

DLPC3470

JAJSFC5C - APRIL 2018 - REVISED DECEMBER 2020

DLPC3470 ディスプレイおよび照明コントローラ

1 特長

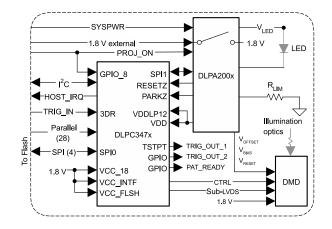
- DLP2010LC および DLP2010NIR (0.2 WVGA) DMD 用ディスプレイおよび照明コントローラ
- 照明制御機能:
 - マシン・ビジョンおよびデジタル露光用に最適化さ れたパターン・ディスプレイ
 - 柔軟な内部 (1D) および外部 (2D) パターンのスト リーミング・モード
 - 露光時間をプログラミング可能
 - 最高 2500Hz (1 ビット) および 360 Hz (8 ビッ ト)の高速パターン・レート
 - 2D 静的パターンをプログラム可能
 - 内部パターンのストリーミング・モードにより、システ ム設計を簡素化
 - ビデオ・インターフェイス不要
 - 1000 を超えるパターンをフラッシュ・メモリに格 納
 - カメラ/センサ同期用の柔軟なトリガ信号
 - 1つの構成可能な入力トリガ
 - 2 つの構成可能な出力トリガ
- ディスプレイの特長
 - 最大 720p の入力画像サイズに対応、WVGA に 変換
 - 最高 240Hz までの入力フレーム・レート
 - 24 ビットの入力ピクセル・インターフェイスに対応:
 - パラレルまたは BT656 インターフェイス・プロト コル
 - 最高 155MHz のピクセル・クロック
 - 画像処理 IntelliBright[™] アルゴリズム、画像のサ イズ変更、1D Keystone、プログラム可能な逆ガン マ補正
- システム機能:
 - I²Cを通じたデバイス構成
 - プログラミング可能なスプラッシュ・スクリーン
 - プログラミング可能な LED 電流制御
 - 電源切断時の自動 DMD パーキング

2 アプリケーション

- モバイル・プロジェクタ
- スマート・ディスプレイ
- スマートフォン
- 拡張現実 (AR) メガネ
- スマート・ホーム・ディスプレイ
- Pico プロジェクタ

3 概要

DLPC3470 ディスプレイおよび照明コントローラは、ビデ オ表示および照明制御アプリケーション用の DLP2010LC または DLP2010NIR デジタル・マイクロミラ ー・デバイス (DMD) の高信頼性動作をサポートします。 DLPC3470 コントローラは、ユーザーの電子機器と DMD との間の使いやすいインターフェイスとして機能し、ビデオ の表示、光パターンの高速、高精度、かつ効率的な操作 を実現します。


設計を始める方法については、「TI DLP®Pico™ ディスプ レイ・テクノロジーを使用した設計の開始」ページを参照 し、「Programmer's Guide」(英語)をご覧ください。

このチップセットには、設計期間の短縮に役立つ定評ある リソースが用意されており、これにはすぐに量産可能な光 モジュール、光モジュール・メーカー、デザインハウスなど が含まれます。

製品情報⁽¹⁾

部品番号	パッケージ	本体サイズ (公称)
DLPC3470	NFBGA (201)	13.00mm × 13.00mm

利用可能なすべてのパッケージについては、このデータシートの (1) 末尾にある注文情報を参照してください。

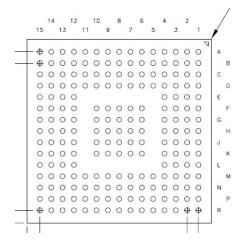
代表的なスタンドアロン・システム

英語版の TI 製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、 🐼 www.ti.com で閲覧でき、その内容が常に優先されます。 TI では翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、必ず 最新版の英語版をご参照くださいますようお願いいたします。

Table of Contents

1 特長1
2 アプリケーション1
3 概要1
4 Revision History
5 Pin Configuration and Functions4
6 Specifications14
6.1 Absolute Maximum Ratings14
6.2 ESD Ratings14
6.3 Recommended Operating Conditions15
6.4 Thermal Information15
6.5 Power Electrical Characteristics
6.6 Pin Electrical Characteristics
6.7 Internal Pullup and Pulldown Electrical
Characteristics
6.8 DMD Sub-LVDS Interface Electrical
Characteristics
6.9 DMD Low-Speed Interface Electrical Characteristics21
6.10 System Oscillator Timing Requirements
6.11 Power Supply and Reset Timing Requirements22
6.12 Parallel Interface Frame Timing Requirements23
6.13 Parallel Interface General Timing Requirements24
6.14 BT656 Interface General Timing Requirements25
6.15 Flash Interface Timing Requirements
6.16 Other Timing Requirements
6.17 DMD Sub-LVDS Interface Switching
Characteristics
6.18 DMD Parking Switching Characteristics
6.19 Chipset Component Usage Specification

7 Detailed Description	28
7.1 Overview	
7.2 Functional Block Diagram	
7.3 Feature Description	29
7.4 Device Functional Modes	
7.5 Programming	
8 Application and Implementation	53
8.1 Application Information	
8.2 Typical Application	
9 Power Supply Recommendations	
9.1 PLL Design Considerations	56
9.2 System Power-Up and Power-Down Sequence	
9.3 Power-Up Initialization Sequence	60
9.4 DMD Fast Park Control (PARKZ)	60
9.5 Hot Plug I/O Usage	61
10 Layout	
10.1 Layout Guidelines	
10.2 Layout Example	70
11 Device and Documentation Support	71
11.1 Device Support	71
11.2 Related Documentation	73
11.3ドキュメントの更新通知を受け取る方法	73
11.4 サポート・リソース	73
11.5 Trademarks	73
11.6 静電気放電に関する注意事項	. 73
11.7 用語集	
12 Mechanical, Packaging, and Orderable	
Information	73


4 Revision History

Changes from Revision B (June 2019) to Revision C (December 2020)	Page
 文書全体にわたって表、図、相互参照の採番方法を更新 	1
• 入力フレーム・レートを 240Hz に変更	1
• ピクセル・クロックを 155MHz に変更	1
• サポートされている DMD を更新	1
Reorganized Pin Function descriptions	
Updated Absolute Maximum Rating	
Updated Recommended Operating Conditions	15
Updated Power Electrical Characteristics	
• Updated セクション 6.6 table	17
• Updated セクション 6.8 table	20
• Updated セクション 6.9	21
Updated System Oscillator Timing Requirements	
• Updated セクション 6.11 table	22
Added image BT.656 Interface Mode Bit Mapping	
Added Flash Interface Timing diagram	26
Updated maximum SPI flash size to 128Mb	26
Added DMD Sub-LVDS Interface Switching Characteristics	
Added DMD Parking Switching Characteristics	
Added Chipset Component Usage Specification	
Changed frame rate range to 242Hz in supported resolution and frame rates	

Changes from Revision A (July 2018) to Revision B (June 2019)						
Updated mirror parking time from "500 μs" to "20 ms" in						
Changes from Revision * (April 2018) to Revision A (July 2018)	Page					
 完全なデータシートの最初の公開リリース 	1					

5 Pin Configuration and Functions

図 5-1. ZEZ Package 201-Pin NFBGA Bottom View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	DMD_LS_C LK	DMD_LS_W DATA	DMD_HS_W DATAH_P	DMD_HS_W DATAG_P	DMD_HS_W DATAF_P	DMD_HS_W DATAE_P	DMD_HS_CLK_ P	DMD_HS_W DATAD_P	DMD_HS_W DATAC_P	DMD_HS_W DATAB_P	DMD_HS_W DATAA_P	CMP_OUT	SPI0_CLK	SPI0_CSZ0	CMP_PWM
в	DMD_DEN_ ARSTZ	DMD_LS_R DATA	DMD_HS_W DATAH_N	DMD_HS_W DATAG_N	DMD_HS_W DATAF_N	DMD_HS_W DATAE_N	DMD_HS_CLK_ N	DMD_HS_W DATAD_N	DMD_HS_W DATAC_N	DMD_HS_W DATAB_N	DMD_HS_W DATAA_N	SPI0_DIN	SPI0_DOUT	LED_SEL_1	LED_SEL_0
С	DD3P	DD3N	VDDLP12	VSS	VDD	VSS	VCC	VSS	VCC	HWTEST_E N	RESETZ	SPI0_CSZ1	PARKZ	GPIO_00	GPIO_01
D	DD2P	DD2N	VDD	VCC	VDD	VSS	VDD	VSS	VDD	VSS	VCC_FLSH	VDD	VDD	GPIO_02	GPIO_03
Е	DCLKP	DCLKN	VDD	VSS								VCC	VSS	GPIO_04	GPIO_05
F	DD1P	DD1N	RREF	VSS		VSS	VSS	VSS	VSS	VSS		VCC	VDD	GPIO_06	GPIO_07
G	DD0P	DD0N	VSS_PLLM	VSS		VSS	VSS	VSS	VSS	VSS		VSS	VSS	GPIO_08	GPIO_09
н	PLL_REFCL K_I	VDD_PLLM	VSS_PLLD	VSS		VSS	VSS	VSS	VSS	VSS		VSS	VDD	GPIO_10	GPIO_11
J	PLL_REFCL K_O	VDD_PLLD	VSS	VDD		VSS	VSS	VSS	VSS	VSS		VDD	VSS	GPIO_12	GPIO_13
к	PDATA_1	PDATA_0	VDD	VSS		VSS	VSS	VSS	VSS	VSS		VSS	VCC	GPIO_14	GPIO_15
L	PDATA_3	PDATA_2	VSS	VDD								VDD	VDD	GPIO_16	GPIO_17
м	PDATA_5	PDATA_4	VCC_INTF	VSS	VSS	VDD	VCC_INTF	VSS	VDD	VDD	VCC	VSS	JTAGTMS1	GPIO_18	GPIO_19
N	PDATA_7	PDATA_6	VCC_INTF	PDM_CVS_ TE	HSYNC_CS	3DR	VCC_INTF	HOST_IRQ	IIC0_SDA	IIC0_SCL	JTAGTMS2	JTAGTDO2	JTAGTD01	TSTPT_6	TSTPT_7
Ρ	VSYNC_WE	DATEN_CM D	PCLK	PDATA_11	PDATA_13	PDATA_15	PDATA_17	PDATA_19	PDATA_21	PDATA_23	JTAGTRSTZ	JTAGTCK	JTAGTDI	TSTPT_4	TSTPT_5
R	PDATA_8	PDATA_9	PDATA_10	PDATA_12	PDATA_14	PDATA_16	PDATA_18	PDATA_20	PDATA_22	IIC1_SDA	IIC1_SCL	TSTPT_0	TSTPT_1	TSTPT_2	TSTPT_3

表 5-1. Test Pins and General Control

PIN		I/O	TYPE	DESCRIPTION			
NAME	NO.	"0	(4)	BESCRIFTION			
HWTEST_ EN	C10	I	6	Manufacturing test enable signal. Connect this signal directly to ground on the PCB for normal operation.			
PARKZ	C13	I	6	DMD fast park control (active low Input with a hysteresis buffer). This signal is used to quickly park the DMD when loss of power is imminent. The longest lifetime of the DMD may not be achieved with the fast park operation; therefore, this signal is intended to only be asserted when a normal park operation is unable to be completed. The PARKZ signal is typically provided from the DLPAxxxx interrupt output signal.			
JTAGTCK	P12	Ι	6	TI internal use. Leave this pin unconnected.			
JTAGTDI	P13	Ι	6	TI internal use. Leave this pin unconnected.			
JTAGTDO 1	N13 ⁽¹⁾	0	1	TI internal use. Leave this pin unconnected.			
JTAGTDO 2	N12 ⁽¹⁾	0	1	TI internal use. Leave this pin unconnected.			
JTAGTMS 1	M13	I	6	TI internal use. Leave this pin unconnected.			
JTAGTMS 2	N11	I	6	TI internal use. Leave this pin unconnected.			
JTAGTRS TZ	P11	I	6	TI internal use. This pin must be tied to ground, through an external resistor for normal operation. Failure to tie this pin low during normal operation can cause start up and initialization problems. ⁽²⁾			
RESETZ	C11	I	6	Power-on reset (active low input with a hysteresis buffer). Self-configuration starts when a low-to-high transition is detected on RESETZ. All controller power and clocks must be stable before this reset is de-asserted. No signals are in their active state while RESETZ is asserted. This pin is typically connected to the RESETZ pin of the DLPA200x or RESET_Z of the DLPA300X.			
TSTPT_0	R12	I/O	1	Test pins (includes weak internal pulldown). Pins are tri-stated while RESETZ is asserted low.			
TSTPT_1	R13	I/O	1	Sampled as an input test mode selection control approximately 1.5 μ s after de-assertion of RESETZ, and then driven as outputs. ⁽²⁾ (3)			
TSTPT_2	R14	I/O	1	Normal use: reserved for test output. Leave open for normal use.			
TSTPT_3	R15	I/O	1	Note: An external pullup may put the DLPC34xx in a test mode. See セクション 7.3.9 for more information.			
TSTPT_4	P14	I/O	1	Test pin 4 (Includes weak internal pulldown) – tri-stated while RESETZ is asserted low. Sampled as an input test mode selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output. Reserved for TRIG_OUT_1 signal (Output).			
TSTPT_5	P15	I/O	1	Test pins (includes weak internal pulldown). Pins are tri-stated while RESETZ is asserted low.			
TSTPT_6	N14	I/O	1	Sampled as an input test mode selection control approximately 1.5 μ s after de-assertion of RESETZ, and then driven as outputs. ⁽²⁾ (³⁾			
TSTPT_7	N15	I/O	1	Note: An external pullup may put the DLPC34xx in a test mode. See セクション 7.3.9 for more information.			

(1) If the application design does not require an external pullup, and there is no external logic that can overcome the weak internal pulldown resistor, then this I/O pin can be left open or unconnected for normal operation. If the application design does not require an external pullup, but there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown is recommended to ensure a logic low.

(2) External resistor must have a value of 8 k Ω or less to compensate for pins that provide internal pullup or pulldown resistors.

(3) If the application design does not require an external pullup and there is no external logic that can overcome the weak internal pulldown, then the TSTPT I/O can be left open (unconnected) for normal operation. If operation does not call for an external pullup, but there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown resistor is recommended to ensure a logic low.

(4) See $\frac{1}{5}$ 5-10 for type definitions.

PIN ⁽¹⁾ (2)) //O		DESCRIPTION			
NAME			Type ⁽⁴⁾	PARALLEL RGB MODE	BT656 INTERFACE MODE		
PCLK	P3	I	11	Pixel clock	Pixel clock		
PDM_CVS_TE	N4	I/O	5	Parallel data mask. Programable polarity with default of active high. Optional signal.	Unused		
VSYNC_WE	P1	I	11	Vsync ⁽³⁾	Unused		
HSYNC_CS	N5	I	11	Hsync ⁽³⁾	Unused		
DATAEN_CMD	P2	I	11	Data valid	Unused		
PDATA_0 PDATA_1 PDATA_2 PDATA_3 PDATA_4 PDATA_5 PDATA_6 PDATA_7	K2 K1 L2 L1 M2 M1 N2 N1	I	11	(TYPICAL RGB 888) Blue (bit weight 1) Blue (bit weight 2) Blue (bit weight 4) Blue (bit weight 8) Blue (bit weight 16) Blue (bit weight 32) Blue (bit weight 64) Blue (bit weight 128)	BT656_Data (0) BT656_Data (1) BT656_Data (2) BT656_Data (3) BT656_Data (4) BT656_Data (5) BT656_Data (6) BT656_Data (7)		
PDATA_8 PDATA_9 PDATA_10 PDATA_11 PDATA_12 PDATA_13 PDATA_14 PDATA_15	R1 R2 R3 P4 R4 P5 R5 P6	I	11	(TYPICAL RGB 888) Green (bit weight 1) Green (bit weight 2) Green (bit weight 4) Green (bit weight 8) Green (bit weight 16) Green (bit weight 32) Green (bit weight 64) Green (bit weight 128)	Unused		
PDATA_16 PDATA_17 PDATA_18 PDATA_19 PDATA_20 PDATA_21 PDATA_22 PDATA_23	R6 P7 R7 P8 R8 P9 R9 P10	I	11	(TYPICAL RGB 888) Red (bit weight 1) Red (bit weight 2) Red (bit weight 4) Red (bit weight 8) Red (bit weight 16) Red (bit weight 32) Red (bit weight 64) Red (bit weight 128)	Unused		
3DR	N6	I	11	provided by the host. Must transiti than 1 ms to the active edge of VS	D reference (left = 1, right = 0). To be on in the middle of each frame (no closer		

表 5-2. Parallel Port Input

PDATA(23:0) bus mapping depends on pixel format and source mode. See later sections for details.
 Connect unused inputs to ground or pulldown to ground through an external resistor (8 kΩ or less).

(3) VSYNC and HSYNC polarity can be adjusted by software.

表 5-3. DSI Input Data and Clock

PIN	PIN		Type ⁽¹⁾	DESCRIPTION
NAME	NO.	I/O	Type	DESCRIPTION
DCLKN DCLKP	E2 E1			unused; Leave unconnected and floating.
DD0N DD0P DD1N DD1P DD2N DD2P DD3N DD3P	G2 G1 F2 F1 D2 D1 C2 C1			unused; Leave unconnected and floating.
RREF	F3	—		Leave this pin unconnected and floating.

表 5-4. DMD Reset and Bias Control

PIN		I/O		DESCRIPTION
NAME	NO.			DESCRIPTION
DMD_DEN_AR STZ	B1	0	2	DMD driver enable (active high). DMD reset (active low). When corresponding I/O power is supplied, the controller drives this signal low after the DMD is parked and before power is removed from the DMD. If the 1.8-V power to the DLPC34xx is independent of the 1.8-V power to the DMD, then TI recommends including a weak, external pulldown resistor to hold the signal low in case DLPC34xx power is inactive while DMD power is applied.
DMD_LS_CLK	A1	0	3	DMD, low speed (LS) interface clock
DMD_LS_WDA TA	A2	0	3	DMD, low speed (LS) serial write data
DMD_LS_RDA TA	B2	I	6	DMD, low speed (LS) serial read data

(1) See $\frac{1}{5}$ 5-10 for type definitions.

PIN		I/O	TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	1/0	TIPE			
DMD_HS_CLK _P DMD_HS_CLK _N	A7 B7	0	4	DMD high speed (HS) interface clock		
DMD_HS_WDA TA_H_P DMD_HS_WDA TA_H_N DMD_HS_WDA TA_G_P DMD_HS_WDA TA_G_N DMD_HS_WDA TA_F_P DMD_HS_WDA TA_F_N DMD_HS_WDA TA_E_P DMD_HS_WDA TA_E_N DMD_HS_WDA TA_D_N DMD_HS_WDA TA_D_N DMD_HS_WDA TA_C_N DMD_HS_WDA TA_C_N DMD_HS_WDA TA_B_N DMD_HS_WDA TA_B_N DMD_HS_WDA TA_B_N DMD_HS_WDA TA_B_N DMD_HS_WDA TA_B_N DMD_HS_WDA TA_A_N	A3 B3 A4 B5 A6 B6 A8 B9 A10 B10 A11 B11	Ο	4	DMD sub-LVDS high speed (HS) interface write data lanes. The true numbering and application of the DMD_HS_WDATA pins depend on the software configuration. See 表 7-10.		

表 5-5. DMD Sub-LVDS Interface

(1) See $\frac{1}{5}$ 5-10 for type definitions.

表 5-6. Peripheral Interface

PIN ⁽¹⁾	PIN ⁽¹⁾		TYPE ⁽³⁾	DESCRIPTION		
NAME	NO.	I/O	ITPE	DESCRIPTION		
CMP_OUT	A12	I	6	Successive approximation ADC (analog-to-digital converter) comparator output (DLPC34xx Input). To implement, use a successive approximation ADC with a thermistor feeding one input of the external comparator and the DLPC34xx controller GPIO_10 (RC_CHARGE) pin driving the other side of the comparator. It is recommended to use the DLPAxxxx to achieve this function. CMP_OUT must be pulled-down to ground if this function is not used. (hysteresis buffer)		
CMP_PWM	A15	0	1	TI internal use. Leave this pin unconnected.		
HOST_IRQ ⁽²⁾	N8	0	9	Host interrupt (output) HOST_IRQ indicates when the DLPC34xx auto-initialization is in progress and most importantly when it completes. This pin is tri-stated during reset. An external pullup must be included on this signal.		
IIC0_SCL ⁽⁴⁾	N10	I/O	7	$\rm I^2C$ slave (port 0) SCL (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The slave I^2C I/Os are 3.6-V tolerant (high-voltage-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I^2C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the V_{IH} specification of the slave I^2C input buffers).		
IIC1_SCL	R11	I/O	8	TI internal use. TI recommends an external pullup resistor.		
IIC0_SDA ⁽⁴⁾	N9	I/O	7	I^2C slave (port 0) SDA. (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The slave I^2C port is the control port of controller. The slave I^2C I/O pins are 3.6-V tolerant (high-volt-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I^2C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the $V_{\rm IH}$ specification of the slave I^2C input buffers).		
IIC1_SDA	R10	I/O	8	TI internal use. TI recommends an external pullup resistor.		
LED_SEL_0	B15	0	1	LED enable select. Automatically controlled by the DLPC34xx programmable DMD sequence LED_SEL(1:0) Enabled LED 00 None 01 Red 10 Green 11 Blue		
LED_SEL_1	B14	0	1	The controller drives these signals low when RESETZ is asserted and the corresponding I/O power is supplied. The controller continues to drive these signals low throughout the auto-initialization process. A weak, external pulldown resistor is recommended to ensure that the LEDs are disabled when I/O power is not applied.		
SPI0_CLK	A13	0	13	SPI (Serial Peripheral Interface) port 0, clock. This pin is typically connected to the flash memory clock.		
SPI0_CSZ0	A14	0	13	SPI port 0, chip select 0 (active low output). This pin is typically connected to the flash memory chip select. TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.		
SPI0_CSZ1	C12	0	13	SPI port 0, chip select 1 (active low output). This pin typically remains unused. TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.		
SPI0_DIN	B12	I	12	Synchronous serial port 0, receive data in. This pin is typically connected to the flash memory data out.		
SPI0_DOUT	B13	0	13	Synchronous serial port 0, transmit data out. This pin is typically connected to the flash memory data in.		

(1) External pullup resistor must be 8 k Ω or less.

(2) For more information about usage, see セクション 7.3.3.

(4) When VCC_INTF is powered and VDD is not powered, the controller may drive the IIC0_xxx pins low which prevents communication on this I²C bus. Do not power up the VCC_INTF pin before powering up the VDD pin for any system that has additional slave devices on this bus.

PIN ⁽	1)		TYPE	
NAME	NO.	I/O	(3)	DESCRIPTION ⁽²⁾
GPIO_19	M15	I/O	1	General purpose I/O 19 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_18	M14	I/O	1	 General purpose I/O 18 (hysteresis buffer). Options: Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input. MTR_SENSE, Motor Sense (Input): For focus motor control applications, this GPIO must be configured as an input to the DLPC34xx and supplied from the focus motor position sensor.
GPIO_17	L15	I/O	1	General purpose I/O 17 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_16	L14	I/O	1	General purpose I/O 16 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_15	K15	I/O	1	General purpose I/O 15 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_14	K14	I/O	1	General purpose I/O 14 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_13	J15	I/O	1	General purpose I/O 13 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_12	J14	I/O	1	General purpose I/O 12 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_11	H15	I/O	1	 General purpose I/O 11 (hysteresis buffer). Options: Thermistor power enable (output). Turns on the power to the thermistor when it is used and enabled. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_10	H14	I/O	1	 General Purpose I/O 10 (hysteresis buffer). Options: RC_CHARGE (output): Intended to feed the RC charge circuit of the thermistor interface. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_09	G15	I/O	1	General purpose I/O 09 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_08	G14	I/O	1	General purpose I/O 08 (hysteresis buffer). Normal mirror parking request (active low): To be driven by the PROJ_ON output of the host. A logic low on this signal causes the DLPC34xx to PARK the DMD, but it does not power down the DMD (the DLPAxxxx does that instead). The minimum high time is 200 ms. The minimum low time is 200 ms.

表 5-7. GPIO Peripheral Interface

PIN ⁽	1)		TYPE	
NAME	NO.	I/O	(3)	DESCRIPTION ⁽²⁾
GPIO_07	F15	I/O	1	 General purpose I/O 07 (hysteresis buffer). Options: Light Control: Reserved for TRIG_OUT_2 signal (Output). Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).
GPIO_06	F14	I/O	1	 General purpose I/O 06 (hysteresis buffer). Option: Light Control: Reserved for pattern ready signal (Output). Applicable in Internal Pattern Streaming Mode only. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).
GPIO_05	E15	I/O	1	General purpose I/O 05 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_04	E14	I/O	1	 General purpose I/O 04 (hysteresis buffer). Options: 3D glasses control (output): Controls the shutters on 3D glasses (Left = 1, Right = 0). SPI1_CSZ1 (active-low output): Optional SPI1 chip select 1 signal. Requires an external pullup resistor to deactivate this signal during reset and auto-initialization processes. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating GPIO input.
GPIO_03	D15	I/O	1	General purpose I/O 03 (hysteresis buffer). SPI1_CSZ0 (active low output): SPI1 chip select 0 signal. This pin is typically connected to the DLPAxxxx SPI_CSZ pin. Requires an external pullup resistor to deactivate this signal during reset and auto-initialization processes.
GPIO_02	D14	I/O	1	General purpose I/O 02 (hysteresis buffer). SPI1_DOUT (output): SPI1 data output signal. This pin is typically connected to the DLPAxxxx SPI_DIN pin.
GPIO_01	C15	I/O	1	General purpose I/O 01 (hysteresis buffer). SPI1_CLK (output): SPI1 clock signal. This pin is typically connected to the DLPAxxxx SPI_CLK pin.
GPIO_00	C14	I/O	1	General purpose I/O 00 (hysteresis buffer). SPI1_DIN (input): SPI1 data input signal. This pin is typically connected to the DLPAxxxx SPI_DOUT pin.

表 5-7. GPIO Peripheral Interface (continued)

(1) GPIO pins must be configured through software for input, output, bidirectional, or open-drain operation. Some GPIO pins have one or more alternative use modes, which are also software configurable. An external pullup resistor is required for each signal configured as open-drain.

(2) General purpose I/O for the DLPC3470 controller. These GPIO pins are software configurable.

(3) See $\frac{1}{5}$ 5-10 for type definitions.

表 5-8. Clock and PLL Support

PIN		I/O	TYPE ⁽¹⁾	DESCRIPTION	
NAME	NAME NO.			BEGONFHON	
PLL_REFCLK_I H1 I I 11 Reference clock crystal input. If an external oscillator is used instead of a cryst this pin as the oscillator input.		Reference clock crystal input. If an external oscillator is used instead of a crystal, use this pin as the oscillator input.			
PLL_REFCLK_ O	J1	0	5	Reference clock crystal return. If an external oscillator is used instead of a crystal, leave this pin unconnected (floating with no added capacitive load).	

(1) See $\frac{1}{5}$ 5-10 for type definitions.

表 5-9. Power and Ground

PI	N	I/O	ТҮРЕ	DESCRIPTION		
NAME	NO.	1/0	TTPE	DESCRIPTION		
VDD	C5, D5, D7, D12, J4, J12, K3, L4, L12, M6, M9, D9, D13, F13, H13, L13, M10, D3, E3	_	PWR	Core 1.1-V power (main 1.1 V)		
VDDLP12	C3	_		Unused. It is recommended to externally tie this pin to VDD.		
VSS	C4, D6, D8, D10, E4, E13, F4, G4, G12, H4, H12, J3, J13, K4, K12, L3, M4, M5, M8, M12 G13, C6, C8, F6, F7, F8, F9, F10, G6, G7, G8, G9, G10, H6, H7, H8, H9, H10, J6, J7, J8, J9, J10, K6, K7, K8, K9, K10		GND	Core ground (eDRAM, I/O ground, thermal ground)		
VCC18	C7, C9, D4, E12, F12, K13, M11	_	PWR	All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the SPI flash interface. This includes RESETZ, PARKZ, LED_SEL, CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins)		
VCC_INTF	M3, M7, N3, N7	_	PWR	Host or parallel interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA, video syncs, and HOST_IRQ pins)		
VCC_FLSH	D11	_	PWR	Flash interface I/O power: 1.8 V to 3.3 V (Dedicated SPI0 power pin)		
VDD_PLLM	H2	_	PWR	MCG PLL (master clock generator phase lock loop) 1.1-V power		
VSS_PLLM	G3	_	RTN	All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the S flash interface. This includes RESETZ, PARKZ, LED_SEL, CMP_OUT, GPIO, IIC TSTPT, and JTAG pins) Host or parallel interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA, video s and HOST_IRQ pins) Flash interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA, video s and HOST_IRQ pins) Flash interface I/O power: 1.8 V to 3.3 V (Dedicated SPI0 power pin) MCG PLL (master clock generator phase lock loop) 1.1-V power MCG PLL return DCG PLL (DMD clock generator phase lock loop) 1.1-V power		
VDD_PLLD	J2	—	PWR	Core ground (eDRAM, I/O ground, thermal ground) All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the SPI flash interface. This includes RESETZ, PARKZ, LED_SEL, CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins) Host or parallel interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA, video sy and HOST_IRQ pins) Flash interface I/O power: 1.8 V to 3.3 V (Dedicated SPI0 power pin) MCG PLL (master clock generator phase lock loop) 1.1-V power MCG PLL (DMD clock generator phase lock loop) 1.1-V power		
VSS_PLLD	H3		RTN	DCG PLL return		

表 5-10. I/O Type Subscript Definition

	I/O	SUPPLY REFERENCE	ESD STRUCTURE
SUBSCRIPT	DESCRIPTION	JUPPLI REPERENCE	ESD STRUCTURE
1	1.8-V LVCMOS I/O buffer with 8-mA drive	V _{CC18}	ESD diode to GND and supply rail
2	1.8-V LVCMOS I/O buffer with 4-mA drive	V _{CC18}	ESD diode to GND and supply rail
3	1.8-V LVCMOS I/O buffer with 24-mA drive	V _{CC18}	ESD diode to GND and supply rail
4	1.8-V sub-LVDS output with 4-mA drive	V _{CC18}	ESD diode to GND and supply rail
5	1.8-V, 2.5-V, 3.3-V LVCMOS with 4-mA drive	V _{CC_INTF}	ESD diode to GND and supply rail

表 5-10. I/O Type Subscript Definition (continued)

	I/O	SUPPLY REFERENCE	ESD STRUCTURE
SUBSCRIPT	DESCRIPTION		LSD STRUCTURE
6	1.8-V LVCMOS input	V _{CC18}	ESD diode to GND and supply rail
7	1.8-V, 2.5-V, 3.3-V I ² C with 3-mA drive	V _{CC_INTF}	ESD diode to GND and supply rail
8	1.8-V I ² C with 3-mA drive	V _{CC18}	ESD diode to GND and supply rail
9	1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive	V _{CC_INTF}	ESD diode to GND and supply rail
10	Reserved		
11	1.8-V, 2.5-V, 3.3-V LVCMOS input	V _{CC_INTF}	ESD diode to GND and supply rail
12	1.8-V, 2.5-V, 3.3-V LVCMOS input	V _{CC_FLSH}	ESD diode to GND and supply rail
13	1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive	V _{CC_FLSH}	ESD diode to GND and supply rail

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)

		MIN	MAX	UNIT
SUPPLY VO	LTAGE ⁽²⁾			
V _(VDD)		-0.3	1.21	V
V _(VDDLP12)		-0.3	1.32	V
V _(VCC18)		-0.3	1.96	V
DMD Sub-L\	/DS Interface (DMD_HS_CLK_x and DMD_HS_WDATA_x_y)	-0.3	1.96	V
V _(VCC_INTF)		-0.3	3.60	V
V _(VCC_FLSH)		-0.3	3.60	V
V _(VDD_PLLM)	(MCG PLL)	-0.3	1.21	V
V _(VDD_PLLD)	(DCG PLL)	-0.3	1.21	V
V _{I2C buffer} (I/C	D type 7)	-0.3	See ⁽³⁾	V
GENERAL				
TJ	Operating junction temperature	-30	125	°C
T _{stg}	Storage temperature	-40	125	°C

(1) Stresses beyond those listed under ゼクション 6.1 may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under ゼクション 6.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to VSS (GND).

(3) I/O is high voltage tolerant; that is, if VCC_INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC_INTF = 3.3 V, the input is 5-V tolerant.

6.2 ESD Ratings

			VALUE	UNIT	
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V	
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	Ň	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _(VDD)	Core power 1.1 V (main 1.1 V)		1.045	1.10	1.155	V
V _(VDDLP12)	Unused	See ⁽²⁾	1.045	1.10	1.155	V
V _(VCC18)	All 1.8-V I/O power: (1.8-V power supply for all I/O pins except the host or parallel interface and the SPI flash interface. This includes RESETZ, PARKZ LED_SEL, CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins.)		1.64	1.80	1.96	V
			1.64	1.80	1.96	
V _(VCC_INTF)	Host or parallel interface I/O power: 1.8 to 3.3 V (includes IIC0, PDATA, video syncs, and HOST IRQ pins)	See ⁽¹⁾	2.28	2.50	2.72	V
			3.02	3.30	1.155 1.155 1.96 1.96	
			1.64	1.80	B0 1.96 50 2.72 30 3.58 B0 1.96 50 2.72 30 3.58 50 2.72 30 3.58 50 1.155	
V _(VCC_FLSH)	Flash interface I/O power: 1.8 V to 3.3 V	See ⁽¹⁾	2.28	2.50	2.72	V
			3.02	3.30	3.58	
V _(VDD_PLLM)	MCG PLL 1.1-V power	See ⁽³⁾	1.025	1.100	1.155	V
V _(VDD_PLLD)	DCG PLL 1.1-V power	See ⁽³⁾	1.025	1.100	1.155	V
T _A	Operating ambient temperature ⁽⁴⁾		-30		85	°C
TJ	Operating junction temperature		-30		105	°C

(1) These supplies have multiple valid ranges.

(2) It is recommended that VDDLP12 be tied to the VDD rail.

(3) The minimum voltage is lower than other 1.1-V supply minimum to enable additional filtering. This filtering may result in an IR drop across the filter.

(4) The operating ambient temperature range assumes 0 forced air flow, a JEDEC JESD51 junction-to-ambient thermal resistance value at 0 forced air flow (R_{0JA} at 0 m/s), a JEDEC JESD51 standard test card and environment, along with minimum and maximum estimated power dissipation across process, voltage, and temperature. Thermal conditions vary by application, and this affects R_{0JA}. Thus, maximum operating ambient temperature varies by application.

• $T_{A(min)} = T_{J(min)} - (P_{S(min)} \times R_{\theta JA}) = -30^{\circ}C - (0.0 \text{ W} \times 28.8^{\circ}C/W) = -30^{\circ}C$

• $T_{a_{max}} = T_{j_{max}} - (P_{d_{max}} \times R_{\theta JA}) = +105^{\circ}C - (0.348 \text{ W} \times 28.8^{\circ}C/W) = +95.0^{\circ}C$

6.4 Thermal Information

			DLPC3470	
		THERMAL METRIC ⁽¹⁾	ZEZ (NFBGA)	UNIT
			201 PINS	
R _{θJC}	Junction-to-case ther	10.1	°C/W	
		at 0 m/s of forced airflow ⁽²⁾	28.8	
$R_{\theta JA}$	Junction-to-air thermal resistance	at 1 m/s of forced airflow ⁽²⁾	25.3	°C/W
		at 2 m/s of forced airflow ⁽²⁾	24.4	
Ψ _{JT}	Temperature variance from junction to package top center temperature, per unit power		0.23	°C/W

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) Thermal coefficients abide by JEDEC Standard 51. R_{0JA} is the thermal resistance of the package as measured using a JEDEC defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC34xx controller PCB and thus the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance.

(3) Example: $(0.5 \text{ W}) \times (0.2 \text{ °C/W}) \approx 0.1 \text{ °C}$ temperature rise.

6.5 Power Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER ^{(4) (5) (6) (7)}	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX ⁽²⁾	UNIT
I _(VDD) +		Frame rate = 60 Hz		111	160	
	1.1V rails	Frame rate = 120 Hz		132	196	mA
I _(VDD_PLLD)		Frame rate = 240 Hz		111 132	295	
		Frame rate = 60 Hz		6		
I(VDD_PLLM)	MCG PLL 1.1-V current ⁽³⁾	Frame rate = 120 Hz		6		mA
		Frame rate = 240 Hz		111 132 179 6 6 6 6 6 6 6 7 27 27 27 2 2 2 1 1		
I _(VDD_PLLD)		Frame rate = 60 Hz		6		mA
	DCG PLL 1.1-V current ⁽³⁾	Frame rate = 120 Hz		6		
		Frame rate = 240 Hz		111 132 179 6 6 6 6 6 6 7 27 27 27 2 2 2 1 1		
	All 1.8-V I/O current: (1.8-V power supply	Frame rate = 60 Hz		27	36	
I _(VCC18)	for all I/O other than the host or parallel	Frame rate = 120 Hz		27	36	mA
	interface and the SPI flash interface)	Frame rate = 240 Hz		111 132 179 6 6 6 6 6 6 6 6 27 27 27 2 2 2 1 1	36	
	Host or parallel interface I/O current: 1.8 to	Frame rate = 60 Hz		179 6 6 6 6 6 6 6 27 27 27 27 27 27 27 27 27 27 27 27 27		
I(VCC_INTF)	3.3 V (includes IIC0, PDATA, video syncs,	Frame rate = 120 Hz		2		mA
and HOST_IRQ pins) ⁽³⁾		Frame rate = 240 Hz		2		
		Frame rate = 60 Hz		1		
I(VCC_FLSH)	Flash interface I/O current:1.8 to 3.3 V $^{(3)}$	Frame rate = 120 Hz		1		mA
		Frame rate = 240 Hz		1	111 160 132 196 179 295 6 6 6 6 6 6 6 6 27 36 27 36 27 36 2 2 2 1 1 1	

(1) When measured on a system, typical PVT (process, voltage, and temperature) conditions (for example, nominal process, typical voltage, and 25°C nominal ambient temperature) and various input images were used.

(2) Measured on a system with worst case PVT condition(s) (i.e. corner process, high voltage, and high temperature of 65°C) and white noise input image.

(3) This rail was not measured due to board limitations. Simulation values are used instead. Simulations assume 12.5% activity factor, 30% clock gating on appropriate domains, and mixed SVT (standard threshold voltage) or HVT (high threshold voltage) cells.

(4) For the measured cases, all pins using 1.1 V were tied together (including VDDLP12), and programmable host and flash I/O are at the minimum nominal voltage (that is 1.8 V).

(5) Input image is 854 × 480 (WVGA) 24-bits using reduced VESA timings on the parallel interface at the frame rate shown with the 0.2inch WVGA (DLP2010LC) DMD. The controller has the CAIC and LABB algorithms turned off.

(6) The measured values do not take into account software updates or customer changes that may affect power performance.

(7) The reported numbers are valid only when operating the DLPC3470 in display mode.

6.6 Pin Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER ⁽³⁾			TEST CONDITIONS (4)	MIN	TYP MAX	UNIT
		I ² C buffer (I/O type 7)		0.7 × VCC_INTF	See ⁽¹⁾	
		I/O type 1, 2, 3, 6, 8 except pins noted in ⁽²⁾	VCC18 = 1.8 V	1.17	3.6	
	High-level input	I/O type 1, 6 for pins noted in ⁽²⁾	VCC18 = 1.8 V	1.3	3.6	
V _{IH}	threshold	I/O type 5, 9, 11	VCC_INTF = 1.8 V	1.17	3.6	V
	voltage	I/O type 12, 13	VCC_FLSH = 1.8 V	1.17	3.6	
		I/O type 5, 9, 11	VCC_INTF = 2.5 V	1.7	3.6	
		I/O type 12, 13	VCC_FLSH = 2.5 V	1.7	3.6	
		I/O type 5, 9, 11	VCC_INTF = 3.3 V	2.0	3.6	
		I/O type 12, 13	VCC_FLSH = 3.3 V	2.0	3.6	
		I ² C buffer (I/O type 7)		-0.5	0.3 × VCC_INTF	
		I/O type 1, 2, 3, 6, 8 except pins noted in ⁽²⁾	VCC18 = 1.8 V	-0.3	0.63	
	Low-level input	I/O type 1, 6 for pins noted in ⁽²⁾	VCC18 = 1.8 V	-0.3	0.5	
V _{IL}	threshold	I/O type 5, 9, 11	VCC_INTF = 1.8 V	-0.3	0.63	V
	voltage	I/O type 12, 13	VCC_FLSH = 1.8 V	-0.3	0.63	
		I/O type 5, 9, 11	VCC_INTF = 2.5 V	-0.3	0.7	
		I/O type 12, 13	VCC_FLSH = 2.5 V	-0.3	0.7	
		I/O type 5, 9, 11	VCC_INTF = 3.3 V	-0.3	0.8	
		I/O type 12, 13	VCC_FLSH = 3.3 V	-0.3	0.8	
		I/O type 1, 2, 3, 6, 8	VCC18 = 1.8 V	1.35		
		I/O type 5, 9, 11	VCC_INTF = 1.8 V	1.35		
		I/O type 12, 13	VCC_FLSH = 1.8 V	1.35		
V _{он}	High-level output voltage	I/O type 5, 9, 11	VCC_INTF = 2.5 V	1.7		V
	voltage	I/O type 12, 13	VCC_FLSH = 2.5 V	1.7		
		I/O type 5, 9, 11	VCC_INTF = 3.3 V	2.4		
		I/O type 12, 13	VCC_FLSH = 3.3 V	2.4		
		I ² C buffer (I/O type 7)	VCC_INTF > 2 V		0.4	
		I ² C buffer (I/O type 7)	VCC_INTF < 2 V		0.2 × VCC_INTF	
		I/O type 1, 2, 3, 6, 8	VCC18 = 1.8 V		0.45	
	Low-level output	I/O Type 5, 9, 11	VCC_INTF = 1.8 V		0.45	
V _{OL}	voltage	I/O Type 12, 13	VCC_FLSH = 1.8 V		0.45	V
		I/O Type 5, 9, 11	VCC_INTF = 2.5 V		0.7	
		I/O Type 12, 13	VCC_FLSH = 2.5 V		0.7	
		I/O Type 5, 9, 11	VCC_INTF = 3.3 V		0.4	
		I/O Type 12, 13	VCC_FLSH = 3.3 V		0.4	

6.6 Pin Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	(3)	TEST CONDITIONS (4)	MIN	TYP	МАХ	UNIT
		I/O type 2, 4	VCC18 = 1.8 V	2			
		I/O type 5	VCC_INTF = 1.8 V	2			
		I/O type 1	VCC18 = 1.8 V	3.5			
		I/O type 9	VCC_INTF = 1.8 V	3.5			
		I/O type 13	VCC_FLSH = 1.8 V	3.5			
	High-level output	I/O type 3	VCC18 = 1.8 V	10.6			mA
I _{ОН}	current ⁽⁵⁾	I/O type 5	VCC_INTF = 2.5 V	5.4			ШA
		I/O type 9, 13	VCC_INTF = 2.5V	10.8			
		I/O type 13	VCC_FLSH = 2.5 V	10.8			
		I/O type 5	VCC_INTF = 3.3 V	7.8			
		I/O type 9	VCC_INTF = 3.3 V	15			
		I/O type 13	VCC_FLSH = 3.3 V	15			
		I ² C buffer (I/O type 7)		3			
		I/O type 2, 4	VCC18 = 1.8 V	2.3			
		I/O type 5	VCC_INTF = 1.8 V	2.3			
		I/O type 1	VCC18 = 1.8 V	4.6			
		I/O type 9	VCC_INTF = 1.8 V	4.6			
		I/O type 13	VCC_FLSH = 1.8 V	4.6			
l _{ol}	Low-level output current ⁽⁶⁾	I/O type 3	VCC18 = 1.8 V	13.9			mA
	our one of	I/O type 5	VCC_INTF = 2.5 V	5.2			
		I/O type 9	VCC_INTF = 2.5 V	10.4			
		I/O type 13	VCC_FLSH = 2.5 V	10.4			
		I/O type 5	VCC_INTF = 3.3 V	4.4			
		I/O type 9	VCC_INTF = 3.3 V	8.9			
		I/O type 13	VCC_FLSH = 3.3 V	8.9			
		I ² C buffer (I/O type 7)	$V_{12C \text{ buffer}} < 0.1 \times VCC_INTF \text{ or } V_{12C \text{ buffer}} > 0.9 \times VCC_INTF$	-10		10	
		I/O type 1, 2, 3, 6, 8,	VCC18 = 1.8 V	-10		10	
l	High-impedance	I/O Type 5, 9, 11	VCC_INTF = 1.8 V	-10		10	
l _{oz}	leakage current	I/O Type 12, 13	VCC_FLSH = 1.8 V	-10		10	μA
		I/O type 5, 9, 11	VCC_INTF = 2.5 V	-10		10	
		I/O Type 12, 13	VCC_FLSH = 2.5 V	-10		10	
		I/O Type 5, 9, 11	VCC_INTF = 3.3 V	-10		10	
		I/O type 12, 13	VCC_FLSH = 3.3 V	-10		10	

6.6 Pin Electrical Characteristics (continued)

	PARAMETE	R ⁽³⁾	TEST CONDITIONS (4)	MIN	TYP MAX	UNIT
		I ² C buffer (I/O type 7)			5	
		I/O type 1, 2, 3, 6, 8	VCC18 = 1.8 V	2.6	3.5	
		I/O Type 5, 9, 11	VCC_INTF = 1.8 V	2.6	3.5	
	Input	I/O Type 12, 13	VCC_FLSH = 1.8 V	2.6	3.5	
CI	capacitance	I/O type 5, 9, 11	VCC_INTF = 2.5 V	2.6	3.5	pF
	(including package)	I/O type 12, 13	VCC_FLSH = 2.5 V	2.6	3.5	
	puokugo)	I/O type 5, 9, 11	, 11 VCC_INTF = 3.3 V 2.6		3.5	
		I/O type 12, 13	VCC_FLSH = 3.3 V	2.6	3.5	
		sub-LVDS – DMD high speed (I/O type 4)	VCC18 = 1.8 V		3	1

over operating free-air temperature range (unless otherwise noted)

I/O is high voltage tolerant; that is, if VCC_INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC_INTF = 3.3 V, the input is 5-V tolerant.
 Controller pins CMP_OUT, PARKZ, RESETZ, and GPIO_00 through GPIO_19 have slightly varied V_{IH} and V_{IL} range from other 1.8-V I/O.

(3) The I/O type refers to the type defined in $\frac{1}{5}$ 5-10.

(4) Test conditions that define a value for VCC18, VCC_INTF, or VCC_FLSH show the nominal voltage that the specified I/O's supply reference is set to.

(5) At a high level output signal, the given I/O will be able to output at least the minimum current specified.

(6) At a low level output signal, the given I/O will be able to sink at least the minimum current specified.

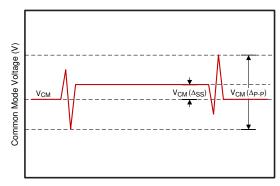
6.7 Internal Pullup and Pulldown Electrical Characteristics

over operating free-air temperature (unless otherwise noted)⁽²⁾

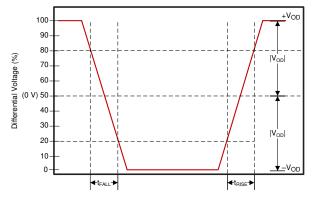
INTERNAL RESISTANCE	TEST CONDITIONS (1)	MIN	MAX	UNIT
	VCCIO = 3.3 V	29	63	
Weak pullup	VCCIO = 2.5 V	38	90	kΩ
	VCCIO = 1.8 V	56	148	
	VCCIO = 3.3 V	30	72	
Weak pulldown	VCCIO = 2.5 V	36	101	kΩ
	VCCIO = 1.8 V	52	167	

(1) The resistance depends on VCCIO, the pin supply reference (see specific pin supply references in $\frac{1}{5}$ 5-10).

(2) Use an external 8-kΩ pullup or pulldown resistor for any voltage condition that requires adjustment for any associated internal pullup or pulldown resistance.


6.8 DMD Sub-LVDS Interface Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CM}	Common mode voltage		0.8	0.9	1.0	V
V _{CM} (Δpp) ⁽¹⁾	V _{CM} change peak-to-peak (during switching)				75	mV
V _{CM} (Δss) ⁽¹⁾	V _{CM} change steady state		-10		10	mV
V _{OD} ⁽²⁾	Differential output voltage magnitude		170	250	350	mV
V _{OD} (Δ)	V _{OD} change (between logic states)		-10		10	mV
V _{OH}	Single-ended high-level output voltage		0.825	1.025	1.175	V
V _{OL}	Single-ended low-level output voltage		0.625	0.775	0.975	V
Tx _{term}	Internal differential termination		80	100	120	Ω
Tx _{load}	100-Ω differential PCB trace (50-Ω transmission lines)		0.5		6	inches

(1) See 🗵 6-1

(2) V_{OD} is the differential voltage measured across a 100- Ω termination resistance connected directly between the transmitter differential pins. $V_{OD} = V_P - V_N$, where P and N are the differential output pins. $|V_{OD}|$ is the magnitude of the peak-to-peak voltage swing across the P and N output pins (see \boxtimes 6-2). V_{CM} cancels out between signals when measured differentially, thus the reason V_{OD} swings relative to zero.

🛛 6-1. Common Mode Voltage

V_{CM} is removed when the signals are viewed differentially **2** 6-2. Differential Output Signal

6.9 DMD Low-Speed Interface Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER ⁽³⁾	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{OH(DC)}	DC output high voltage for DMD_LS_WDATA and DMD_LS_CLK		0.7 × VCC18		V
V _{OL(DC)}	DC output low voltage for DMD_LS_WDATA and DMD_LS_CLK			0.3 × VCC18	V
V _{OH(AC)} ⁽¹⁾	AC output high voltage for DMD_LS_WDATA and DMD_LS_CLK		0.8 × VCC18	VCC18 + 0.5	V
V _{OL(AC)} ⁽²⁾	AC output low voltage for DMD_LS_WDATA and DMD_LS_CLK		-0.5	0.2 × VCC18	V
Slew rate	DMD_LS_WDATA and DMD_LS_CLK	$V_{OL(DC)}$ to $V_{OH(AC)}$ for rising edge and $V_{OH(DC)}$ to $V_{OL(AC)}$ for rising edge	1.0	3.0	V/ns
	DMD_DEN_ARSTZ	$V_{OL(AC)}$ to $V_{OH(AC)}$ for rising edge	0.25		
	DMD_LS_RDATA		0.5		

(1) V_{OH(AC)} maximum applies to overshoot. When the DMD_LS_WDATA and DMD_LS_CLK lines include a proper 43-Ω series termination resistor, the DMD operates within the LPSDR input AC specifications.

(2) V_{OL(AC)} minimum applies to undershoot. When the DMD_LS_WDATA and DMD_LS_CLK lines include a proper 43-Ω series termination resistor, the DMD operates within the LPSDR input AC specifications.

(3) See 🗵 6-3 for DMD_LS_CLK, and DMD_LS_WDATA rise and fall times. See 🗵 6-4 for DMD_DEN_ARSTZ rise and fall times.

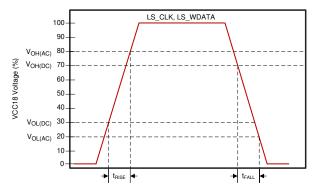


図 6-3. LS_CLK and LS_WDATA Slew Rate

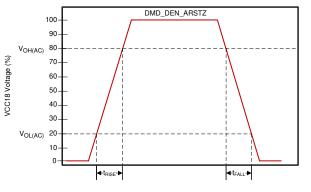
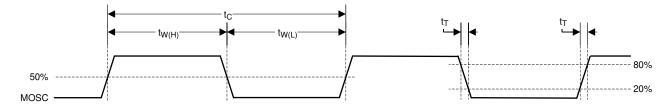


図 6-4. DMD_DEN_ARSTZ Slew Rate



6.10 System Oscillator Timing Requirements

			MIN	NOM	MAX	UNIT
f _{clk}	Clock frequency, MOSC (master oscillator clock) ⁽¹⁾		23.998	24.000	24.002	MHz
t _c	Cycle time, MOSC (clock period) ⁽¹⁾	See 🗵 6-5	41.663	41.667	41.670	ns
t _{w(H)}	Pulse duration as percent of t_c ⁽²⁾ , MOSC, high	50% to 50% reference points (signal)	40%	50%		
t _{w(L)}	Pulse duration as percent of t_c ⁽²⁾ , MOSC, low	50% to 50% reference points (signal)	40%	50%		
t _t	Transition time ⁽²⁾ , MOSC	20% to 80% reference points (rising signal) 80% to 20% reference points (falling signal)			10	ns
t _{jp}	Long-term, peak-to-peak, period jitter ⁽²⁾ , MOSC (that is the deviation in period from ideal period due solely to high frequency jitter)				2%	

(1) The frequency accuracy for MOSC is ±200 PPM. (This value includes impact to accuracy due to aging, temperature, and trim sensitivity.) The MOSC input does not support spread spectrum clock spreading.

(2) Applies only when driven by an external digital oscillator.

6-5. System Oscillators

6.11 Power Supply and Reset Timing Requirements

			MIN MAX	UNIT
t _{w(L)}	Pulse duration, active low, RESETZ	50% to 50% reference points (signal)	1.25	μs
t _r	Rise time, RESETZ ⁽¹⁾	20% to 80% reference points (signal)	0.5	μs
t _f	Fall time, RESETZ ⁽¹⁾	80% to 20% reference points (signal)	0.5	μs
t _{rise}	Rise time, VDD (during VDD ramp up at turn-on)	0.3 V to 1.045 V (VDD)	1	ms

(1) For more information on RESETZ, see $t \neq 2 > 5$.

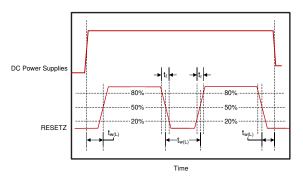
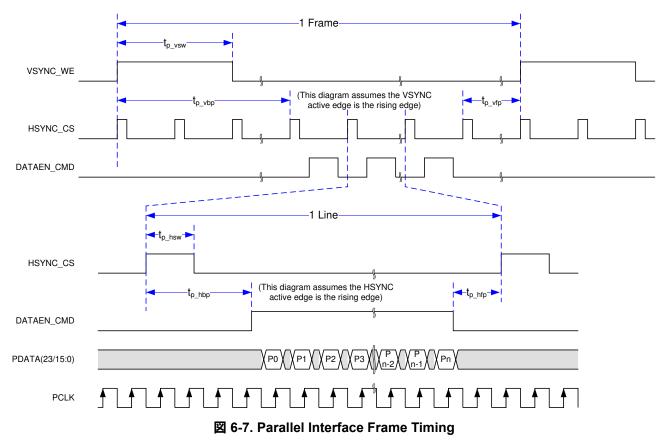


図 6-6. Power-Up and Power-Down RESETZ Timing

6.12 Parallel Interface Frame Timing Requirements


See for additional information

			MIN	MAX	UNIT
t _{p_vsw}	Pulse duration – default VSYNC_WE high	50% reference points	1		lines
t _{p_vbp}	Vertical back porch (VBP) – time from the active edge of VSYNC_WE to the active edge of HSYNC_CS for the first active line ⁽¹⁾	50% reference points	2		lines
t _{p_vfp}	Vertical front porch (VFP) – time from the active edge of the HSYNC_CS following the last active line in a frame to the active edge of VSYNC_WE ⁽¹⁾	50% reference points	1		lines
t _{p_tvb}	Total vertical blanking – the sum of VBP and VFP (t_{p_vbp} + t_{p_vfp})	50% reference points	See ⁽¹⁾		lines
t _{p_hsw}	Pulse duration – default HSYNC_CS high	50% reference points	4	128	PCLKs
t _{p_hbp}	Horizontal back porch (HBP) – time from the active edge of HSYNC_CS to the rising edge of DATAEN_CMD	50% reference points	4		PCLKs
t _{p_hfp}	Horizontal front porch (HFP) – time from the falling edge of DATAEN_CMD to the active edge of HSYNC_CS	50% reference points	8		PCLKs

(1) The minimum total vertical blanking is defined by the following equation: $t_{p_tvb}(min) = 6 + [8 \times Max(1, Source_ALPF/DMD_ALPF)]$ lines where:

• SOURCE_ALPF = Input source active lines per frame

6.13 Parallel Interface General Timing Requirements

			MIN	MAX	UNIT
fclock	PCLK frequency		1.0	155.0	MHz
t _{p_clkper}	PCLK period	50% reference points	6.45	1000	ns
t _{p_clkjit}	PCLK jitter	Max f _{clock}		see ⁽¹⁾	
t _{p_wh}	PCLK pulse duration high	50% reference points	2.43		ns
t _{p_wl}	PCLK pulse duration low	50% reference points	2.43		ns
t _{p_su}	Setup time – HSYNC_CS, DATAEN_CMD, PDATA(23:0) valid before the active edge of PCLK	50% reference points	0.9		ns
t _{p_h}	Hold time – HSYNC_CS, DATAEN_CMD, PDATA(23:0) valid after the active edge of PCLK	50% reference points	0.9		ns
t _t	Transition time	all signals; 20% to 80% reference points (rising signal); 80% to 20% reference points (falling signal)	0.2	2.0	ns
t _{setup} , 3DR	Setup time with respect to VSYNC ⁽²⁾	50% reference points	1.0		ms
t _{hold} , 3DR	Hold time with respect VSYNC ⁽³⁾	50% reference points	1.0		ms

Calculate clock jitter (in ns) using this formula: Jitter = $[1 / f_{clock} - 5.76 \text{ ns}]$. Setup and hold times must be met even with clock jitter. In other words, the 3DR signal must change at least 1.0 ms before VSYNC changes In other words, the 3DR signal must not change for at least 1.0 ms after VSYNC changes (1) (2)

(3)

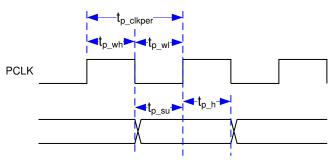


図 6-8. Parallel Interface Pixel Timing

6.14 BT656 Interface General Timing Requirements

The DLPC34xx controller input interface supports the industry standard BT.656 parallel video interface. See the appropriate ITU-R BT.656 specification for detailed interface timing requirements. ⁽²⁾

			MIN	MAX	UNIT
f _{cll}	PCLK frequency		1.0	33.5	MHz
t _{p_clkper}	PCLK period	50% reference points	29.85	1000	ns
t _{p_clkjit}	PCLK jitter	Max f _{clock}		See (1)	
t _{p_wh}	PCLK pulse duration high	50% reference points	10.0		ns
t _{p_wl}	PCLK pulse duration low	50% reference points	10.0		ns
t _{p_su}	Setup time – PDATA(7:0) before the active edge of PCLK	50% reference points	3.0		ns
t _{p_h}	Hold time – PDATA(7:0) after the active edge of PCLK	50% reference points	0.9		ns
t _t	Transition time – all signals	20% to 80% reference points (rising signal) 80% to 20% reference points (falling signal)	0.2	3.0	ns

(1) Calculate clock jitter (in ns) using this formula: Jitter = [1 / f_{clock} - 5.76 ns]. Clock jitter must maintain setup and hold times. BT.656 data bits must be mapped to the DLPC3470 PDATA bus as shown in ⊠ 6-9 shows BT.656 bus mode YCbCr 4:2:2 source PDATA (23:0) mapping.

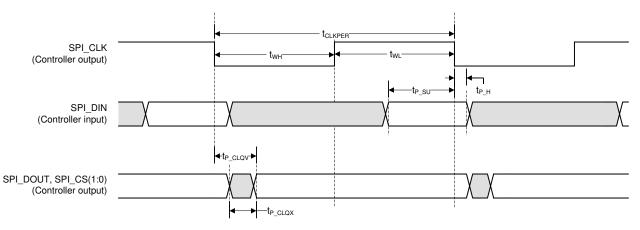
(2) The BT.656 interface accepts 8-bits per color, 4:2:2 YCbCr data encoded per the industry standard through PDATA(7:0) on the active edge of PCLK. See 🛛 6-9.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	PDATA(7:0) of the input pixel data bus
	•	•	•	V	V	V	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	Bus assignment mapping
n/a	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0	Data bit mapping on controller pin															

図 6-9. BT.656 Interface Mode Bit Mapping

6.15 Flash Interface Timing Requirements

The DLPC34xx flash memory interface consists of a SPI flash serial interface. The DLPC34xx can support 1- to 128-Mb flash memories.^{(2) (3) (4)}


			MIN	MAX	UNIT
f _{clock}	SPI_CLK frequency	See ⁽¹⁾	1.4	36.0	MHz
t _{p_clkper}	SPI_CLK period	50% reference points	27.8	704	ns
t _{p_wh}	SPI_CLK pulse duration high	50% reference points	352		ns
t _{p_wl}	SPI_CLK pulse duration low	50% reference points	352		ns
t _t	Transition time – all signals	20% to 80% reference points (rising signal) 80% to 20% reference points (falling signal)	0.2	3.0	ns
t _{p_su}	Setup time – SPI_DIN valid before SPI_CLK falling edge	50% reference points	10.0		ns
t _{p_h}	Hold time – SPI_DIN valid after SPI_CLK falling edge	50% reference points	0.0		ns
t _{p_clqv}	SPI_CLK clock falling edge to output valid time – SPI_DOUT and SPI_CSZ	50% reference points		1.0	ns
t _{p_clqx}	SPI_CLK clock falling edge output hold time – SPI_DOUT and SPI_CSZ	50% reference points	-3.0	3.0	ns

(1) This range include the ±200 ppm of the external oscillator (but no jitter).

(2) Standard SPI protocol is to transmit data on the falling edge of SPI_CLK and capture data on the rising edge. The DLPC34xx does transmit data on the falling edge, but it also captures data on the falling edge rather than the rising edge. This provides support for SPI devices with long clock-to-Q timing. DLPC3470 hold capture timing has been set to facilitate reliable operation with standard external SPI protocol devices.

(3) With the above output timing, DLPC34xx provides the external SPI device 8.2-ns input set-up and 8.2-ns input hold, relative to the rising edge of SPI_CLK.

(4) For additional requirements of the external flash device view the セクション 7.3.4 section.

6-10. Flash Interface Timing

6.16 Other Timing Requirements

		MIN	MAX	UNIT
t _{rise} , all ^{(1) (2)}	20% to 80% reference points		10	ns
t_{fall} , all ⁽¹⁾ ⁽²⁾	80% to 20% reference points		10	ns
t _{rise} , PARKZ ⁽²⁾	20% to 80% reference points		150	ns
t _{fall} , PARKZ ⁽²⁾	80% to 20% reference points		150	ns
t_w , GPIO_08 (normal park) pulse width $^{(3)}$		200		ms
I ² C baud rate			100	kHz

(1) Unless noted elsewhere, the following signal transition times are for all DLPC34xx signals.

(2) This is the recommended signal transition time to avoid input buffer oscillations.

(3) The pulse width encompasses the minimum high time and the minimum low time for this signal.

6.17 DMD Sub-LVDS Interface Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _R ⁽¹⁾	Differential output rise time				250	20
t _F ⁽¹⁾	Differential output fall time				250	ps
t _{switch}	DMD HS Clock switching rate			1200		Mbps
f _{clock}	DMD HS Clock frequency			600		MHz
DCout	DMD HS Clock output duty cycle		45%	50%	55%	

(1) Rise and fall times are defined for the differential V_{OD} signal as shown in \boxtimes 6-2.

6.18 DMD Parking Switching Characteristics

See (2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{park}	Normal Park time ⁽¹⁾				20	ms
t _{fast park}	Fast park time ⁽³⁾				32	μs

(1) Normal park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the normal park request (GPIO_08 goes low).

(2) The oscillator and power supplies must remain active for at least the duration of the park time. The power supplies must additionally be held on for a time after parking is completed to satisfy DMD requirements. See セクション 9.2 and the appropriate DMD or PMIC datasheet for more information.

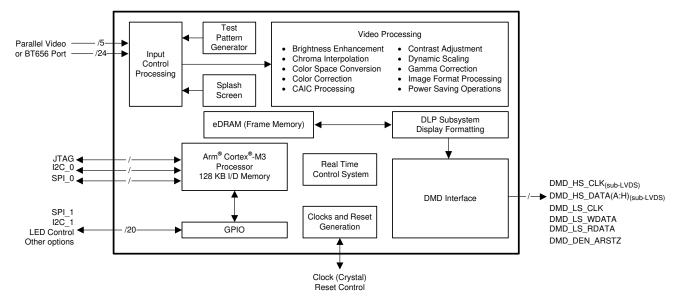
(3) Fast park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the fast park request (PARKZ goes low).

6.19 Chipset Component Usage Specification

The DLPC3470 is a component of a DLP chipset. Reliable function and operation of the DLP chipset requires that it be used with all components (DMD, PMIC, and controller) of the applicable DLP chipset.

表 6-1. DLPC3470 Supported DMDs and PMICs

DLPC3470 DLP Chipset					
DMD -	DLP2010LC				
	DLP2010NIR				
	DLPA2000				
PMIC	DLPA2005				
	DLPA3000				



7 Detailed Description

7.1 Overview

The DLPC3470 controller is part of the chipset that includes the DLP2010LC or DLP2010NIR (.2 WVGA) DMD, and the DLPAxxxx PMIC (which includes an LED driver). To ensure reliable operation of the DLP chipset, the DLPC3470 must always be used with the supported devices shown in $\gtrsim 6-1$.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Input Source

7.3.1.1 Supported Resolution and Frame Rates

A 7-1. Supported liput Source Ranges (CAC)								
			SOURCE RESOLUTION RANGE (7)					
INTERFACE	BITS/PIXEL (5) IM	IMAGE TYPE	HORIZONTAL		VERTICAL		FRAME RATE	
			LANDSCAPE	PORTRAIT	LANDSCAPE	PORTRAIT		
Parallel	24 max	2D only	320 to 1280	200 to 800	200 to 800	320 to 1280	10 to 242 Hz	
Parallel	24 max	3D only	320 to 1280	200 to 720	200 to 720	320 to 1280	100 ±2 Hz 120 ±2 Hz	
BT.656-NTSC (1)	See ⁽⁶⁾	2D only	720	n/a	240	n/a	60 ±2 Hz	
BT.656-PAL (1)	See ⁽⁶⁾	2D only	720	n/a	288	n/a	50 ±2 Hz	

表 7-1. Supported Input Source Ranges^{(2) (3) (4)}

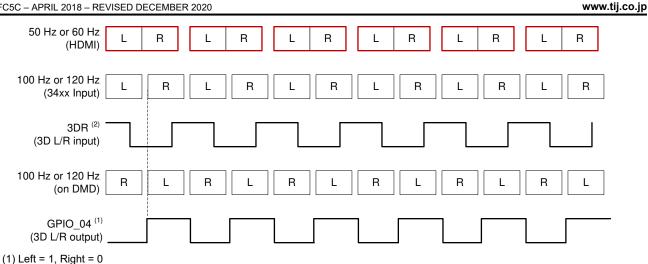
(1) All parameters in this row follow the BT.656 standard. The image format is always landscape.

(2) The application must remain within specifications for all source interface parameters such as maximum clock rate and maximum line rate.

(3) The maximum DMD size for all rows in the table is 854 × 480 pixels.

(4) To achieve the ranges stated, the firmware must support the source parameters. Review the firmware release notes or contact TI to determine the latest available frame rate and input resolution support for a given firmware image.

(5) Bits per pixel does not necessarily equal the number of data pins used on the DLPC34xx controller.


(6) BT.656 uses 16-bit 4:2:2 YCr/Cb.

(7) By using an I²C command, portrait image inputs can be rotated on the DMD by minus 90 degrees so that the image is displayed in landscape format when not using a light control mode.

7.3.1.2 3-D Display

For 3D sources on the video input interface, images must be frame sequential (L, R, L, ...) when input to the DLPC34xx controller. Any processing required to unpack 3D images and to convert them to frame sequential input must be done by external electronics prior to inputting the images to the controller. Each 3D source frame input must contain a single eye frame of data, separated by a VSYNC, where an eye frame contains image data for a single left or right eye. The signal 3DR input to the controller indicates whether the input frame is for the left eye or right eye.

Each DMD frame is displayed at the same rate as the input interface frame rate. \boxtimes 7-1 below shows the typical timing for a 50-Hz or 60-Hz 3D HDMI source frame, the input interface of the DLPC34xx controller, and the DMD. In general, video frames sent over the HDMI interface pack both the left and right content into the same video frame. GPIO_04 is optionally sent to a transmitter on the system PCB for wirelessly transmitting a synchronization signal to 3D glasses (usually an IR sync signal). The glasses are then in phase with the DMD images displayed. Alternately, the *3D Glasses Operation* section shows how DLP link pulses can be used instead.

(2) 3DR must toggle at least 1 ms before VSYNC

Z 7-1. 3D Display Left and Right Frame Timing

7.3.1.3 Parallel Interface

The parallel interface complies with standard graphics interface protocol, which includes the signals listed in $\frac{1}{7}$ -2.

表	7-2.	Parall	el I	nter	face	Signa	ls

SIGNAL	DESCRIPTION
VSYNC_WE	vertical sync
HSYNC_CS	horizontal sync
DATAEN_CMD	data valid
PDATA	24-bit data bus
PCLK	pixel clock
PDM_CVS_TE	parallel data mask (optional)

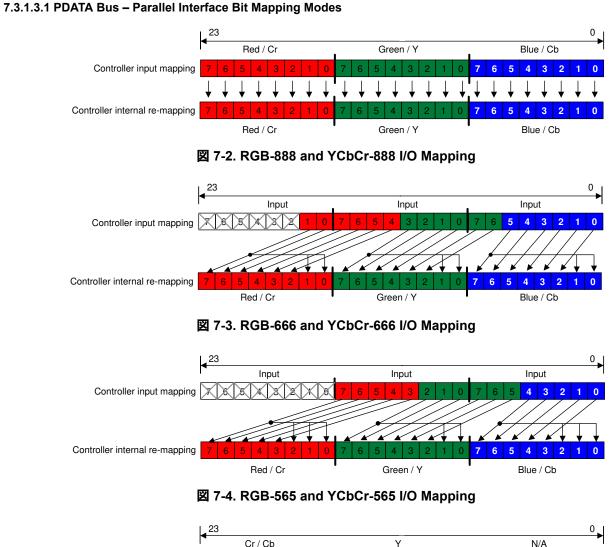
Note

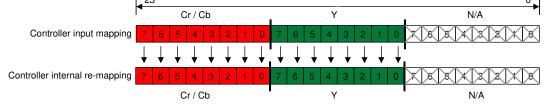
VSYNC_WE must remain active at all times when using parallel RGB mode. When this signal is no longer active, the display sequencer stops and causes the LEDs to turn off.

The active edge of both sync signals are variable. The *Parallel Interface Frame Timing Requirements* section shows the relationship of these signals.

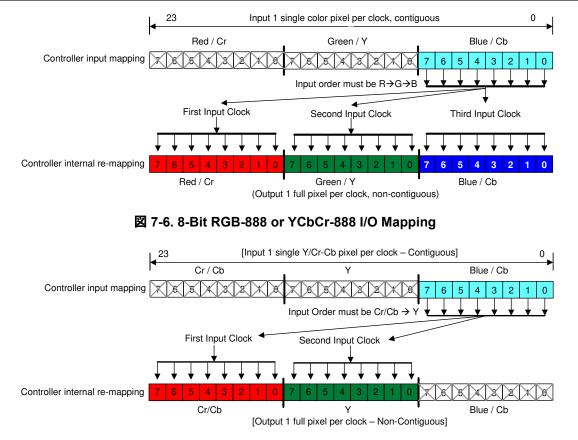
An optional parallel data mask signal (PDM_CVS_TE) allows periodic frame updates to be stopped without losing the displayed image. When active, PDM_CVS_TE acts as a data mask and does not allow the source image to be propagated to the display. A programmable PDM polarity parameter determines if it is active high or active low. PDM_CVS_TE defaults to active high. To disable the data mask function, tie PDM_CVS_TE to a logic low signal. PDM_CVS_TE must only change during vertical blanking.

The parallel interface supports six data transfer formats:


- 24-bit RGB888 or 24-bit YCbCr888 on a 24 data wire interface
- 18-bit RGB666 or 18-bit YCbCr666 on an 18 data wire interface
- 16-bit RGB565 or 16-bit YCbCr565 on a 16 data wire interface
- 16-bit YCbCr 4:2:2 (standard sampling assumed to be Y0Cb0, Y1Cr0, Y2Cb2, Y3Cr2, Y4Cb4, Y5Cr4, ...)
- 8-bit RGB888 or 8-bit YCbCr888 serial (1 color per clock input; 3 clocks per displayed pixel) on an 8 data wire interface


Texas

INSTRUMENTS



• 8-bit YCbCr 4:2:2 serial (1 color per clock input; 2 clocks per displayed pixel) on an 8 data wire interface

7.3.2 Pattern Display

Pattern display is one of the key capabilities of the DLPC3470 display and light controller. When the DLPC3470 controller is configured for pattern display, most video processing functions can be bypassed to allow for accurate pattern display. For user flexibility and simple system design the DLPC3470 controller supports both external pattern and internal pattern streaming modes. In external pattern streaming mode, patterns are sent to the DLPC3470 controller over parallel interface. In internal pattern streaming mode, 1D patterns are pre-loaded in flash memory and a host command is sent to DLPC3470 controller to display the patterns. Internal pattern mode allows for a simple system design by eliminating the need for any external processor to generate and sent 1D patterns to the DLPC3470 controller.

The DLPC3470 controller has two optional trigger out signals and one optional trigger in signal to synchronize patterns with a camera, sensor, or other peripherals.

2 / O. Fattern Display orginals					
SIGNAL NAME	DESCRIPTION				
TRIG OUT 1 (TSTPT 4)	External pattern mode: Active at the beginning of each input frame.				
	Internal pattern mode: Active at the beginning of a predefined group of patterns.				
TRIG_OUT_2 (GPIO_07)	Active during display of each pattern. When operating in external pattern mode one video frame can contain multiple patterns.				
TRIG_IN (3DR)	Active in Internal Pattern Display mode only. An external input trigger signal is used to advance to the next pattern in internal pattern mode.				

表 7-3	Pattern	Disnlav	Signals
<u> 1</u> 2 2 1 - 3 - - 3 - - 3 - 3 -	i allein	Display	orginals

7.3.2.1 External Pattern Mode

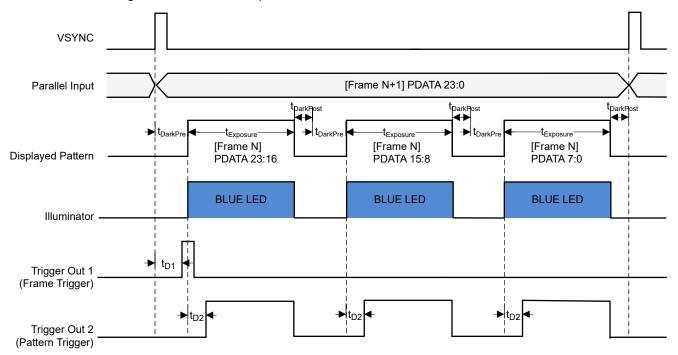
External pattern mode supports 8-bit and 1-bit monochrome or RGB patterns.

7.3.2.1.1 8-bit Monochrome Patterns

In 8-bit external pattern mode, the DLPC3470 controller supports up to 120-Hz input frame rate (VSYNC). In this mode, the 24-bit input data sent over the parallel interface can be configured as a combination of 1 (8-bits), 2 (16-bits), or 3 (24-bits) 8-bit patterns. \neq 1 calculates the maximum pattern rate for an 8-bit pattern.

120 Hz × 3 = 360 Hz

(1)


where

• the maximum allowed input frame rate is 120 Hz

The DLPC3470 controller firmware allows for the following user programmability.

- Exposure time (t_{Exposure}): Time during which a pattern displays and the illumination is on.
- DarkPre time (t_{DarkPre}): Dark time (before the pattern exposure) during which no pattern displays and the illumination is off.
- DarkPost time (t_{DarkPost}): Dark time (after the pattern exposure) during which no pattern displays and the illumination is off.
- Number of 8-bit patterns within a frame: 1, 2, or 3 within each frame period
- Selection of Illuminator that is on for each 8-bit pattern.
- TRIG_OUT_1 and TRIG_OUT_2 signal configuration and delay.

 \boxtimes 7-8 shows a configuration with 3 × 8-bit patterns.

 t_{D1} is the configurable delay for the frame trigger

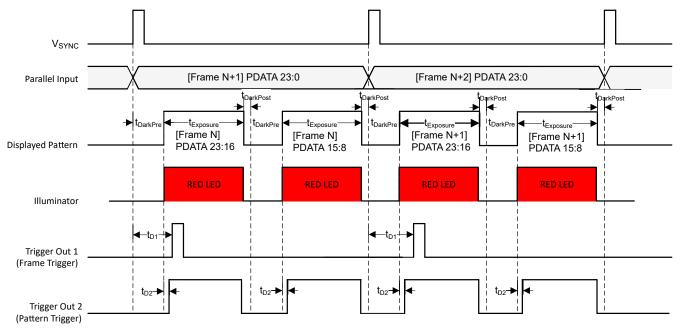

 t_{D2} is the configurable delay for the sub-frame trigger

図 7-8.3 × 8-bit (Blue) Pattern Configurations

- 3 × 8-bit patterns are displayed within each input VSYNC frame period.
- t_{DarkPre}, t_{Exposure} and t_{DarkPost}are the same for each pattern within a frame period.
- The sum of dark time and exposure time (t_{DarkPre} + t_{Exposure} + t_{DarkPost}) for the three patterns must be equal to or less than the full frame period. If the sum is less than the full frame period, additional dark time will be appended to the end of the last pattern.
- The Blue LED is configured to be on for each pattern.
- TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to input V_{SYNC}.
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of the pattern and is set once per pattern within a frame.

 \boxtimes 7-9 shows a configuration with 2 × 8-bit patterns.

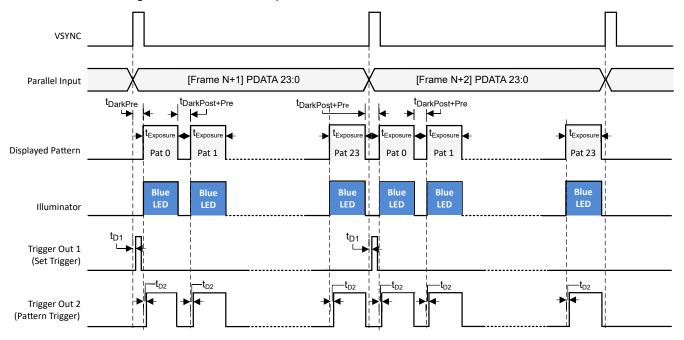
☑ 7-9. 2 × 8-bit (Red) Pattern Configurations

- 2 × 8-bit patterns are displayed within each input VSYNC frame period.
- t_{DarkPre}, t_{Exposure} and t_{DarkPost} are the same for each pattern within a frame period.
- The sum of dark time and exposure time (t_{DarkPre} + t_{Exposure} + t_{DarkPost}) for the three patterns must be equal to or less than the full frame period. If the sum is less than the full frame period, additional dark time will be appended to the end of the last pattern.
- The Red LED is configured to be ON for each pattern.
- TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to input V_{SYNC}.
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of the pattern and is set once per pattern within a frame.

 \boxtimes 7-10 shows a configuration with 1 × 8-bit patterns.

図 7-10. 1 × 8-bit (Green) Pattern Configurations

- 1 × 8-bit pattern is displayed within each input VSYNC frame period.
- t_{DarkPre}, t_{Exposure} and t_{DarkPost} are the same for each pattern within a frame period.
- The sum of dark time and exposure time (t_{DarkPre} + t_{Exposure} + t_{DarkPost}) for the three patterns must be equal to
 or less than the full frame period. If the sum is less than the full frame period, additional dark time will be
 appended to the end of the last pattern.
- The Green LED is configured to be on for each pattern.
- TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to input V_{SYNC}.
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of the pattern and is set once per pattern within a frame.


7.3.2.1.2 1-Bit Monochrome Patterns

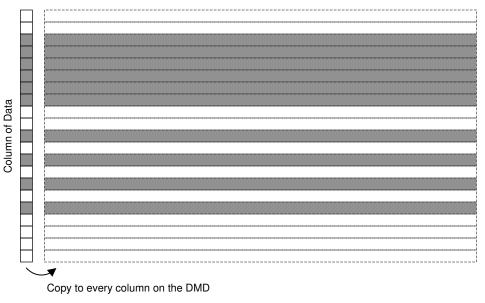
Similar to the 8-bit external pattern mode, the maximum supported 24-bit input frame for 1-bit external pattern mode is 104.2 Hz. In 1-bit pattern mode each of the 24-bit inputs are treated as separate binary patterns resulting in a maximum of 24 patterns. The maximum pattern rate for each 1-bit pattern is 2500 Hz.

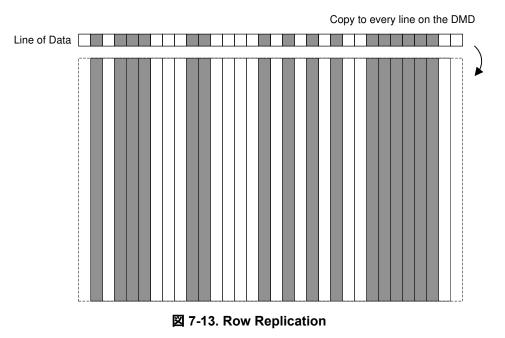
The DLPC3470 controller firmware allows for the following user programmability:

- Exposure time: Time during which a pattern is displayed.
- Dark time: Time during which no pattern is displayed and the illumination in off.
- Number of 1-bit patterns within a frame up to maximum of 24.
- Illuminator: Illuminator that is on for each 1-bit pattern. User defined illuminator is auto selected for all the patterns within a frame. User cannot select different illuminator for different 1-bit patterns within a frame.
- TRIG_OUT_1 and TRIG_OUT_2 signal configuration and delay.

 \boxtimes 7-11 shows a configuration with 24 × 1-bit patterns.

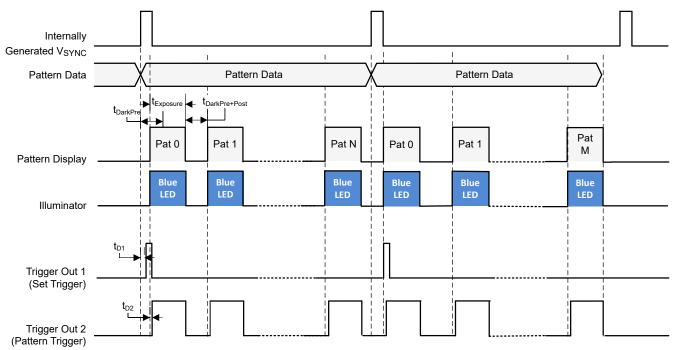
図 7-11. 24 × 1-bit (Blue) Pattern Configurations


- 24 × 1-bit patterns are displayed within each input VSYNC frame period.
- t_{DarkPre}, t_{Exposure} and t_{DarkPost} are the same for each pattern within a frame period.
- The sum of dark time and exposure time (t_{DarkPre} + t_{Exposure} + t_{DarkPost}) for all 1-bit patterns must be equal to or less than the full frame period. If the sum is less than the full frame period, additional dark time will be appended to the end of the last pattern.
- The Blue LED is configured to be ON for each pattern.
- TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to input V_{SYNC}.
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of the pattern and is set once per pattern within a frame.


7.3.2.2 Internal Pattern Mode

There are two key differences between internal and external pattern mode:

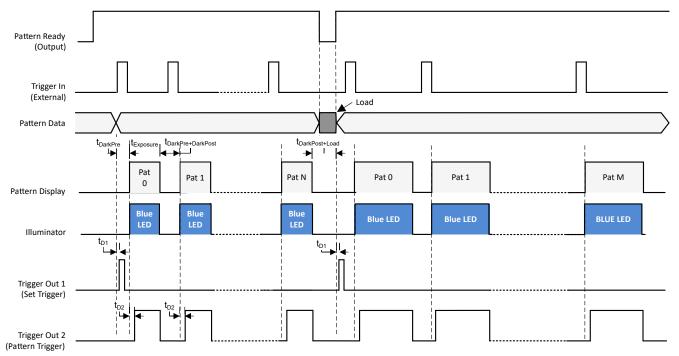
- Internal pattern mode only supports 1D patterns i.e the pattern data is the same across the entire row or column of the DMD (⊠ 7-12, ⊠ 7-13).
- Internal pattern mode enables user to design a simple system by eliminating need of an external processor to generate and send patterns every frame. In internal pattern mode one row or one column patterns are preloaded in the flash memory and a command is send to DLPC3470 controller to display the patterns. Implementation details on how to create patterns, save patterns in Flash memory and load patterns from flash memory into the DLPC3470 controller's internal memory are described in Software Programmers Guide.



Internal pattern mode additionally provides two configurations to trigger the display of patterns, free running mode (shown in \boxtimes 7-14) and trigger in mode (shown in \boxtimes 7-15).

7.3.2.2.1 Free Running Mode

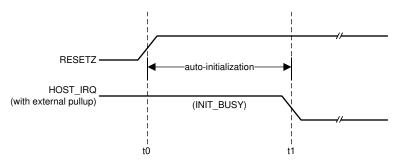
In free running mode the DLPC3470 controller generates an internal synchronization signal to display pre-stored patterns. User sends an I²C command to instruct the DLPC3470 controller to download the 1D patterns from flash memory into DLPC3470 controller's internal memory and begin display of the 1D patterns.



- The device displays multiple 1D patterns within an internally-generated V_{SYNC} period. t_{Exposure} (exposure time), t_{DarkPre} and t_{DarkPost} (dark time) are equal for all the 1D patterns within one internally generated V_{SYNC} frame.
- The blue LED is configured to be on for each pattern.
- TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to internally generated V_{SYNC}.
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of each pattern.
- V_{SYNC} is generated internally according to different sets of patterns stored in the SPI flash memory.

7.3.2.2.2 Trigger In Mode

Trigger In mode provides higher level of control to the user for displaying patterns. In this mode, the user determines when to display the pattern by sending an external trigger signal to the DLPC3470 controller. The DLPC3470 controller outputs a Pattern Ready signal to let the user know when DLPC3470 controller is ready to accept an external trigger signal.


🛛 7-15. Trigger In Mode

- The DLPC3470 controller sets the Pattern Ready signal high to denote that the DLPC3470 controller is ready to accept the Trigger In signal.
- The user sends the external trigger input signal to the DLPC3470 controller to begin the display of the next pattern with t_{Exposure} (exposure time), t_{DarkPre} and t_{DarkPost} (dark time).
- The Blue LED is configured to be on for each pattern.
- TRIG_OUT_1 (Pattern Set Trigger) is configured active high polarity and will have a minimum pulse width of 20 microseconds. TRIG_OUT_1 delay (t_{D1}) is configured with respect to external trigger input (TRIG_IN).
- TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern exposure. TRIG_OUT_2 delay (t_{D2}) is configured with reference to the start of each pattern exposure.

7.3.3 Device Startup

- The HOST_IRQ signal is provided to indicated when the system has completed auto-initialization.
- While reset is applied, HOST_IRQ is tri-stated (an external pullup resistor pulls the line high).
- HOST_IRQ remains tri-stated (pulled high externally) until the boot process completes. While the signal is pulled high, this indicates that the controller is performing boot-up and auto-initialization.
- As soon as possible after the controller boots-up, the controller drives HOST_IRQ to a logic high state to indicate that the controller is continuing to perform auto-initialization (no real state changes occur on the external signal).
- The software sets HOST_IRQ to a logic low state at the completion of the auto-initialization process. At the falling edge of the signal, the initialization is complete.
- The DLPC34xx controller is ready to receive commands through I²C or accept video over the video interface only after auto-initialization is complete.
- The controller initialization typically completes (HOST_IRQ goes low) within 500 ms of RESETZ being asserted. However, this time may vary depending on the software version and the contents of the user configurable auto initialization file.

t0: rising edge of RESETZ; auto-initialization begins

t1: falling edge of HOST IRQ; auto-initialization is complete

図 7-16. HOST_IRQ Timing

7.3.4 SPI Flash

7.3.4.1 SPI Flash Interface

The DLPC34xx controller requires an external SPI serial flash memory device to store the firmware. Follow the below guidelines and requirements in addition to the requirements listed in the *Flash Interface Timing Requirements* section.

The controller supports a maximum flash size of 128 Mb (16 MB). See the DLPC34xx Validated SPI Flash Device Options table for example compatible flash options. The minimum required flash size depends on the size of the utilized firmware. The firmware size depends upon a variety of factors including the number of sequences, lookup tables, and splash images.

The DLPC34xx controller uses a single SPI interface that complies to industry standard SPI flash protocol. The device will begin accessing the flash at a nominal 1.42-MHz frequency before running at a nominal 30-MHz rate. The flash device must support these rates.

The controller has two independent SPI chip select (CS) control lines. Ensure that the chip select pin of the flash device is connects to SPI0_CSZ0 as the controller boot routine is executes from the device connected to chip select zero. The boot routine uploads program code from flash memory to program memory then transfers control to an auto-initialization routine within program memory.

The DLPC34xx is designed to support any flash device that is compatible with the modes of operation, features, and performance as defined in the Additional DLPC34xx SPI Flash Requirements table below \pm 7-4, \pm 7-5, and \pm 7-6.

表 7-4. Additional DLPC34xx SPI Flash Requirements

FEATURE	DLPC34xx REQUIREMENT
SPI interface width	Single
SPI polarity and phase settings	SPI mode 0
Fast READ addressing	Auto-incrementing
Programming mode	Page mode
Page size	256 B
Sector size	4-KB sector
Block size	Any
Block protection bits	0 = Disabled
Status register bit(0)	Write in progress (WIP), also called flash busy
Status register bit(1)	Write enable latch (WEN)
Status register bits(6:2)	A value of 0 disables programming protection
Status register bit(7)	Status register write protect (SRWP)
Status register bits(15:8) (that is expansion status byte)	Because the DLPC34xx controller supports only single-byte status register R/W command execution, it may not be compatible with flash devices that contain an expansion status byte. However, as long as the expansion status byte is considered optional in the byte 3 position and any write protection control in this expansion status byte defaults to unprotected, then the flash device is likely compatible with the DLPC34xx.

The DLPC34xx controller is intended to support flash devices with program protection defaults of either enabled or disabled. The controller assumes the default is enabled and proceeds to disable any program protection as part of the boot process.

The DLPC34xx issues these commands during the boot process:

- A write enable (WREN) instruction to request write enable, followed by
- A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit
- After the write enable latch (WEL) bit is set, a write status register (WRSR) instruction that writes 0 to all 8 bits (this disables all programming protection)

Prior to each program or erase instruction, the DLPC34xx controller issues similar commands:

- A write enable (WREN) instruction to request write enable, followed by
- A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit
- · After the write enable latch (WEL) bit is set, the program or erase instruction

Note that the flash device automatically clears the write enable status after each program and erase instruction.

表 7-5. SPI Flash Instruction OpCode and Access Profile Compatibility Requirements

SPI FLASH COMMAND	BYTE 1 (OPCODE)	BYTE 2	BYTE 3	BYTE 4	BYTE 5	BYTE 6
Fast READ (1 output)	0x0B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾
Read status	0x05	N/A	N/A	STATUS(0)		
Write status	0x01	STATUS(0)	See ⁽²⁾			
Write enable	0x06					
Page program	0x02	ADDRS(0)	ADDRS(1)	ADDRS(2)	DATA(0) ⁽¹⁾	
Sector erase (4 KB)	0x20	ADDRS(0)	ADDRS(1)	ADDRS(2)		
Chip erase	0xC7					

(1) Shows the first data byte only. Data continues.

(2) Access to a second (expansion) write status byte not supported by the DLPC34xx controller.

表 7-6 below and the *Flash Interface Timing Requirements* section list the specific timing compatibility requirements for a DLPC34xx compatible flash device.

SPI FLASH TIMING PARAMETER ^{(1) (2)}	SYMBOL	ALTERNATE SYMBOL	MIN	MAX	UNIT	
Access frequency (all commands)	FR	f _C	≤ 1.4	≥ 30.1	MHz	
Chip select high time (also called chip select deselect time)	t _{SHSL}	t _{CSH}	≤ 200		ns	
Output hold time	t _{CLQX}	t _{HO}	≥ 0		ns	
Clock low to output valid time	t _{CLQV}	t _V		≤ 11	ns	
Data in set-up time	t _{DVCH}	t _{DSU}	≤ 5		ns	
Data in hold time	t _{CHDX}	t _{DH}	≤ 5		ns	

表 7-6. SPI Flash Key Timing Parameter Compatibility Requirements

(1) The timing values apply to the specification of the peripheral flash device, not the DLPC34xx controller. For example, the flash device minimum access frequency (FR) must be 1.4 MHz or less and the maximum access frequency must be 30.1 MHz or greater.

(2) The DLPC34xx does not drive the HOLD or WP (active low write protect) pins on the flash device, and thus these pins must be tied to a logic high on the PCB through an external pullup.

In order for the DLPC34xx controller to support 1.8-V, 2.5-V, or 3.3-V serial flash devices, the VCC_FLSH pin must be supplied with the corresponding voltage. The DLPC34xx Validated SPI Flash Device Options table contains a list of validated 1.8-V, 2.5-V, or 3.3-V compatible SPI serial flash devices supported by the DLPC34xx controller.

表 7-7. DLPC34xx Validated SPI Flash Device Options^{(1) (2) (3)}

DENSITY (Mb)	VENDOR	PART NUMBER	PACKAGE SIZE			
1.8-V COMPATIBLE DEVICES						
4 Mb	Winbond	W25Q40BWUXIG	2 × 3 mm USON			
4 Mb	Macronix	MX25U4033EBAI-12G	1.43 × 1.94 mm WLCSP			
8 Mb	Macronix	MX25U8033EBAI-12G	1.68 × 1.99 mm WLCSP			
2.5- OR 3.3-V COMPATIBLE DEVICES						
16 Mb	Winbond	W25Q16CLZPIG	5 × 6 mm WSON			

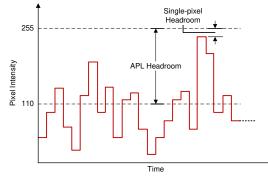
(1) The flash supply voltage must equal VCC_FLSH supply voltage on the DLPC34xx controller. Make sure to order the device that supports the correct supply voltage as multiple voltage options are often available.

(2) Numonyx (Micron) serial flash devices typically do not support the 4 KB sector size compatibility requirement for the DLPC34xx controller.

(3) The flash devices in this table have been formally validated by TI. Other flash options may be compatible with the DLPC34xx controller, but they have not been formally validated by TI.

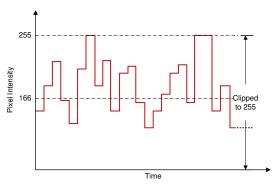
7.3.4.2 SPI Flash Programming

The SPI pins of the flash can directly be driven for flash programming while the DLPC34xx controller I/Os are tristated. SPI0_CLK, SPI0_DOUT, and SPI0_CSZ0 I/O can be tri-stated by holding RESETZ in a logic low state while power is applied to the controller. The logic state of the SPI0_CSZ1 pin is not affected by this action. Alternatively, the DLPC34xx controller can program the SPI flash itself when commanded via I²C if a valid firmware image has already been loaded and the controller is operational.


7.3.5 l²C Interface

Both of the DLPC34xx I²C interface ports support a 100-kHz baud rate. Because I²C interface transactions operate at the speed of the slowest device on the bus, there is no requirement to match the speed of all devices in the system.

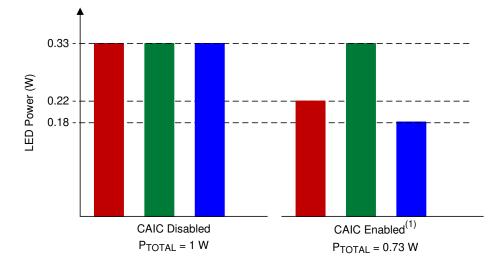
7.3.6 Content Adaptive Illumination Control (CAIC)


Content Adaptive Illumination control (CAIC) is part of the IntelliBright[®] suite of advanced image processing algorithms that adaptively enhances brightness and reduces power. In common real-world image content most pixels in the images are well below full scale for the for the R (red), G (green), and B (blue) digital channels input to the DLPC34xx. As a result of this, the average picture level (APL) for the overall image is also well below full scale, and the dynamic range for the collective set of pixel values is not fully used. CAIC takes advantage of the headroom between the source image APL and the top of the available dynamic range of the display system.

CAIC evaluates images on a frame-by-frame basis and derives three unique digital gains, one for each of the R, G, and B color channel. During image processing, CAIC applies each gain to all pixels in the associated color channel. The calculated gain is applied to all pixels in that channel so that the pixels as a group collectively shift upward and as close to full scale as possible. To prevent any image quality degradation, the gains are set at the point where just a few pixels in each color channel are clipped. The Source Pixels for a Color Channel and Pixels for a Color Channel After CAIC Processing figures below show an example of the application of CAIC for one color channel.

(1) APL = 110

図 7-17. Source Pixels for a Color Channel



(1) APL = 166 (2) Channel gain = 166/110 = 1.51

図 7-18. Pixels for a Color Channel After CAIC Processing

Above, 🖾 7-18 shows the gain that is applied to a color processing channel inside the DLPC34xx. Additionally, CAIC adjusts the power for the R, G, and B LED by commanding different LED currents. For each color channel of an individual frame, CAIC intelligently determines the optimal combination of digital gain and LED power. The user configurable CAIC settings heavily influence the amount of digital gain that is applied to a color channel and the LED power for that color.

(1) With CAIC enabled, if red and blue LEDs require less than nominal power for a given input image, the red and blue LED power will reduce.

図 7-19. CAIC Power Reduction Mode (for Constant Brightness)

As CAIC applies a digital gain to each color channel and adjusts the power to each LED, CAIC ensures the resulting color balance in the final image matches the target color balance for the projector system. Thus, the effective displayed white point of images is held constant by CAIC from frame to frame.

CAIC can be used to increase the overall image brightness while holding the total power for all LEDs constant, or CAIC can be used to hold the overall image brightness constant while decreasing LED power. In summary, CAIC has two primary modes of operation:

- Power reduction mode holds overall image brightness constant while reducing LED power
- Enhanced brightness mode holds overall LED power constant while enhancing image brightness

In power reduction mode, since the R, G, and B channels can be gained up by CAIC inside the DLPC34xx, the LED power can be reduced for any color channel until the brightness of the color on the screen is unchanged. Thus, CAIC can achieve an overall LED power reduction while maintaining the same overall image brightness as if CAIC was not used. \boxtimes 7-19 shows an example of LED power reduction by CAIC for an image where the red and blue LEDs can consume less power.

In enhanced brightness mode the R, G, and B channels can be gained up by CAIC with LED power generally being held constant. This results in an enhanced brightness with no power savings.

While there are two primary modes of operation described, the DLPC34xx actually operates within the extremes of pure power reduction mode and enhanced brightness mode. The user can configure which operating mode the DLPC34xx will more closely follow by adjusting the CAIC gain setting as described in the software programmer's guide.

In addition to the above functionality, CAIC also can be used as a tool with which FOFO (full-on full-off) contrast on a projection system can be improved. While operating in power reduction mode, the DLPC34xx reduces LED power as the intensity of the image content for each color channel decreases. This will result in the LEDs operating at nominal settings with full-on content (a white screen) and reducing power output until the dimmest possible content (a black screen) is reached. In this latter case, the LEDs will be operating at minimum power output capacity and thus producing the minimum possible amount of off-state light. This optimization provided by CAIC will thereby improve FOFO contrast ratio. The given contrast ratio will further increase as nominal LED current (full-on state) is increased.

7.3.7 Local Area Brightness Boost (LABB)

Local area brightness boost (LABB), part of the IntelliBright[™] suite of advanced image processing algorithms, adaptively gains up regions of an image that are dim relative to the average picture level. The controller applies significant gain to some regions of the image, and applies little or no gain to other regions. The LABB algorithm evaluates images frame-by-frame and calculates the local area gains to be used for each image. Since many images have a net overall boost in gain, even if the controller applies no gain to some parts of the image, the controller boosts the overall perceived brightness of the image.

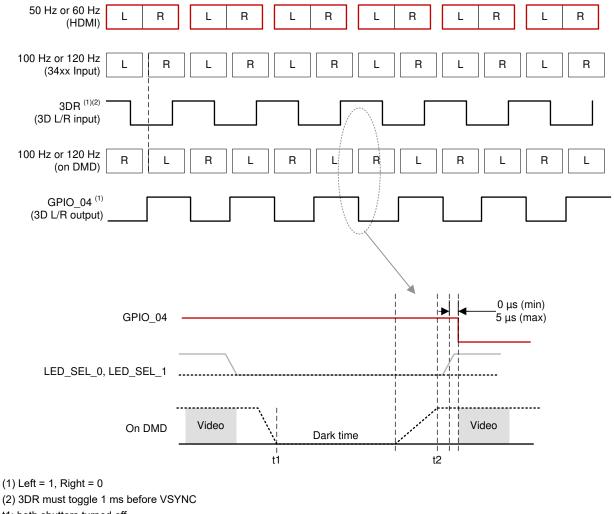
☑ 7-20 below shows a split screen example of the impact of the LABB algorithm for an image that includes dark areas.

図 7-20. LABB enabled (left side) and LABB disabled (right side)

The LABB algorithm operates most effectively when ambient light conditions are used to help determine the decision about the strength of gains utilized. For this reason, it may be useful to include an ambient light sensor in the system design that is used to measure the display screen's reflected ambient light. This sensor can assist in dynamically controlling the LABB strength. Set the LABB gain higher for bright rooms to help overcome washed out images. Set the LABB gain lower in dark rooms to prevent overdriven pixel intensities in images.

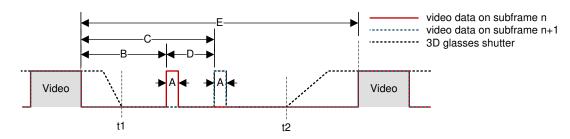
7.3.8 3D Glasses Operation

When using 3D glasses (with 3D video input and appropriate software support), the controller outputs sync information to align the left eye and right eye shuttering in the glasses with the displayed DMD image frames. 3D glasses typically use either Infrared (IR) transmission or DLP Link[™] technology to achieve this synchronization.


One glasses type uses an IR transmitter on the system PCB to send an IR sync signal to an IR receiver in the glasses. In this case DLPC34xx controller output signal GPIO_04 can be used to cause the IR transmitter to send an IR sync signal to the glasses. The \boxtimes 7-21 figure shows the timing sequence for the GPIO_04 signal.

The second type of glasses relies on sync information that is encoded into the light being output from the projection lens. This approach uses the DLP Link feature for 3D video. Many 3D glasses from different suppliers have been built using this method. The advantage of using the DLP Link feature is that it takes advantage of existing projector hardware to transmit the sync information to the glasses. This method may give an advantage in cost, size and power savings in the projector.

DLPC3470 JAJSFC5C – APRIL 2018 – REVISED DECEMBER 2020


When using DLP Link technology, one light pulse per DMD frame is output from the projection lens while the glasses have both shutters closed. To achieve this, the DLPC34xx tells the DLPAxxxx when to turn on the illumination source (typically LEDs or lasers) so that an encoded light pulse is output once per DMD frame. Because the shutters in the glasses are both off when the pulse is sent, the projector illumination source is also off except when the light is sent to create the pulse. The pulses may use any color; however, due to the transmission property of the eye-glass LCD shutter lenses and the sensitivity of the white-light sensor used on the eye-glasses, it is highly recommended that blue is not used for pulses. Red pulses are the recommended color to use. The \boxtimes 7-21 figure below shows 3D timing information. \boxtimes 7-22 and $\frac{1}{2}$ 7-8 show the timing for the light pulses when using the DLP Link feature.

t1: both shutters turned off

t2: next shutter turned on

The time offset of DLP Link pulses at the end of a subframe alternates between B and B+D where D is the delta offset.

	表 7-8. 3D DLP Link Timing						
HDMI Source Frame Rate (Hz) ⁽¹⁾	DLPC34xx Input Frame Rate (Hz)	Α (μs)	B (µs)	С (µs)	D (µs)	Ε (μs)	
49.0	98	20 - 32 (31.8 nominal)	> 500	> 622	128 - 163 (161.6 nominal)	> 2000	
50.0	100	20 - 32 (31.2 nominal)	> 500	> 658	128 - 163 (158.4 nominal)	> 2000	
51.0	102	20 - 32 (30.6 nominal)	> 500	> 655	128 - 163 (155.3 nominal)	> 2000	
59.0	118	20 - 32 (26.4 nominal)	> 500	> 634	128 - 163 (134.2 nominal)	> 2000	
60.0	120	20 - 32 (26.0 nominal)	> 500	> 632	128 - 163 (132.0 nominal)	> 2000	
61.0	122	20 - 32 (25.6 nominal)	> 500	> 630	128 - 163 (129.8 nominal)	> 2000	

図 7-22. 3D DLP Link Pulse Timing

(1) Timing parameter C is always the sum of B+D.

7.3.9 Test Point Support

The DLPC34xx test point output port, TSTPT_(7:0), provides selected system calibration and controller debug support. These test points are inputs when reset is applied. These test points are outputs when reset is released. The controller samples the signal state upon the release of system reset and then uses the captured value to configure the test mode until the next time reset is applied. Because each test point includes an internal pulldown resistor, external pullups must be used to modify the default test configuration.

The default configuration (b000) corresponds to the TSTPT_(2:0) outputs remaining tri-stated to reduce switching activity during normal operation. For maximum flexibility, a jumper to external pullup resistors is recommended for TSTPT_(2:0). The pullup resistors on TSTPT_(2:0) can be used to configure the controller for a specific mode or option. TI does not recommend adding pullup resistors to TSTPT_(7:3) due to potentially adverse effects on normal operation. For normal use TSTPT_(7:3) should be left unconnected. The test points are sampled only during a 0-to-1 transition on the RESETZ input, so changing the configuration after reset is released does not have any effect until the next time reset asserts and releases. $\frac{1}{7}$ -9 describes the test mode selections for one programmable scenario defined by TSTPT_(2:0).

TSTPT OUTPUT VALUE ⁽¹⁾	NO SWITCHING ACTIVITY	CLOCK DEBUG OUTPUT
	TSTPT_(2:0) = 0b000	TSTPT_(2:0) = 0b010
TSTPT_0	HI-Z	60 MHz
TSTPT_1	HI-Z	30 MHz

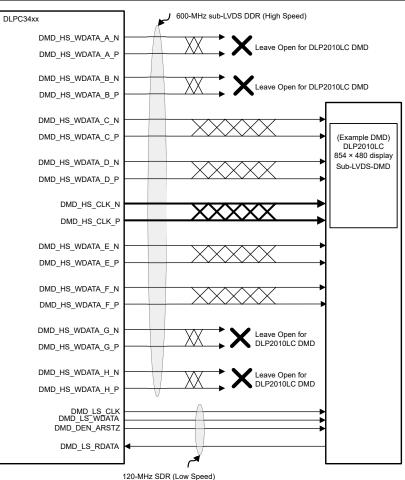
TSTPT OUTPUT VALUE ⁽¹⁾	NO SWITCHING ACTIVITY	CLOCK DEBUG OUTPUT			
	TSTPT_(2:0) = 0b000	TSTPT_(2:0) = 0b010			
TSTPT_2	HI-Z	0.7 to 22.5 MHz			
TSTPT_3	HI-Z	HIGH			
TSTPT_4	HI-Z	LOW			
TSTPT_5	HI-Z	HIGH			
TSTPT_6	HI-Z	HIGH			
TSTPT_7	HI-Z	7.5 MHz			

表 7-9. Test Mode Selection Scenario Defined by TSTPT_(2:0) (continued)

(1) These are default output selections. Software can reprogram the selection at any time.

7.3.10 DMD Interface

The DLPC34xx controller DMD interface consists of one high-speed (HS), 1.8-V sub-LVDS, output-only interface and one low speed (LS), 1.8-V LVCMOS SDR interface with a typical fixed clock speed of 120 MHz.


7.3.10.1 Sub-LVDS (HS) Interface

The DLP2010LC and DLP2010NIR (.2 WVGA) DMDs do not require all of the available output data lanes of the controller. Internal software selection allows the controller to support multiple DMD interface swap configurations. These options can improve board layout by remapping specific combinations of DMD interface lines to other DMD interface lines as needed. 表 7-10 shows the four options available for the DLP2010LC DMD. Leave any unused DMD signal pairs unconnected on the final board design.

	DLP2010LC 4-LANE DMD ROUTING OPTIONS				
OPTION 1	OPTION 2	OPTION 3	OPTION 4	DMD PINS	
HS_WDATA_D_P	HS_WDATA_E_P	HS_WDATA_H_P	HS_WDATA_A_P	Input DATA_P_0	
HS_WDATA_D_N	HS_WDATA_E_N	HS_WDATA_H_N	HS_WDATA_A_N	Input DATA_N_0	
HS_WDATA_C_P	HS_WDATA_F_P	HS_WDATA_G_P	HS_WDATA_B_P	Input DATA_P_1	
HS_WDATA_C_N	HS_WDATA_F_N	HS_WDATA_G_N	HS_WDATA_B_N	Input DATA_N_1	
HS_WDATA_F_P	HS_WDATA_C_P	HS_WDATA_B_P	HS_WDATA_G_P	Input DATA_P_2	
HS_WDATA_F_N	HS_WDATA_C_N	HS_WDATA_B_N	HS_WDATA_G_N	Input DATA_N_2	
HS_WDATA_E_P	HS_WDATA_D_P	HS_WDATA_A_P	HS_WDATA_H_P	Input DATA_P_3	
HS_WDATA_E_N	HS_WDATA_D_N	HS_WDATA_A_N	HS_WDATA_H_N	Input DATA_N_3	

表 7-10. DLP2010LC (.2 WVGA) DMD – Controller to 4-Lane DMD Pin Mapping Options

The sub-LVDS high-speed interface waveform quality and timing on the DLPC34xx controller depends on the total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many factors.

In an attempt to minimize the signal integrity analysis that would otherwise be required, the *DMD Control and Sub-LVDS Signals* layout section is provided as a reference of an interconnect system that satisfy both waveform quality and timing requirements (accounting for both PCB routing mismatch and PCB signal integrity). Variation from these recommendations may also work, but should be confirmed with PCB signal integrity analysis or lab measurements.

7.4 Device Functional Modes

The DLPC34xx controller has two functional modes (ON and OFF) controlled by a single pin, PROJ_ON (GPIO_08).

- When the PROJ_ON pin is set high, the controller powers up and can be programmed to send data to the DMD.
- When the PROJ_ON pin is set low, the controller powers down and consumes minimal power.

7.5 Programming

The DLPC34xx controller contains an Arm[®] Cortex[®]-M3 processor with additional functional blocks to enable video processing and control. TI provides software as a firmware image. The customer is required to flash this firmware image onto the SPI flash memory. The DLPC34xx controller loads this firmware during startup and regular operation. The controller and its accompanying DLP chipset requires this proprietary software to operate. The available controller functions depend on the firmware version installed. Different firmware is required for different chipset combinations (such as when using different PMIC devices). See *Documentation Support* at the end of this document or contact TI to view or download the latest published software.

Users can modify software behavior through I²C interface commands. For a list of commands, view the software user's guide accessible through the *Documentation Support* page.

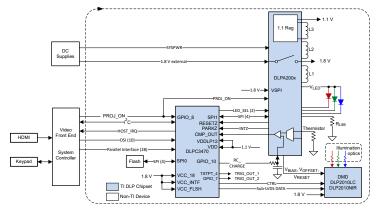
8 Application and Implementation

Note

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

DLPC3470 display and light controller with DLP2010LC DMD enables high accuracy and very small form factor 3D Depth sensing products. This section describes typical 3D depth sensor DLP systems using both external and internal pattern streaming modes. The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into projection or collection optics. The optical architecture of the system and the format of the image digital data coming into the DLPC3470 are what primarily determine the application requirements.


Typical applications include:

- · Battery-powered, mobile accessory
 - 3D Camera
 - Tablets
 - Smartphones
 - Laptop
- Dental scanner (desktop or intra-oral)
- Robotics
- In-line automated inspection
- 3D biometrics: facial and finger print recognition
- · Light exposure: 3D printers, programmable spatial and temporal light exposure

8.2 Typical Application

8.2.1 Pattern projector for 3D depth scanning

DLPC3470 controller with DLP2010LC/DLP2010NIR DMD enables high accuracy and very small form factor 3D Depth scanner products. 🛛 8-1 shows a typical 3D depth scanner system block diagram using external pattern streaming mode.

A. Options to elect different LEDs, but only 1 channel used at a time

図 8-1. External Pattern Streaming Mode

8.2.1.1 Design Requirements

A high accuracy 3D depth scanner product can be created by using a DLP chipset comprised of DLP2010LC or DLP2010NIR DMD, DLPC3470 controller and DLPAxxxx PMIC/LED driver. The DLPC3470 simplifies the pattern

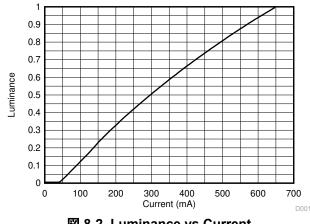
generation, the DLPAxxxx provides the needed analog functions and DMD displays the required patterns for accurate 3D depth scanning.

In addition to the three DLP devices in the chipset, other components may be required to complete the application. Minimally, a flash component is required to store patterns, the software, and the firmware in order to control the DLPC3470 controller.

DLPC3470 controller supports any illumination source, including IR light source (LEDs or vertical-cavity surfaceemitting laser - VCSEL), UV light source, or visible light source (red, green, or blue LEDs or lasers).

For connecting the DLPC3470 controller to the host processing for receiving patterns or video data, the parallel interface is used. Connect an I²C interface to the host processor to send commands to the DLPC3470 controller.

The only required power supplies that are external to the projector system chipset are the battery (SYSPWR) and possibly a regulated 1.8-V supply (some TI PMICs generate the 1.8-V supply but the DLPA200x does not).

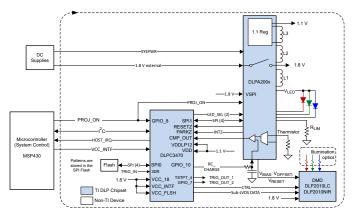

The entire pico-projector can be turned on and off by using a single signal called PROJ_ON. When PROJ_ON is high, the projector turns on and begins displaying images. When PROJ_ON is set low, the projector turns off and draws just microamps of current on SYSPWR. If 1.8 V is supplied separately from the PMIC (as is the case with the DLPA200x), when PROJ_ON is set low, the 1.8-V supply can continue to be left at 1.8 V and used by other non-projector sections of the product.

8.2.1.2 Detailed Design Procedure

For connecting the DLP2010LC or DLP2010NIR DMD, the DLPC3470 controller and the DLPAxxxx PMIC/LED driver see the reference design schematic. An example board layout is included in the reference design data base. Follow the layout guidelines shown in セクション 10 to achieve reliable DLP system results.

8.2.1.3 Application Curve

As the LED currents that are driven through the red, green or blue LEDs are increased, the brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white screen lumens changes with LED currents is shown in \boxtimes 8-2. For the LED currents shown, it is assumed that the same current amplitude is applied to the red, green, and blue LEDs. For mono-chrome use case with a single LED or a different light source, this curve will be different and the specific light source documentation needs to be referred for similar information.



8.2.2 Pattern Projector with Internal Streaming Mode

8-3 shows a typical 3D depth scanner system block diagram using internal pattern streaming mode.

- A. Options exists to elect different LEDs, but only one channel is available at a time
- B. SPI flash stores patterns

図 8-3. Internal Pattern Streaming Mode

8.2.2.1 Design Requirements

The design requirements for the 3D Depth scanner system using Internal Pattern Streaming Mode is identical to the design procedure for the Pattern Projector for 3D Depth Scanning. (See the セクション 8.2.1.1 section.)

8.2.2.2 Detailed Design Procedure

The design procedure for the Pattern Projector with Internal Pattern Streaming Mode is identical to the design procedure for the Pattern Projector for 3D Depth Scanning. (See the セクション 8.2.1.2 section.)

8.2.2.3 Application Curve

See the $2223 \times 8.2.1.3$ as the brightness considerations are similar in both external and internal pattern streaming modes.

9 Power Supply Recommendations

9.1 PLL Design Considerations

It is acceptable for the VDD_PLLD and VDD_PLLM to be derived from the same regulator as the core VDD. However, to minimize the AC noise component, apply a filter as recommended in the *PLL Power Layout* section.

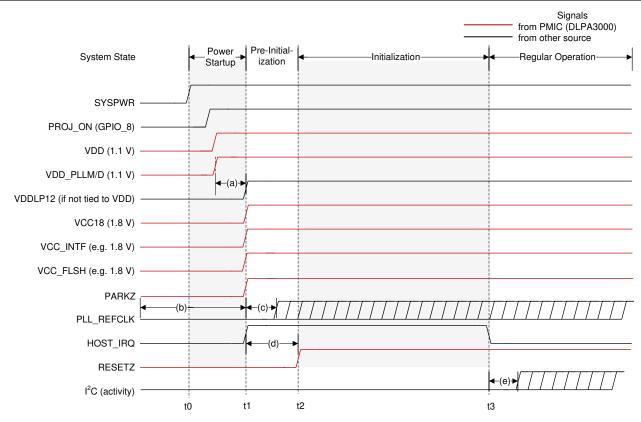
9.2 System Power-Up and Power-Down Sequence

Although the DLPC34xx controller requires an array of power supply voltage pins (for example, VDD, VDDLP12, VDD_PLLM/D, VCC18, VCC_FLSH, and VCC_INTF), if VDDLP12 is tied to the 1.1-V VDD supply (which is assumed to be the typical configuration), then there are no restrictions regarding the relative order of power supply sequencing to avoid damaging the DLPC34xx controller (this remains true for both power-up and power-down scenarios). The controller requires no minimum delay time between powering-up and powering-down the individual supplies if the VDDLP12 is tied to the 1.1-V VDD supply.

However, if the VDDLP12 pin is not tied to the VDD supply, then the VDDLP12 pin must be powered-on only after the VDD supply is powered-on. And in a similar sequence, the VDDLP12 pin must be powered-off before the VDD supply is powered-off. If the VDDLP12 pin is not tied to VDD, then the VDDLP12 pin and VDD supply pins must be powered-on or powered-off within 100 ms of each other.

Although there is no risk of damaging the DLPC34xx controller when the above power sequencing rules are followed, these additional power sequencing recommendations must be considered to ensure proper system operation:

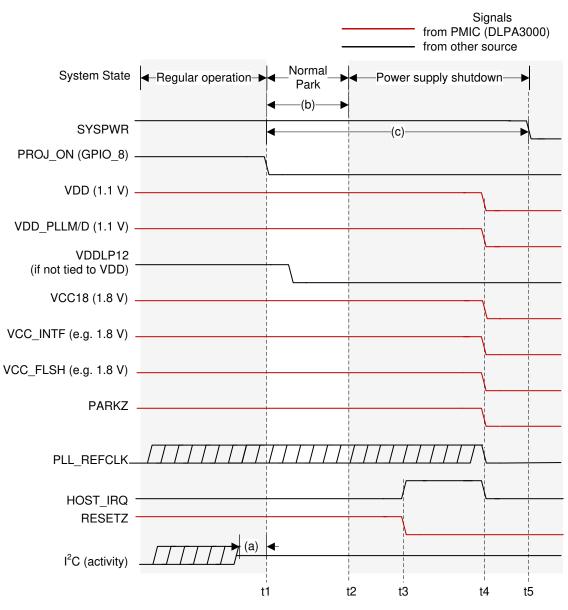
- To ensure that the DLPC34xx controller output signal states behave as expected, all controller I/O supplies are encouraged to remain applied while VDD core power is applied. If VDD core power is removed while the I/O supply (VCC_INTF) is applied, then the output signal states associated with the inactive I/O supply go to a high impedance state.
- Because additional power sequencing rules may exist for devices that share the supplies with the DLPC34xx controller (such as the PMIC and DMD), these devices may force additional system power sequencing requirements.


⊠ 9-1, ⊠ 9-2, and ⊠ 9-3 show the DLPC34xx power-up sequence, the normal PARK power-down sequence, and the fast PARK power-down sequence of a typical DLPC34xx system.

When the VDD core power is applied, but I/O power is not applied, the controller may draw additional leakage current. This leakage current does not affect the normal DLPC34xx controller operation or reliability.

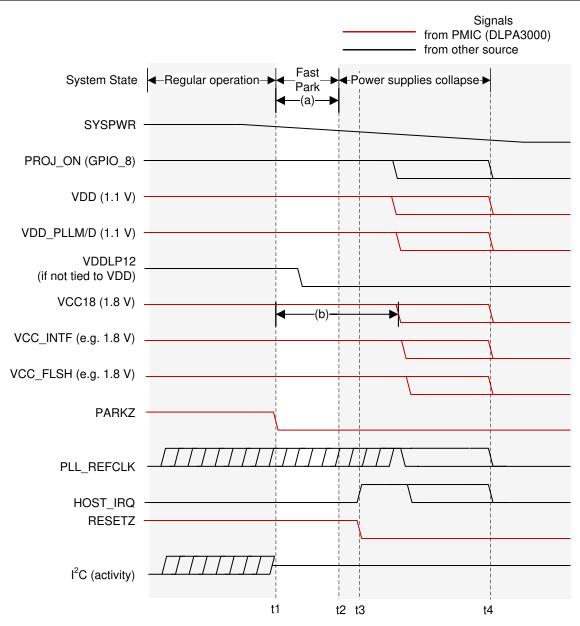
Note

During a Normal Park it is recommended to maintain SYSPWR within specification for at least 50 ms after PROJ_ON goes low. This is to allow the DMD to be parked and the power supply rails to safely power down. After 50 ms, SYSPWR can be turned off. If a DLPA200x is used, it is also recommended that the 1.8-V supply fed into the DLPA200x load switch be maintained within specification for at least 50 ms after PROJ_ON goes low.



- t0: SYSPWR applied to the PMIC. All other voltage rails are derived from SYSPWR.
- t1: All supplies reach 95% of their specified nominal value. Note HOST_IRQ may go high sooner if it is pulled-up to a different external supply.
- t2: Point where RESETZ is deasserted (goes high). This indicates the beginning of the controller auto-initialization routine.
- t3: HOST_IRQ goes low to indicate initialization is complete.
- (a): VDDLP12 must be powered on after VDD if it is supplied from a separate source.
- (b): PLL_REFCLK is allowed to be active before power is applied.
- (c): PLL_REFCLK must be stable within 5 ms of all power being applied. For external oscillator applications this is oscillator dependent, and for crystal applications this is crystal and controller oscillator cell dependent.
- (d): PARKZ must be high before RESETZ releases to support auto-initialization. RESETZ must also be held low for at least 5 ms after the power supplies are in specification.
- (e): I²C activity cannot start until HOST_IRQ goes low to indicate auto-initialization completes.

図 9-1. System Power-Up Waveforms (With DLPA3000)



- t1: PROJ_ON goes low to begin the power down sequence.
- t2: The controller finishes parking the DMD.
- t3: RESETZ is asserted which causes HOST_IRQ to be pulled high.
- t4: All controller power supplies are turned off.
- t5: SYSPWR is removed now that all other supplies are turned off.
- (a): I²C activity must stop before PROJ_ON is deasserted (goes low).
- (b): The DMD will be parked within 20 ms of PROJ_ON being deasserted (going low). VDD, VDD_PLLM/D, VCC18, VCC_INITF, and VCC_FLSH power supplies and the PLL_REFCLK must be held within specification for a minimum of 20 ms after PROJ_ON is deasserted (goes low). However, 20 ms does not satisfy the typical shutdown timing of the entire chipset. It is therefore recommended to follow note (c).
- (c): It is recommended that SYSPWR not be turned off for 50 ms after PROJ_ON is deasserted (goes low). This time allows the DMD to be parked, the controller to turn off, and the PMIC supplies to shut down.

2 9-2. Normal Park Power-Down Waveforms

- t1: A fault is detected (in this example the PMIC detects a UVLO condition) and PARKZ is asserted (goes low) to tell the controller to initiate a fast park of the DMD.
- t2: The controller finishes the fast park procedure.
- t3: RESETZ is asserted which puts the controller in a reset state which causes HOST_IRQ to be pulled high.
- t4: Eventually all power supplies that were derived from SYSPWR collapse.
- (a): VDD, VDD_PLLM/D, VCC18, VCC_INITF, and VCC_FLSH power supplies and the PLL_REFCLK must be held within specification for a minimum of 32 µs after PARKZ is asserted (goes low).
- (b): VCC18 must remain in specification long enough to satisfy DMD power sequencing requirements defined in the DMD datasheet. Also see the DLPAxxxx datasheets for more information.

2 9-3. Fast Park Power-Down Waveforms

9.3 Power-Up Initialization Sequence

An external power monitor is required to hold the DLPC34xx controller in system reset during the power-up sequence by driving RESETZ to a logic-low state. It shall continue to drive RESETZ low until all controller voltages reach the minimum specified voltage levels, PARKZ goes high, and the input clocks are stable. The external power monitoring is automatically done by the DLPAxxxx PMIC.

No signals output by the DLPC34xx controller will be in their active state while RESETZ is asserted. The following signals are tri-stated while RESETZ is asserted:

- SPI0_CLK
- SPI0_DOUT
- SPI0_CSZ0
- SPI0_CSZ1
- GPIO [19:00]

Add external pullup (or pulldown) resistors to all tri-stated output signals (including bidirectional signals to be configured as outputs) to avoid floating controller outputs during reset if they are connected to devices on the PCB that can malfunction. For SPI, at a minimum, include a pullup to any chip selects connected to devices. Unused bidirectional signals can be configured as outputs in order to avoid floating controller inputs after RESETZ is set high.

The following signals are forced to a logic low state while RESETZ is asserted and the corresponding I/O power is applied:

- LED SEL 0
- LED SEL 1
- DMD_DEN_ARSTZ

After power is stable and the PLL_REFCLK_I clock input to the DLPC34xx controller is stable, then RESETZ should be deactivated (set to a logic high). The DLPC34xx controller then performs a power-up initialization routine that first locks its PLL followed by loading self configuration data from the external flash. Upon release of RESETZ, all DLPC34xx I/Os will become active. Immediately following the release of RESETZ, the HOST_IRQ signal will be driven high to indicate that the auto initialization routine is in progress. However, since a pullup resistor is connected to signal HOST_IRQ, this signal will have already gone high before the controller actively drives it high. Upon completion of the auto-initialization routine, the DLPC34xx controller will drive HOST_IRQ low to indicate the initialization done state of the controller has been reached.

To ensure reliable operation, during the power-up initialization sequence, GPIO_08 (PROJ_ON) must not be deasserted. In other words, once the startup routine has begun (by asserting PROJ_ON), the startup routine must complete (indicated by HOST_IRQ going low) before the controller can be commanded off (by deasserting PROJ_ON).

Note

No I²C or DSI (if applicable) activity is permitted until HOST_IRQ goes low.

9.4 DMD Fast Park Control (PARKZ)

PARKZ is an input early warning signal that must alert the controller at least 32 µs before DC supply voltages drop below specifications. Typically, the PARKZ signal is provided by the DLPAxxxx interrupt output signal. PARKZ must be deasserted (set high) prior to releasing RESETZ (that is, prior to the low-to-high transition on the RESETZ input) for normal operation. When PARKZ is asserted (set low) the controller performs a Fast Park operation on the DMD which assists in maintaining the lifetime of the DMD. The reference clock must continue running and RESETZ must remain deactivated for at least 32 µs after PARKZ has been asserted (set low) to allow the park operation to complete.

Fast Park operation is only intended for use when loss of power is imminent and beyond the control of the host processor (for example, when the external power source has been disconnected or the battery has dropped below a minimum level). The longest lifetime of the DMD may not be achieved with Fast Park operation. The

longest lifetime is achieved with a Normal Park operation (initiated through GPIO_08). Hence, PARKZ is typically only used instead of a Normal Park request if there is not enough time for a Normal Park. A Normal Park operation takes much longer than 32 µs to park the mirrors. During a Normal Park operation, the DLPAxxxx keeps on all power supplies, and keeps RESETZ high, until the longer mirror parking has completed. Additionally, the DLPAxxxx datasheet for more information. The longer mirror parking time ensures the longest DMD lifetime and reliability. The *DMD Parking Switching Characteristics* section specifies the park timings.

9.5 Hot Plug I/O Usage

The DLPC34xx controller provides fail-safe I/O on all host interface signals (signals powered by VCC_INTF). This allows these inputs to externally be driven even when no I/O power is applied. Under this condition, the controller does not load the input signal nor draw excessive current that could degrade controller reliability. For example, the I²C bus from the host to other components is not affected by powering off VCC_INTF to the DLPC34xx controller. The allows additional devices on the I²C bus to be utilized even if the controller is not powered on. TI recommends weak pullup or pulldown resistors to avoid floating inputs for signals that feed back to the host.

If the I/O supply (VCC_INTF) powers off, but the core supply (VDD) remains on, then the corresponding input buffer may experience added leakage current; however, the added leakage current does not damage the DLPC34xx controller.

However, if VCC_INTF is powered and VDD is not powered, the controller may drives the IIC0_xx pins low which prevents communication on this I²C bus. Do not power up the VCC_INTF pin before powering up the VDD pin for any system that has additional secondary devices on this bus.

10 Layout

10.1 Layout Guidelines

For a summary of the PCB design requirements for the DLPC34xx controller see *PCB Design Requirements for TI DLP Pico TRP Digital Micromirror Devices*. Some applications (such as high frame rate video) may require the use of 1-oz (or greater) copper planes to manage the controller package heat.

10.1.1 PLL Power Layout

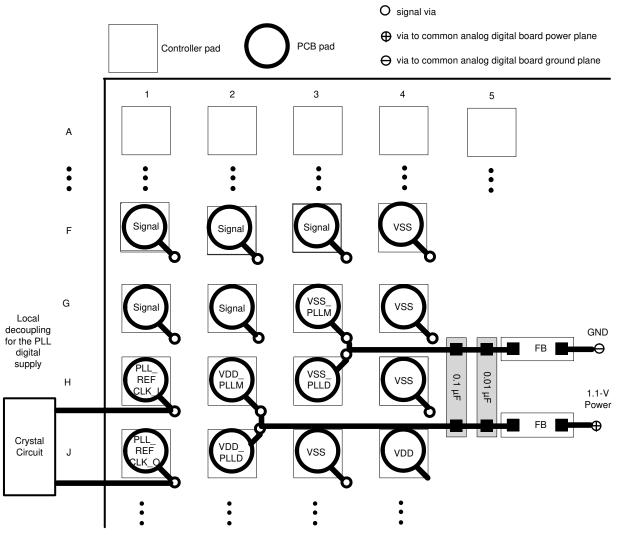
Follow these recommended guidelines to achieve acceptable controller performance for the internal PLL. The DLPC34xx controller contains two internal PLLs which have dedicated analog supplies (VDD_PLLM, VSS_PLLM, VDD_PLLD, and VSS_PLLD). At a minimum, isolate the VDD_PLLx power and VSS_PLLx ground pins using a simple passive filter consisting of two series ferrite beads and two shunt capacitors (to widen the spectrum of noise absorption). It's recommended that one capacitor be 0.1 μ F and one be 0.01 μ F. Place all four components as close to the controller as possible. It's especially important to keep the leads of the high frequency capacitors as short as possible. Connect both capacitors from VDD_PLLM to VSS_PLLM and VDD_PLLD to VSS_PLLD on the controller side of the ferrite beads.

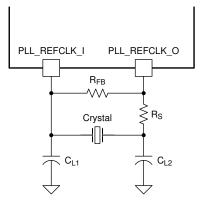
Select ferrite beads with these characteristics:

- DC resistance less than 0.40 Ω
- Impedance at 10 MHz equal to or greater than 180 Ω
- Impedance at 100 MHz equal to or greater than 600 Ω

The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog signals. Therefore, VDD_PLLM and VDD_PLLD must be a single trace from the DLPC34xx controller to both capacitors and then through the series ferrites to the power source. Make the power and ground traces as short as possible, parallel to each other, and as close as possible to each other.

DLPC3470 JAJSFC5C – APRIL 2018 – REVISED DECEMBER 2020




図 10-1. PLL Filter Layout

10.1.2 Reference Clock Layout

The DLPC34xx controller requires an external reference clock to feed the internal PLL. Use either a crystal or oscillator to supply this reference. The DLPC34xx reference clock must not exceed a frequency variation of ±200 ppm (including aging, temperature, and trim component variation).

☑ 10-2 shows the required discrete components when using a crystal.

C_L = Crystal load capacitance (farads)

$$\begin{split} & C_{L1} = 2 \times (C_L - Cstray_pll_refclk_i) \\ & C_{L2} = 2 \times (C_L - Cstray_pll_refclk_o) \end{split}$$

where:

- Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll_refclk_i.
- Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll_refclk_o.

図 10-2. Required Discrete Components

10.1.2.1 Recommended Crystal Oscillator Configuration

表 10-1. Crystal Port Characteristics

PARAMETER	NOM	UNIT
PLL_REFCLK_I TO GND capacitance	1.5	pF
PLL_REFCLK_O TO GND capacitance	1.5	pF

表 10-2. Recommended Crystal Configuration

PARAMETER ⁽¹⁾ ⁽²⁾	RECOMMENDED	UNIT
Crystal circuit configuration	Parallel resonant	
Crystal type	Fundamental (first harmonic)	
Crystal nominal frequency	24	MHz
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity)	±200	PPM
Maximum startup time	1.0	ms
Crystal equivalent series resistance (ESR)	120 (max)	Ω
Crystal load	6	pF
R _S drive resistor (nominal)	100	Ω
R _{FB} feedback resistor (nominal)	1	MΩ
C _{L1} external crystal load capacitor	See equation in 🗵 10-2 notes	pF
C _{L2} external crystal load capacitor	See equation in 🗵 10-2 notes	pF
PCB layout	A ground isolation ring around the crystal is recommended	

(1) Temperature range of -30° C to 85° C.

(2) The crystal bias is determined by the controllers VCC_INTF voltage rail, which is variable (not the VCC18 rail).

If an external oscillator is used, then the oscillator output must drive the PLL_REFCLK_I pin on the DLPC34xx controller, and the PLL_REFCLK_O pin must be left unconnected.

MANUFACTURER (1) (2)	PART NUMBER	SPEED (MHz)	TEMPERATURE AND AGING (ppm)	MAXIMUM ESR (Ω)	LOAD CAPACITANCE (pF)	PACKAGE DIMENSIONS (mm)
KDS	DSX211G-24.000M-8pF-50-50	24	±50	120	8	2.0 × 1.6
Murata	XRCGB24M000F0L11R0	24	±100	120	6	2.0 × 1.6
NDK	NX2016SA 24M EXS00A-CS05733	24	±145	120	6	2.0 × 1.6

表 10-3. Recommended Crystal Parts

(1) The crystal devices in this table have been validated to work with the DLPC34xx controller. Other devices may also be compatible but have not necessarily been validated by TI.

(2) Operating temperature range: -30°C to 85°C for all crystals.

10.1.3 Unused Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends tying unused controller input pins through a pullup resistor to its associated power supply or a pulldown resistor to ground. For controller inputs with internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown unless specifically recommended. Note that internal pullup and pulldown resistors are weak and should not be expected to drive an external device. The DLPC34xx controller implements very few internal resistors and are listed in the tables found in the *Pin Configuration and Functions* section. When external pullup or pulldown resistors are needed for pins that have weak pullup or pulldown resistors, choose a maximum resistance of 8 $k\Omega$.

Never tie unused output-only pins directly to power or ground. Leave them open.

When possible, TI recommends that unused bidirectional I/O pins are configured to their output state such that the pin can remain open. If this control is not available and the pins may become an input, then include an appropriate pullup (or pulldown) resistor.

10.1.4 DMD Control and Sub-LVDS Signals

表 10-4. Maximum Pin-to-Pin PCB Interconnect Recommendations

	SIGNAL INTERCO	SIGNAL INTERCONNECT TOPOLOGY				
DMD BUS SIGNAL ^{(1) (2)}	SINGLE-BOARD SIGNAL ROUTING LENGTH	MULTI-BOARD SIGNAL ROUTING LENGTH	UNIT			
DMD_HS_CLK_P DMD_HS_CLK_N	6.0 (152.4)	See ⁽³⁾	in (mm)			
DMD_HS_WDATA_A_P DMD_HS_WDATA_A_N						
DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N						
DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N						
DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N	6.0	9 (3)	in (mm)			
DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N	(152.4)	See ⁽³⁾				
DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N						
DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N						
DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N						
DMD_LS_CLK	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_LS_WDATA	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_LS_RDATA	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_DEN_ARSTZ	7.0 (177.8)	See ⁽³⁾	in (mm)			

(1) Maximum signal routing length includes escape routing.

(2) Multi-board DMD routing length is more restricted due to the impact of the connector.

(3) Due to PCB variations, these recommendations cannot be defined. Any board design should SPICE simulate with the controller IBIS model (found under the *Tools & Software* tab of the controller web page) to ensure routing lengths do not violate signal requirements.

SIGNAL GROUP LENGTH MATCHING ⁽¹⁾ ⁽²⁾ ⁽³⁾								
INTERFACE	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH ⁽⁴⁾	UNIT				
	DMD_HS_WDATA_A_P DMD_HS_WDATA_A_N							
	DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N							
	DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N							
DMD ⁽⁵⁾	DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N	DMD_HS_CLK_P	±1.0 (±25.4)	in				
	DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N	DMD_HS_CLK_N		(mm)				
	DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N							
	DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N							
	DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N							
DMD	DMD_HS_WDATA_x_P	DMD_HS_WDATA_X_N	±0.025 (±0.635)	in (mm)				
DMD	DMD_HS_CLK_P	DMD_HS_CLK_N	±0.025 (±0.635)	in (mm)				
DMD	DMD_LS_WDATA DMD_LS_RDATA	DMD_LS_CLK	±0.2 (±5.08)	in (mm)				
DMD	DMD_DEN_ARSTZ	N/A	N/A	in (mm)				

表 10-5. High Speed PCB Signal Routing Matching Requirements

(1) The length matching values apply to PCB routing lengths only. Internal package routing mismatch associated with the DLPC34xx controller or the DMD require no additional consideration.

(2) Training is applied to DMD HS data lines. This is why the defined matching requirements are slightly relaxed compared to the LS data lines.

(3) DMD LS signals are single ended.

(4) Mismatch variance for a signal group is always with respect to the reference signal.

(5) DMD HS data lines are differential, thus these specifications are pair-to-pair.

PARAMETER	REFERENCE	REQUIREMENT
	DMD_LS_WDATA	Required
	DMD_LS_CLK	Required
Source series termination	DMD_DEN_ARSTZ	Acceptable
Source series termination	DMD_LS_RDATA	Required
	DMD_HS_WDATA_x_y	Not acceptable
	DMD_HS_CLK_y	Not acceptable
	DMD_LS_WDATA	Not acceptable
	DMD_LS_CLK	Not acceptable
Endpoint termination	DMD_DEN_ARSTZ	Not acceptable
	DMD_LS_RDATA	Not acceptable
	DMD_HS_WDATA_x_y	Not acceptable
	DMD_HS_CLK_y	Not acceptable
	DMD_LS_WDATA	68 Ω ±10%
	DMD_LS_CLK	68 Ω ±10%
DCD impedance	DMD_DEN_ARSTZ	68 Ω ±10%
PCB impedance	DMD_LS_RDATA	68 Ω ±10%
	DMD_HS_WDATA_x_y	100 Ω ±10%
	DMD_HS_CLK_y	100 Ω ±10%
	DMD_LS_WDATA	SDR (single data rate) referenced to DMD_LS_DCLK
	DMD_LS_CLK	SDR referenced to DMD_LS_DCLK
Signal type	DMD_DEN_ARSTZ	SDR
Signal type	DMD_LS_RDATA	SDR referenced to DMD_LS_DLCK
	DMD_HS_WDATA_x_y	sub-LVDS
	DMD_HS_CLK_y	sub-LVDS

表 10-6. Signal Requirements

10.1.5 Layer Changes

- Single-ended signals: Minimize the number of layer changes.
- Differential signals: Individual differential pairs can be routed on different layers. Ideally ensure that the signals of a given pair do not change layers.

10.1.6 Stubs

· Avoid using stubs.

10.1.7 Terminations

- DMD_HS differential signals require no external termination resistors.
- Make sure the DMD_LS_CLK and DMD_LS_WDATA signal paths include a 43-Ω series termination resistor located as close as possible to the corresponding controller pins.
- Make sure the DMD_LS_RDATA signal path includes a 43-Ω series termination resistor located as close as
 possible to the corresponding DMD pin.
- The DMD_DEN_ARSTZ pin requires no series resistor.

10.1.8 Routing Vias

- The number of vias on DMD_HS signals must be minimized and ideally not exceed two.
- Any and all vias on DMD_HS signals must be located as close to the controller as possible.
- The number of vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be minimized and ideally not exceed two.
- Any and all vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be located as close to the controller as possible.

10.1.9 Thermal Considerations

The underlying thermal limitation for the DLPC34xx controller is that the maximum operating junction temperature (T_J) not be exceeded (this is defined in the *Recommended Operating Conditions* section).

Some factors that influence T_J are as follows:

- operating ambient temperature
- airflow
- PCB design (including the component layout density and the amount of copper used)
- power dissipation of the DLPC34xx controller
- power dissipation of surrounding components

The controller package is designed to primarily extract heat through the power and ground planes of the PCB. Thus, copper content and airflow over the PCB are important factors.

The recommends maximum operating ambient temperature (T_A) is provided primarily as a design target and is based on maximum DLPC34xx controller power dissipation and $R_{\theta,JA}$ at 0 m/s of forced airflow, where $R_{\theta,JA}$ is the thermal resistance of the package as measured using a JEDEC defined standard test PCB with two, 1-oz power planes. This JEDEC test PCB is not necessarily representative of the DLPC34xx controller PCB, so the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance. TI highly recommended that thermal performance be measured and validated after the PCB is designed and the application is built.

To evaluate the thermal performance, measure the top center case temperature under the worse case product scenario (maximum power dissipation, maximum voltage, maximum ambient temperature), and validate the controller does not exceed the maximum recommended case temperature (T_C). This specification is based on the measured ϕ_{JT} for the DLPC34xx controller package and provides a relatively accurate correlation to junction temperature.

Take care when measuring this case temperature to prevent accidental cooling of the package surface. TI recommends a small (approximately 40 gauge) thermocouple. Place the bead and thermocouple wire so that they contact the top of the package. Cover the bead and thermocouple wire with a minimal amount of thermally conductive epoxy. Route the wires closely along the package and the board surface to avoid cooling the bead through the wires.

10.2 Layout Example

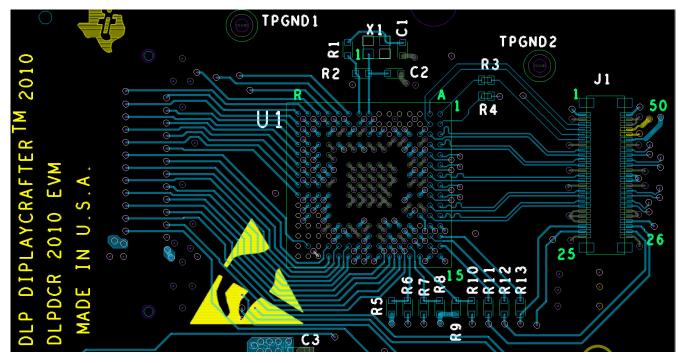
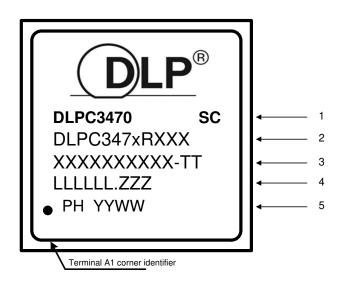


図 10-3. Layout Recommendation

11 Device and Documentation Support


11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

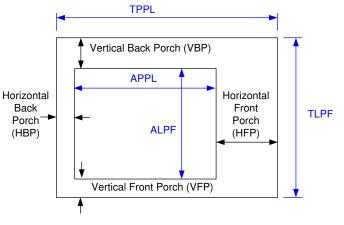
11.1.2 Device Nomenclature

11.1.2.1 Device Markings

Marking Definitions:

Line 1:	DLP® Device Name: DLPC3470 device name ID. SC: Solder ball composition e1: Indicates lead-free solder balls consisting of SnAgCu G8: Indicates lead-free solder balls consisting of tin-silver-copper (SnAgCu) with silver content less than or equal to 1.5% and that the mold compound meets TI's definition of green.
Line 2:	TI Part Number DLP® Device Name: DLPC347x = x indicates a 0 device name ID. R corresponds to the TI device revision letter for example A, B, or C. XXX corresponds to the device package designator.
Line 3:	XXXXXXXXX-TT Manufacturer Part Number
Line 4:	LLLLLLZZZ Foundry lot code for semiconductor wafers and lead-free solder ball marking LLLLLLL: Fab lot number ZZZ: Lot split number
Line 5:	AA YYWW ES : Package assembly information AA: Manufacturing site YYWW: Date code (YY = Year :: WW = Week)

Note


- Engineering prototype samples are marked with an X suffix appended to the TI part number. For example, 2512737-0001X.
- See , for DLPC347x resolutions on the DMD supported per part number.

11.1.3 Video Timing Parameter Definitions

See \boxtimes 11-1 for a visual description.

Active Lines Per Frame (ALPF)	Defines the number of lines in a frame containing displayable data. ALPF is a subset of the TLPF.
Active Pixels Per Line (APPL)	Defines the number of pixel clocks in a line containing displayable data. APPL is a subset of the TPPL.
Horizontal Back Porch (HBP) Blanking	Defines the number of blank pixel clocks after the active edge of horizontal sync but before the first active pixel.
Horizontal Front Porch (HFP) Blanking	Defines the number of blank pixel clocks after the last active pixel but before horizontal sync.
Horizontal Sync (HS or Hsync)	Timing reference point that defines the start of each horizontal interval (line). The active edge of the HS signal defines the absolute reference point. The active edge (either rising or falling edge as defined by the source) is the reference from which all horizontal blanking parameters are measured.
Total Lines Per Frame (TLPF)	Total number of active and inactive lines per frame; defines the vertical period (or frame time).
Total Pixel Per Line (TPPL)	Total number of active and inactive pixel clocks per line; defines the horizontal line period in pixel clocks.
Vertical Sync (VS or Vsync)	Timing reference point that defines the start of the vertical interval (frame). The absolute reference point is defined by the active edge of the VS signal. The active edge (either rising or falling edge as defined by the source) is the reference from which all vertical blanking parameters are measured.
Vertical Back Porch (VBP) Blanking	Defines the number of blank lines after the active edge of vertical sync but before the first active line.
Vertical Front Porch (VFP) Blanking	Defines the number of blank lines after the last active line but before the active edge of vertical sync.

11.2 Related Documentation

The following table lists quick access links for associated parts of the DLP chipset.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE
DLPA2000	Click here	Click here	Click here	Click here
DLPA2005	Click here	Click here	Click here	Click here
DLPA3000	Click here	Click here	Click here	Click here
DLP2010LC	Click here	Click here	Click here	Click here
DLP2010NIR	Click here	Click here	Click here	Click here

表 11-1. Chipset Documentation

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接 得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得るこ とができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

11.5 Trademarks

IntelliBright[™], Pico[™], Link[™] are trademarks of Texas Instruments.

TI E2E[™] is a trademark of Texas Instruments.

DLP® and IntelliBright® are registered trademarks of Texas Instruments.

Arm[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. すべての商標は、それぞれの所有者に帰属します。

11.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。 正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.7 用語集

TI 用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DLPC3470CZEZ	ACTIVE	NFBGA	ZEZ	201	119	RoHS & Green	Call TI SNAGCU	Level-3-260C-168Hrs	-30 to 85	(DLPC3470 G8, DLP C3470 G8) DLPC3470CZEZ ECP292548C-10G	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

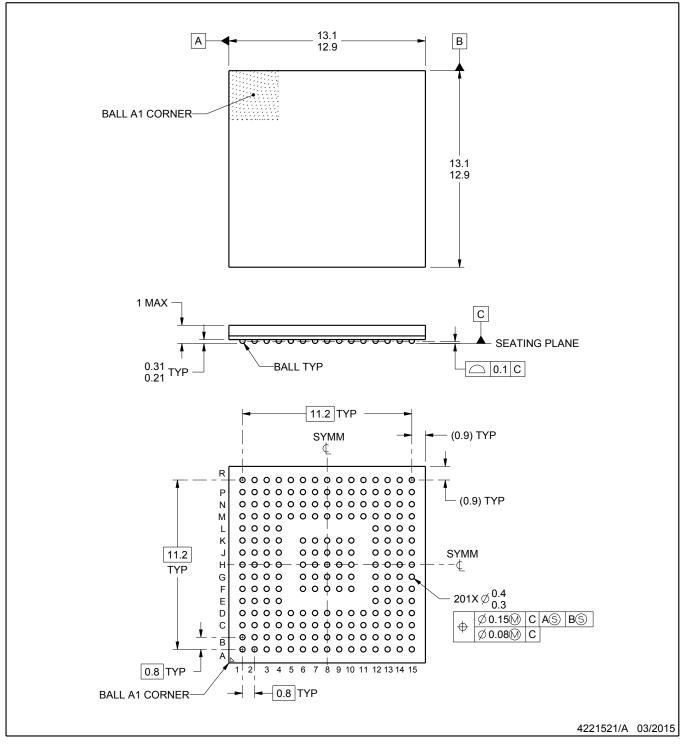
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

15-Mar-2024


ZEZ0201A

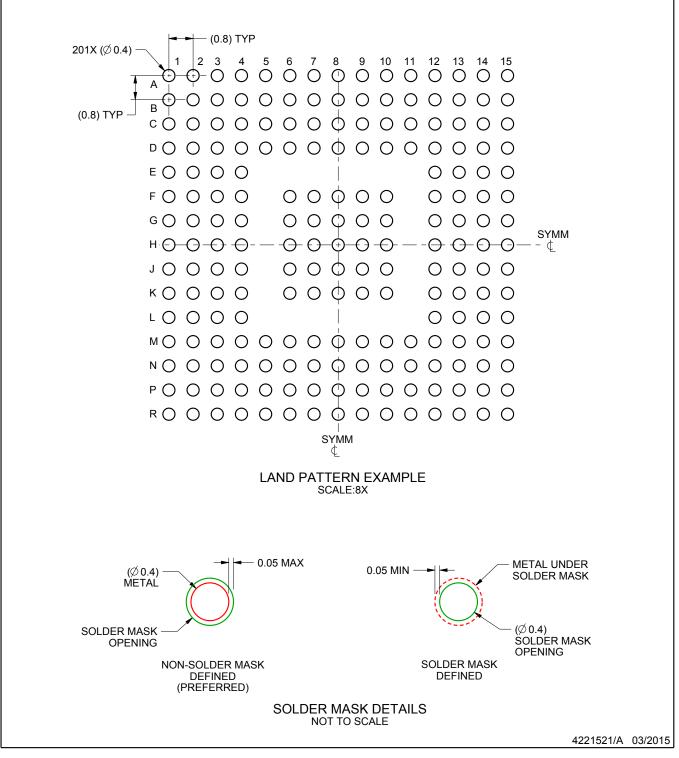
PACKAGE OUTLINE

NFBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



ZEZ0201A

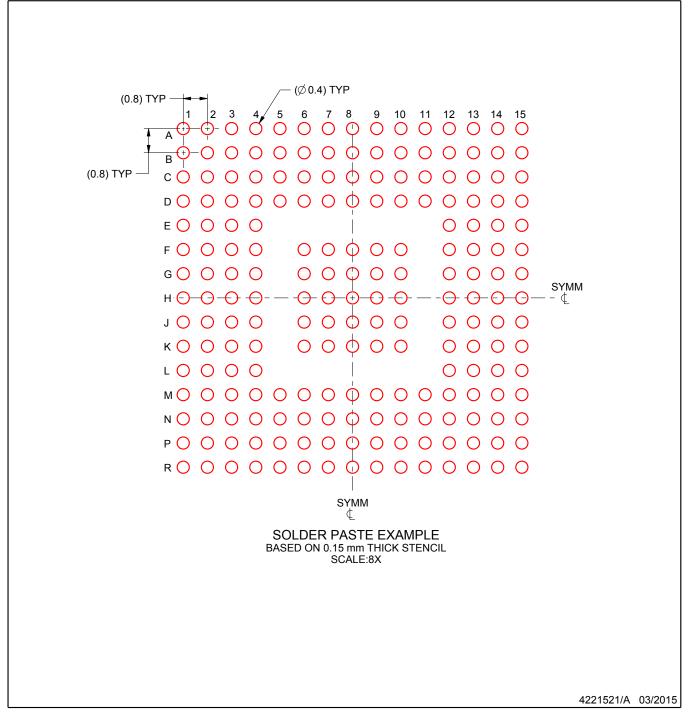
EXAMPLE BOARD LAYOUT

NFBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).



ZEZ0201A

EXAMPLE STENCIL DESIGN

NFBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated