Contents

1. CC112x, CC1175 Silicon Errata ... 3
 1.1 VCO Calibration .. 3
 1.1.1 Description ... 3
 1.2 Suggested Workaround .. 3

2. Known Design Exceptions to Functional Specifications 6
 2.1 Advisory List .. 6

Revision History ... 7
1.1 VCO Calibration

1.1.1 Description

The RF frequency is set by the on-chip inductor, a capacitor array and a varactor. There is a finite possibility that the calibration fails because a non-optimum index to the capacitor array is chosen during the calibration. When the calibration fails the chip will always use a too low index for the capacitor array (that is, too high capacitance).

1.2 Suggested Workaround

For the CC1120, CC1121, CC1125, and CC1175 devices with the PARTVERSION register equal to 0x21, two manual calibrations must be performed as shown in the flow diagram Figure 1-1. The software implementation is shown in Figure 1-2.

For CC1120, CC1121, CC1125, and CC1175 with the PARTVERSION register equal to 0x23, the VCO calibration issue is corrected. These devices can be calibrated using one manual calibration option (using SCAL), and the three automatic calibration options that are controlled by the SETTLING_CFG.FS_AUTOCAL setting, which is explained in the CC112x/CC1175 User's Guide (SWRU295).

Applications using the workaround calibration procedure required for PARTVERSION 0x21 can safely continue to use the workaround procedure with PARTVERSION 0x23 or higher.
manualCalibration
START

Set VCO cap array to 0
(FS_VCO2 = 0x00)

Read FS_CAL2 (VCDAC_START)
and store it in original_fs_cal2

Write
FS_CAL2 = original_fs_cal2 + 2

Strobe SCAL and wait for
calibration to complete

Read FS_VCO2, FS_VCO4, and
FS_CHP and store them in
calResults_for_vcdac_start_high

Set VCO cap array to 0
(FS_VCO2 = 0x00)

Write
FS_CAL2 = original_fs_cal2

Strobe SCAL and wait for
calibration to complete

Read FS_VCO2, FS_VCO4, and
FS_CHP and store them in
calResults_for_vcdac_start_mid

