Charge Injection</td>
<td>$V_S = V_{DD} / 2$</td>
<td>Switch ON</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_S = 0$ Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_L = 100$ pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Charge Injection Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{ISO}</td>
<td>Off isolation</td>
<td>$R_L = 50$ Ω</td>
<td>Switch OFF</td>
<td>–90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 100$ kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Off Isolation Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_{TALK}</td>
<td>Channel to Channel crosstalk</td>
<td>$R_L = 50$ Ω</td>
<td>Switch OFF</td>
<td>–90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 100$ kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Crosstalk Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LOSS}</td>
<td>Insertion loss</td>
<td>$R_L = 50$ Ω</td>
<td>Switch ON</td>
<td>–0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f = 1$ MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to Bandwidth Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.7 Timing Requirements

$V_{DD} = 1.5$ V to 5.5 V, $GND = 0$ V, $T_A = -40°C$ to $+125°C$,
Typical values are at $V_{DD} = 3.3$ V, $T_A = 25°C$, (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{ON(VDD)}$</td>
<td>Device turn on time (V_{DD} to output)</td>
<td>$V_S = 3.6$ V</td>
<td>Refer to $T_{on(vdd)}$ & $T_{off(vdd)}$ Figure</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} rise time = 1us</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 200$ Ω, $C_L = 15$ pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{OFF(VDD)}$</td>
<td>Device turn off time (V_{DD} to output)</td>
<td>$V_S = 3.6$ V</td>
<td>Refer to $T_{on(vdd)}$ & $T_{off(vdd)}$ Figure</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DD} fall time = 1us</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 200$ Ω, $C_L = 15$ pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{TRAN}</td>
<td>Transition time from control input</td>
<td>$V_{DD} = 2.5$ V to 5.5 V</td>
<td>Refer to Transition Time Figure</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_S = V_{DD}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 200$ Ω, $C_L = 15$ pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{SK(P)}$</td>
<td>Inter - channel skew</td>
<td>Refer to T_{sk} Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DP}</td>
<td>Propagation delay</td>
<td>Refer to T_{pd} Figure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.8 Typical Characteristics

at $T_A = 25^\circ$C, $V_{DD} = 5$ V (unless otherwise noted)

Diagram 1. On-Resistance vs Source or Drain Voltage

Diagram 2. On-Resistance vs Source or Drain Voltage

Diagram 3. On-Resistance vs Source or Drain Voltage

Diagram 4. On-Resistance vs Source or Drain Voltage

Diagram 5. Supply Current vs Logic Voltage

Diagram 6. Supply Current vs Supply Voltage

Copyright © 2018, Texas Instruments Incorporated
Typical Characteristics (continued)

図7. On-Leakage vs Source or Drain Voltage

図8. On-Leakage vs Temperature

図9. Off-Leakage vs Source or Drain Voltage

図10. Off-Leakage vs Temperature

図11. IPOFF Leakage vs Source or Drain Voltage

図12. IPOFF Leakage vs Temperature
Typical Characteristics (continued)

Graph 13. IPOFF Leakage vs Temperature

- **V\text{Source} = 3.6 \text{ V}**
- **V\text{Drain} = 0 \text{ V}**

Graph 14. IPOFF Leakage vs Source or Drain Voltage

- **T\text{A} = 25\text{°C}**
- **R\text{L} = 200 \text{ Ω}**

Graph 15. T\text{TRANSITION} vs Supply Voltage

Graph 16. T\text{TRANSITION} vs Temperature

Graph 17. T\text{ON (VDD)} and T\text{OFF (VDD)} vs Supply Voltage

Graph 18. Skew and Propagation Delay vs Supply Voltage

Copyright © 2018, Texas Instruments Incorporated
Typical Characteristics (continued)

- **Charge Injection vs Source or Drain Voltage**: At $V_{DD} = 5.5\, \text{V}$, $V_{DD} = 3.3\, \text{V}$, and $V_{DD} = 1.5\, \text{V}$, the charge injection changes with frequency.

- **Capacitance vs Frequency**: The capacitance varies with frequency at $T_A = 25^\circ\text{C}$, showing the dependence on frequency.

- **Off Isolation vs Frequency**: The off isolation decreases with frequency at $T_A = 25^\circ\text{C}$ and $V_{DD} = 1.5\, \text{V}$ to 5.5\,\text{V}$.

- **On-Response vs Frequency**: The on-response shows a change in attenuation with frequency at $T_A = 25^\circ\text{C}$.
6.8.1 Eye Diagrams

図23. Eye Pattern: 2.4 Gbps

図24. Eye Pattern: 2.4 Gbps Through Path

図25. Eye Pattern: 3 Gbps

図26. Eye Pattern: 3 Gbps Through Path
7 Parameter Measurement Information

7.1 On-Resistance
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol \(R_{\text{ON}} \) is used to denote on-resistance. The measurement setup used to measure \(R_{\text{ON}} \) is shown in 図 27. Voltage (V) and current (\(I_{\text{DS}} \)) are measured using this setup, and \(R_{\text{ON}} \) is computed as shown below with \(R_{\text{ON}} = \frac{V}{I_{\text{SD}}} \):

![On-Resistance Measurement Setup](image.png)

図 27. On-Resistance Measurement Setup

7.2 Off-Leakage Current
Source off-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol \(I_{\text{S(OFF)}} \).

Drain off-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol \(I_{\text{D(OFF)}} \).

The setup used to measure both off-leakage currents is shown in 図 28.

![Off-Leakage Measurement Setup](image.png)

図 28. Off-Leakage Measurement Setup
7.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. 图 29 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

![图 29. On-Leakage Measurement Setup](image)

7.4 IPOFF Leakage Current

IPOFF leakage current is defined as the leakage current flowing into or out of the source pin when the device is powered off. This current is denoted by the symbol IPOFF.

The setup used to measure both IPOFF leakage current is shown in 图 30.

![图 30. IPOFF Leakage Measurement Setup](image)
7.5 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 10% after the control select signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of the device. The time constant from the load resistance and load capacitance can be added to the transition time to calculate system level timing.

7.6 $T_{\text{ON (VDD)}}$ and $T_{\text{OFF (VDD)}}$ Time

$T_{\text{ON (VDD)}}$ time is defined as the time taken by the output of the device to rise to 90% after the supply has risen past the supply threshold. The 90% measurement is utilized to provide the timing of the device turning on in the system. The time constant from the load resistance and load capacitance can be added to the turn-on-VDD time to calculate system level timing.

$T_{\text{OFF (VDD)}}$ time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen past the supply threshold. The 90% measurement is utilized to provide the timing of the device turning off in the system. The time constant from the load resistance and load capacitance can be added to the turn-off-VDD time to calculate system level timing.

Copyright © 2018, Texas Instruments Incorporated
7.7 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. 图 33 shows the setup used to measure propagation delay, denoted by the symbol t_{PD}.

![Propagation Delay Measurement Setup](image1)

图 33. Propagation Delay Measurement Setup

7.8 Skew

Skew is defined as the difference between propagation delays of any two outputs of the same device. The skew measurement is taken from the output of one channel rising or falling past 50% to a second channel rising or falling past the 50% threshold when the input signals are switched at the same time. 图 34 shows the setup used to measure skew, denoted by the symbol t_{SK}.

![Skew Measurement Setup](image2)

图 34. Skew Measurement Setup
7.9 Charge Injection

The amount of charge injected into the source or drain of the device during the falling or rising edge of the gate signal is known as charge injection, and is denoted by the symbol Q_C. 图 35 shows the setup used to measure charge injection from source (S_x) to drain (D_x).

![Charge Injection Diagram](image)

图 35. Charge-Injection Measurement Setup

7.10 Capacitance

The parasitic capacitance of the device is captured at the source (S_x), drain (D_x), and select (SEL_x) pins. The capacitance is measured in both the on and off state and is denoted by the symbol C_{ON} and C_{OFF}. 图 36 shows the setup used to measure capacitance.

![Capacitance Diagram](image)

图 36. Capacitance Measurement Setup
7.11 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the source pin (Sx) of an off-channel. The characteristic impedance, Z_0, for the measurement is 50 Ω. 図37 shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.

$$\text{Off Isolation} = 20 \cdot \log\left(\frac{V_{\text{OUT}}}{V_S}\right)$$

(1)

7.12 Channel-to-Channel Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. The characteristic impedance, Z_0, for the measurement is 50 Ω. 図38 shows the setup used to measure, and the equation used to compute crosstalk.

$$\text{Channel-to-Channel Crosstalk} = 20 \cdot \log\left(\frac{V_{\text{OUT}}}{V_S}\right)$$

(2)
7.13 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The characteristic impedance, Z_0, for the measurement is 50 Ω. 図39 shows the setup used to measure bandwidth.

![Bandwidth Measurement Setup](image)
8 Detailed Description

8.1 Overview

The TMUX1511 is a high speed 1:1 (SPST) 4-channel switch with powered-off protection up to 3.6 V. Wide operating supply of 1.5 V to 5.5 V allows for use in a broad array of applications from servers and communication equipment to industrial applications. The device supports bidirectional analog and digital signals on the source (Sx) and drain (Dx) pins. The wide bandwidth of this switch allows little or no attenuation of the high-speed signals at the outputs to pass with minimum edge and phase distortion as well as propagation delay.

The select (SELx) pins are active-high logic pins that control the connection between the source (Sx) and drain (Dx) pins of the device. Each channel of the TMUX1511 can be controlled independently through the associated select pin, or all four select pins can be tied together for simultaneous control of all channels with a single GPIO. Fail-Safe Logic circuitry allows voltages on the logic control pins to be applied before the supply pin, protecting the device from potential damage. All logic control inputs have 1.8V logic compatible thresholds, ensuring both TTL and CMOS logic compatibility when operating in the valid supply voltage range.

Powered-off protection up to 3.6 V on the signal path of the TMUX1511 provides isolation when the supply voltage is removed (V_{DD} = 0 V). Without this protection feature, the system can back-power the supply rail through an internal ESD diode and cause potential damage to the system.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Bidirectional Operation

The TMUX1511 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

8.3.2 Beyond Supply Operation

When the TMUX1511 is powered from 1.5 V to 5.5 V, the valid signal path input/output voltage ranges from GND to V_{DD} x 2, with a maximum input/output voltage of 5.5 V.

Example 1: If the TMUX1511 is powered at 1.5V, the signal range is 0 V to 3 V.
Example 2: If the TMUX1511 is powered at 3V, the signal range is 0 V to 5.5 V.
Example 3: If the TMUX1511 is powered at 5.5V, the signal range is 0 V to 5.5 V.

Other voltage levels not mentioned in the examples will support Beyond Supply Operation as long as the supply voltage falls within the recommended operation conditions of 1.5 V to 5.5 V.
Feature Description (continued)

8.3.3 1.8 V Logic Compatible Inputs

The TMUX1511 has 1.8-V logic compatible control inputs. Regardless of the V_{DD} voltage, the control input thresholds remain fixed, allowing a 1.8-V processor GPIO to control the TMUX1511 without the need for an external translator. This saves both space and BOM cost. For more information on 1.8 V logic implementations refer to *Simplifying Design with 1.8 V logic Muxes and Switches.*

8.3.4 Powered-off Protection

Powered-off protection up to 3.6 V on the signal path of the TMUX1511 provides isolation when the supply voltage is removed ($V_{DD} = 0$ V). When the TMUX1511 is powered-off, the I/Os of the device remain in a high-Z state. Powered-off protection minimizes system complexity by removing the need for power supply sequencing on the signal path. The device performance remains within the leakage performance mentioned in the Electrical Specifications. For more information on powered-off protection refer to *Eliminate Power Sequencing with Powered-off Protection Signal Switches.*

8.3.5 Fail-Safe Logic

The TMUX1511 has Fail-Safe Logic on the control input pins (SELx) which allows for operation up to 5.5 V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the select pins of the TMUX1511 to be ramped to 5.5 V while $V_{DD} = 0$ V. Additionally, the feature enables operation of the TMUX1511 with $V_{DD} = 1.5$ V while allowing the select pins to interface with a logic level of another device up to 5.5 V.

8.3.6 Low Capacitance

The TMUX1511 has very low capacitance in both the ON and OFF states on the source and drain pins. The low capacitance specification allows the TMUX1511 to be used in applications such as sample & hold circuits, and in the feedback path of an operation amplifier. Low capacitance helps to reduce large overshoots and ringing of an amplifier circuit when the switch is connected to the feedback network. Additionally, low capacitance improves system settling time by reducing the switch time constant formed by the On-resistance and On-capacitance. For more information on the benefits of low capacitance refer to *Improve Stability Issues with Low C_{ON} Multiplexers.*

8.3.7 Integrated Pull-Down Resistors

The TMUX1511 has internal weak pull-down resistors (6 MΩ) to GND to ensure the logic pins are not left floating. This feature integrates up to four external components and reduces system size and cost.

8.4 Device Functional Modes

The select (SELx) pins are active-high logic pins that control the connection between the source (Sx) and drain (Dx) pins of the device. The TMUX1511 has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches disabled. When a given select pin of the TMUX1511 is pulled high, the corresponding switch conducts from the source to drain. When any of the select pins are pulled low, the corresponding switch is in an open state (HI-Z). Each channel of the TMUX1511 can be controlled independently through the associated select pin, or all four select pins can be tied together for simultaneous control of all channels with a single GPIO.

8.5 Truth Tables

表 1 shows the truth table for the TMUX1511.

<table>
<thead>
<tr>
<th>SELx</th>
<th>Sx / Dx: STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hi-Z (OFF)</td>
</tr>
<tr>
<td>1</td>
<td>Conducting (ON)</td>
</tr>
</tbody>
</table>
9 Application and Implementation

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TMUX15xx family offers high-speed system performance across a wide operating supply (1.5 V to 5.5 V) and operating temperature (-40°C to +125°C). The TMUX1511 supports a number of features that improve system performance such as 1.8 V logic compatibility, input voltages beyond supply, Fail-Safe Logic, and Powered-off Protection up to 3.6 V. These features make the TMUX15xx a family of protection multiplexers and switches that can reduce system complexity, board size, and overall system cost.

9.2 Typical Application

9.2.1 Protocol / Signal Isolation

One useful application to take advantage of the TMUX1511 features is isolating various protocols from a possessor or MCU such as JTAG, SPI, or standard GPIO signals. The device provides excellent isolation performance when the device is powered. The added benefit of powered-off protection allows a system to minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications.

![Isolation of JTAG, SPI, and GPIO Signals](image)

9.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 2.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (V<sub>DD</sub>)</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Input / Output signal range</td>
<td>0 V to 3.3 V</td>
</tr>
<tr>
<td>Control logic thresholds</td>
<td>1.8 V compatible</td>
</tr>
</tbody>
</table>
9.2.1.2 Detailed Design Procedure

The TMUX1511 can be operated without any external components except for the supply decoupling capacitors. The device has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches disabled. All inputs signals passing through the switch must fall within the recommend operating conditions of the TMUX1511 including signal range and continuous current. For this design example, with a supply of 3.3 V, the signals can range from 0 V to 3.3 V when the device is powered. This example can also utilize the Powered-off Protection feature and the inputs can range from 0 V to 3.3 V when VDD = 0 V. The max continuous current can be 25 mA. Due to the voltage range and high speed capability, the TMUX1511 example is suitable for use in JTAG and SPI applications beyond the 100 MHz maximum in a typical application.

9.2.1.3 Application Curves

Two important specifications when using a switch or multiplexer to pass signals are the device propagation delay and skew.

![Graph of Propagation Delay and Skew](image)

图 41. Propagation Delay and Skew Measurement

9.2.2 Transimpedance Amplifier Feedback Control

Switches and multiplexers are commonly used in the feedback path of amplifier circuits to provide configurable gain control. By using various resistor values on each switch path the TMUX1511 allows the system to have multiple gain settings. An external resistor, or utilizing 1 channel always being closed, ensures the amplifier isn’t operating in an open loop configuration. A transimpedance amplifier (TIA) for photodiodes is a common circuit that requires gain control using a multi-channel switch to convert the output current of the photodiode into a voltage for the MCU or processor. The leakage current, capacitance, and charge injection performance of the TMUX1511 are key specifications to evaluate when selecting a device for gain control.

![Diagram of Multiplexing Gain for a TIA Circuit](image)

图 42. Multiplexing Gain for a TIA Circuit
9.2.2.1 Design Requirements
For this design example, use the parameters listed in Table 3.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (V<sub>DD</sub>)</td>
<td>5 V</td>
</tr>
<tr>
<td>Input / Output signal range</td>
<td>0 µA to 10 µA</td>
</tr>
<tr>
<td>Control logic thresholds</td>
<td>1.8 V compatible</td>
</tr>
</tbody>
</table>

9.2.2.2 Detailed Design Procedure
Photodiodes commonly have a current output that ranges from a few hundred picoamps to tens of microamps based on the amount of light being absorbed. The TMUX1511 has a typical On-leakage current of less than 10 pA which would lead to an accuracy well within 1% of a full scale 10 µA signal. The low ON and OFF capacitance of the TMUX1511 improves system stability by minimizing the total capacitance on the output of the amplifier. Lower capacitance leads to less overshoot and ringing in the system which can cause the amplifier circuit to go unstable if the phase margin is not at least 45°. Refer to Improve Stability Issues with Low CON Multiplexers for more information on calculating the phase margin vs. percent overshoot.

9.2.2.3 Application Curves

![On-Leakage vs Source or Drain Voltage](image1)

![Capacitance vs Frequency](image2)

10 Power Supply Recommendations
The TMUX1511 operates across a wide supply range of 1.5 V to 5.5 V. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{DD} supply to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 µF to 10 µF from V_{DD} to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes.
11 Layout

11.1 Layout Guidelines

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self-inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. 図 45 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

Route the high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

Do not route high speed signal traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.

Avoid stubs on the high-speed signals traces because they cause signal reflections.

Route all high-speed signal traces over continuous GND planes, with no interruptions.

Avoid crossing over anti-etch, commonly found with plane splits.

When working with high frequencies, a printed circuit board with at least four layers is recommended; two signal layers separated by a ground and power layer as shown in 図 46.

The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies.

図 47 illustrates an example of a PCB layout with the TMUX1511. Some key considerations are:
Layout Guidelines (continued)

Decouple the V_{DD} pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the V_{DD} supply.

High-speed switches require proper layout and design procedures for optimum performance.

Keep the input lines as short as possible.

Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.

Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

11.2 Layout Example

![Example Layout Diagram]

図47. Example Layout
12 デバイスおよびドキュメントのサポート

12.1 ドキュメントのサポート

12.1.1 関連資料
テキサス・インスツルメンツ、『低CONマルチプレクサにおける安定性の問題の改善』
テキサス・インスツルメンツ、『1.8Vロジックのマルチプレクサおよびスイッチにおける設計の単純化』
テキサス・インスツルメンツ、『電源オフ保護を備えた信号スイッチで電源シーケンシングを不要に』
テキサス・インスツルメンツ、『高速インターフェイスのレイアウト・ガイドライン』
テキサス・インスツルメンツ、『高速レイアウト・ガイドライン』
テキサス・インスツルメンツ、『QFN/SONのPCB実装』
テキサス・インスツルメンツ、『クワッド・フラットパック・リード端子なしロジック・パッケージ』

12.2 ドキュメントの更新通知を受け取る方法
ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

12.3 コミュニティ・リソース
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オライン・コミュニティ 『E2E (Engineer-to-Engineer)』 コミュニティ。エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。

設計サポート 『TIの設計サポート』 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

12.4 商標
E2E is a trademark of Texas Instruments.

12.5 静電気放電に関する注意事項
すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うように下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

12.6 Glossary
SLYZ022 — 『TI Glossary』
This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報
以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。
重要なお知らせと免責事項

TI は、技術データと信頼性データ（データシートを含みます）、設計リソース（リファレンス・デザインを含みます）、アプリケーションや設計に関する各種アドバイス、Webツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。これらのリソースは、TI製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適したTI製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているTI製品を使用するアプリケーションの開発の目的でのみ、TIはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TIや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TIおよびその代理人を完全に補償するものとし、TIは一切の責任を拒否します。

TIの製品は、TIの販売条件（www.tij.co.jp/ja-ja/legal/termsfsale.html）、またはti.comやかかるTI製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TIがこれらのリソースを提供することは、適用されるTIの保証または他の保証の拡大や変更を意味するものではありません。

Copyright © 2019, Texas Instruments Incorporated
日本語版 日本テキサス・インスツルメンツ株式会社
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMUX1511PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>MUX1511</td>
<td>Samples</td>
</tr>
<tr>
<td>TMUX1511RSVR</td>
<td>ACTIVE</td>
<td>UQFN</td>
<td>RSV</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1511</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBsolete**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.
- **RoHS Exempt**: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Q1: Top left
- Q2: Top right
- Q3: Bottom left
- Q4: Bottom right

PACKAGE MATERIALS INFORMATION

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMUX1511PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TMUX1511RSVR</td>
<td>UQFN</td>
<td>RSV</td>
<td>16</td>
<td>3000</td>
<td>178.0</td>
<td>13.5</td>
<td>2.1</td>
<td>2.9</td>
<td>0.75</td>
<td>4.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmux1511PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Tmux1511RSVR</td>
<td>UQFN</td>
<td>RSV</td>
<td>16</td>
<td>3000</td>
<td>189.0</td>
<td>185.0</td>
<td>36.0</td>
</tr>
</tbody>
</table>
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
重要なお知らせと免責事項

TIは、技術データと信頼性データ（データシートを含みます）、アプリケーションや設計に関する各種アドバイス、Webツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI製品を使用する設計の経験を積んだ開発者への提供を意図したもので、1)お客様のアプリケーションに適したTI製品の選定、2)お客様のアプリケーションの設計、検証、試験、3)お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確認する責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているTI製品を使用するアプリケーションの開発の目的のみで、TIはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TIや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TIおよびその代理人を完全に補償するものとし、TIは一切の責任を拒否します。

TIの製品は、TIの販売条件（www.tij.co.jp/ja-jp/legal/termsofsale.html）、またはti.comやかかるTI製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TIがこれらのリソースを提供することは、適用されるTIの保証または他の保証の拡大や変更を意味するものではありません。

Copyright © 2019, Texas Instruments Incorporated

日本語版 日本テキサス・インスツルメンツ株式会社