Yes
Write back FS_VCO2, FS_VCO4,
and FS_CHP from
calResults_for_vcdac_start_high

No
Write back FS_VCO2, FS_VCO4,
and FS_CHP from
calResults_for_vcdac_start_mid

manualCalibration
END

Figure 1-1. Flow Diagram
```c
#define VCDAC_START_OFFSET 2
#define FS_VCO2_INDEX               0
#define FS_VCO4_INDEX               1
#define FS_CHP_INDEX                 2

void manualCalibration(void) {
    uint8 original_fs_cal2;
    uint8 calResults_for_vcdac_start_high[3];
    uint8 calResults_for_vcdac_start_mid[3];
    uint8 marcstate;
    uint8 writeByte;

    // 1) Set VCO cap-array to 0 (FS_VCO2 = 0x00)
    writeByte = 0x00;
    cc112xSpiWriteReg(CC112X_FS_VCO2, &writeByte, 1);

    // 2) Start with high VCDAC (original VCDAC_START + 2):
    cc112xSpiReadReg(CC112X_FS_CAL2, &original_fs_cal2, 1);
    writeByte = original_fs_cal2 + VCDAC_START_OFFSET;
    cc112xSpiWriteReg(CC112X_FS_CAL2, &writeByte, 1);

    // 3) Calibrate and wait for calibration to be done (radio back in IDLE state)
    trxSpiCmdStrobe(SCAL);
    do {
        cc112xSpiReadReg(CC112X_MARCSTATE, &marcstate, 1);
    } while (marcstate != 0x41);

    // 4) Read FS_VCO2, FS_VCO4 and FS_CHP register obtained with high VCDAC START value
    cc112xSpiReadReg(CC112X_FS_VCO2, &calResults_for_vcdac_start_high[FS_VCO2_INDEX], 1);
    cc112xSpiReadReg(CC112X_FS_VCO4, &calResults_for_vcdac_start_high[FS_VCO4_INDEX], 1);
    cc112xSpiReadReg(CC112X_FS_CHP, &calResults_for_vcdac_start_high[FS_CHP_INDEX], 1);

    // 5) Set VCO cap-array to 0 (FS_VCO2 = 0x00)
    writeByte = 0x00;
    cc112xSpiWriteReg(CC112X_FS_VCO2, &writeByte, 1);

    // 6) Continue with mid VCDAC (original VCDAC_START):
    writeByte = original_fs_cal2;
    cc112xSpiWriteReg(CC112X_FS_CAL2, &writeByte, 1);

    // 7) Calibrate and wait for calibration to be done (radio back in IDLE state)
    trxSpiCmdStrobe(SCAL);
    do {
        cc112xSpiReadReg(CC112X_MARCSTATE, &marcstate, 1);
    } while (marcstate != 0x41);

    // 8) Read FS_VCO2, FS_VCO4 and FS_CHP register obtained with mid VCDAC START value
    cc112xSpiReadReg(CC112X_FS_VCO2, &calResults_for_vcdac_start_mid[FS_VCO2_INDEX], 1);
    cc112xSpiReadReg(CC112X_FS_VCO4, &calResults_for_vcdac_start_mid[FS_VCO4_INDEX], 1);
    cc112xSpiReadReg(CC112X_FS_CHP, &calResults_for_vcdac_start_mid[FS_CHP_INDEX], 1);

    // 9) Set VCO cap-array to 0 (FS_VCO2 = 0x00)
    writeByte = 0x00;
    cc112xSpiWriteReg(CC112X_FS_VCO2, &writeByte, 1);

    // 10) Write back highest FS_VCO2 and corresponding FS_VCO and FS_CHP result
    if (calResults_for_vcdac_start_high[FS_VCO2_INDEX] > calResults_for_vcdac_start_mid[FS_VCO2_INDEX]) {
        writeByte = calResults_for_vcdac_start_high[FS_VCO2_INDEX];
        cc112xSpiWriteReg(CC112X_FS_VCO2, &writeByte, 1);
        writeByte = calResults_for_vcdac_start_high[FS_VCO4_INDEX];
        cc112xSpiWriteReg(CC112X_FS_VCO4, &writeByte, 1);
        writeByte = calResults_for_vcdac_start_high[FS_CHP_INDEX];
        cc112xSpiWriteReg(CC112X_FS_CHP, &writeByte, 1);
    } else {
        writeByte = calResults_for_vcdac_start_mid[FS_VCO2_INDEX];
        cc112xSpiWriteReg(CC112X_FS_VCO2, &writeByte, 1);
        writeByte = calResults_for_vcdac_start_mid[FS_VCO4_INDEX];
        cc112xSpiWriteReg(CC112X_FS_VCO4, &writeByte, 1);
        writeByte = calResults_for_vcdac_start_mid[FS_CHP_INDEX];
        cc112xSpiWriteReg(CC112X_FS_CHP, &writeByte, 1);
    }
}
```

Figure 1-2. Software Implementation
2.1 Advisory List

Extra Bit Transmitted for Sync Mode Configuration 6 and 7

Description: When sync mode configuration 6 or 7 (SYNC_CFG0.SYNC_MODE = 110b or 111b) are used in TX mode, the radio transmits 17 bits instead of 16. For both sync modes, SYNC23_16[0] is sent as the MSB of the sync word.

SYNC_MODE = 110b: [SYNC23_16[0]:SYNC31_24:SYNC23_16]
SYNC_MODE = 111b: [SYNC23_16[0]:SYNC15_8:SYNC7_0]

In RX, the radio searches for a 16-bit sync word [SYNC31_24:SYNC23_16] or [SYNC15_8:SYNC7_0].

Workaround(s): SYNC_MODE = 101b can be used on the TX side to transmit a 16-bit sync word. [SYNC15_8:SYNC7_0] will then be sent.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWRZ039</td>
<td>2011-06-29</td>
<td>Initial release</td>
</tr>
<tr>
<td>SWRZ039A</td>
<td>2012-04-30</td>
<td>Added CC1125 and CC1175</td>
</tr>
<tr>
<td>SWRZ039B</td>
<td>2013-12-05</td>
<td>Added issue related to transmitting a 16 bits sync word</td>
</tr>
<tr>
<td>SWRZ039C</td>
<td>2014-01-06</td>
<td>Added note that VCO calibration bug is fixed on PARTVERSION 0x23</td>
</tr>
<tr>
<td>SWRZ039D</td>
<td>2015-04-23</td>
<td>Added note that the VCO calibration workaround for PARTVERSION 0x21 can also be used for PARTVERSION 0x23</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated