DRV8801-Q1 JAJSPW4D - FEBRUARY 2011 - REVISED MARCH 2021 ## DRV8801-Q1 DMOS フルブリッジ・モータ・ドライバ ## 1 特長 - 車載アプリケーション用に認定済み - 下記の内容で AEC-Q100 認定済み: - デバイス温度グレード 1:T_A = -40℃~125℃ - デバイス HBM ESD 分類レベル H2 - デバイス CDM ESD 分類レベル C4 - 低 R_{DS(on)} 出力:0.83Ω (HS + LS、標準値) - 低消費電力スリープ・モード - 100% の PWM デューティ・サイクルをサポート - 8~38V の動作電源電圧範囲 - 放熱性を高めた表面実装パッケージ - 設定可能な過電流制限値 - 保護機能 - VBB 低電圧誤動作防止 (UVLO) - 過電流保護 (OCP) - 電源短絡保護 - グランド短絡保護 - 過熱警告 (OTW) - 過熱シャットダウン (OTS) - 過電流および過熱フォルト状態をピン (nFAULT) で表示 ## 2 アプリケーション - 車載ボディ・システム - ドア・ロック - HVAC アクチュエータ - ピエゾ・アラーム ## 3 概要 DRV8801-Q1 は、フル H ブリッジ・ドライバを備えた多用 途パワー・ドライバ・ソリューションです。本デバイスは、ブ ラシ付き DC モータ、ステッパ・モータの 1 つの巻線、ソレ ノイドなどのその他のデバイスを駆動できます。 単純な PHASE/ENABLE インターフェイスにより、簡単に制御回 路と接続できます。 出力段は、ハーフ H ブリッジとして構成された N チャネ ル・パワー MOSFET を使用しています。 DRV8801-Q1 は最大 ±2.8A のピーク出力電流と最大 38V の動作電圧 に対応しています。必要なゲート駆動電圧は、内蔵チャー ジ・ポンプによって生成されます。 低消費電力スリープ・モードが用意されており、内部回路 をシャットダウンして静止消費電流を非常に小さく抑えられ ます。このスリープ・モードは、専用の nSLEEP ピンを使 用して設定できます。 低電圧誤動作防止、過電流保護、電源短絡保護、グラン ド短絡保護、過熱警告、過熱シャットダウンなどの保護機 能が内蔵されています。過電流 (グランドとの短絡、電源と の短絡を含む) および過熱フォルト状態は nFAULT ピン によって示されます。 DRV8801-Q1 は露出サーマル・パッド付きの 16 ピン QFN パッケージに封止されており、放熱特性が優れてい ます。 #### 製品情報 | 部品番号 ⁽¹⁾ | パッケージ | 本体サイズ (公称) | |---------------------|----------|-----------------| | DRV8801-Q1 | QFN (16) | 4.00mm × 4.00mm | 利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。 ## **Table of Contents** | 1 特長 | 1 | 8 Application and Implementation | 16 | |--------------------------------------|---|---|-------------------| | 2 アプリケーション | | 8.1 Application Information | 16 | | 3 概要 | | 8.2 Typical Application | | | 4 Revision History | | 8.3 Parallel Configuration | 19 | | 5 Pin Configuration and Functions | | 9 Power Supply Recommendations | 23 | | 6 Specifications | | 9.1 Bulk Capacitance | 23 | | 6.1 Absolute Maximum Ratings | | 10 Layout | 24 | | 6.2 ESD Ratings | | 10.1 Layout Guidelines | 24 | | 6.3 Recommended Operating Conditions | | 10.2 Layout Example | 24 | | 6.4 Thermal Information | | 11 Device and Documentation Support | 25 | | 6.5 Electrical Characteristics | | 11.1 Documentation Support | 25 | | 6.6 Timing Requirements | | 11.2 Receiving Notification of Documentation Update | s <mark>25</mark> | | 6.7 Typical Characteristics | | 11.3 サポート・リソース | 25 | | 7 Detailed Description | | 11.4 Trademarks | 25 | | 7.1 Overview | | 11.5 静電気放電に関する注意事項 | 25 | | 7.2 Functional Block Diagram | | 11.6 用語集 | 25 | | 7.3 Feature Description | | 12 Mechanical, Packaging, and Orderable | | | 7.4 Device Functional Modes | | Information | 25 | ## **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | С | hanges from Revision C (June 2016) to Revision D (March 2021) | Page | |---|--|------| | • | Improved description for pins CP1,CP2,nFAULT, nSLEEP, VBB and VCP in Pin Functions table | 4 | | • | Added entries for VCP and CP2 pins in Absolute Maximum Ratings table | | | • | Change SLEEP to nSLEEP in PWM Control Timing Figure | | | • | Provide additional information on SENSE pin behavior | | | • | Added equation for VPROPI to help when connecting pin's output to ADC in Feature Description | 13 | | • | Added die temperature estimation equation utilizing junction to ambient thermal impedance in Applicat Implementation section | 17 | | • | Added information on using motor driver's pulse width modulating modes in <i>Application and Implement</i> section | | | • | Added information on connecting multiple DRV8801-Q1 together to support higher current in <i>Application Implementation</i> section | | | C | hanges from Revision B (January 2016) to Revision C (June 2016) | Page | | • | Changed one of the MODE1 pins to MODE2 in the Functional Block Diagram section | 10 | | • | Added the Receiving Notification of Documentation Updates section | 25 | | С | hanges from Revision A (January 2014) to Revision B (October 2014) | Page | | • | Added ESD Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and | | | | Documentation Support section, and Mechanical, Packaging, and Orderable Information section | | | • | Added t _{pd} to the Overcurrent Control Timing image | 12 | | С | hanges from Revision * (February 2011) to Revision A (January 2014) | Page | | • | ページ・ヘッダから部品番号 DRV8800-Q1 を削除 | 1 | | • | 「特長」の一覧に AEC-Q100 認定を追加。 | | | • | 先頭ページに「アプリケーション」セクションを追加 | | | • | 「概要」セクションから部品番号 DRV8800-Q1 を削除 | | | • | 「注文情報」表を削除 | | ## www.ti.com/ja-jp | • | Deleted DRV8800-Q1 pinout diagram | 4 | |---|--|----------------| | • | Deleted Terminal Name column for DRV8800-Q1 from Terminal Functions table | | | • | Deleted DRV8800-Q1 pin descriptions for pins 5 and 9 from Terminal Functions table | | | • | Added a Thermal Information table | | | • | Removed DRV8800-Q1 part number from column heading of Thermal Information table | | | • | Changed parameter name and test condition for Electrical Characteristics, VTRP row | | | • | Added two notes to end of Electrical Characteristics table | | | • | Changed "Overcurrent protection period" parameter to "Overcurrent retry time" | <mark>7</mark> | | • | Deleted DRV8800-Q1 from text of Device Operation section | | | • | Deleted DRV8800-Q1 Functional Block Diagram | | | • | Updated the Overcurrent Control Timing image | | | • | Updated the Overcurrent Control Timing image | | | • | Changed active low to low in Diagnostic Output section | | | • | Deleted VREG section; deleted "(DRV8801-Q1 Only)" from VPROPI section title | | | • | Changed a value in row 5 of the Control Logic Table | | | • | Added a row to Control Logic Table | | | • | Deleted DRV8800-Q1 from the text of the Low-Power Mode sedtion | | | • | Deleted DRV8800-Q1 Typical Application Diagram | | | • | Corrected part number in DRV8801-Q1 application diagram | | | | | | ## **5 Pin Configuration and Functions** 図 5-1. RTY Package 16-Pin QFN With Exposed Thermal Pad Top View 表 5-1. Pin Functions | PIN | PIN | | | | | | | |-------------|-------|-----|---|--|--|--|--| | NAME NO. | | I/O | DESCRIPTION | | | | | | | | | | | | | | | CP1 | 10 | PWR | Charge pump switching node. Connect a X7R, 0.1-µF, VBB-rated ceramic capacitor from CP1 to | | | | | | CP2 | 11 | PWR | CP2. | | | | | | ENABLE | 4 | 1 | Enable logic input | | | | | | GND | 2, 12 | PWR | Ground | | | | | | MODE 1 | 16 | I | Mode logic input | | | | | | MODE 2 | 5 | I | Mode 2 logic input | | | | | | nFAULT | 15 | 0 | Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor. | | | | | | nSLEEP | 3 | I | Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown resistor. | | | | | | OUT+ | 6 | 0 | DMOS full-bridge output positive | | | | | | OUT- | 9 | 0 | DMOS full-bridge output negative | | | | | | PHASE | 1 | I | Phase logic input for direction control | | | | | | SENSE | 7 | Ю | Sense power return | | | | | | VBB | 8 | PWR | Driver supply voltage. Bypass to GND with 0.1-μF ceramic capacitors plus a bulk capacitor rated for VBB. | | | | | | VCP | 13 | 0 | Charge pump reservoir capacitor pin. Connect a X7R, 0.1-µF, 16-V ceramic capacitor to VBB. | | | | | | VPROPI | 14 | 0 | Winding current proportional voltage output | | | | | | Thermal Pad | PAD | PWR | Exposed pad for thermal dissipation; connect to GND pins. | | | | | ## **6 Specifications** ## **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted) (1) | | | MIN | MAX | UNIT | |----------------------|--|------|-----------|------| | V _{BB} | Load supply voltage ⁽²⁾ | -0.3 | 40 | V | | VCP and CP2 | Charge pump voltage | -0.3 | VBB+17 | V | | l _{out} | Output current | 0 | 2.8 | Α | | V _{Sense} | Sense voltage | -500 | 500 | mV | | V _{BB_OUT} | VBB to OUTx | | 36 | V | | V _{OUT_SEN} | OUTx to SENSE | | 36 | V | | V_{DD} | PHASE, ENABLE, MODE1, MODE2, nSLEEP, nFAULT(2) | -0.3 | 7 | V | | P _D | Continuous total power dissipation | See | セクション 6.4 | | | T _A | Operating free-air temperature | -40 | 125 | °C | | T _J | Maximum junction temperature | -40 | 150 | °C | | T _{stg} | Storage temperature | -40 | 125 | °C | ⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under セクション 6.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 6.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|-------------------------|--|---|-------|------| | | | Human body model (HBM), per AEC Q100-0 | 002 ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged device model (CDM) nor ACC | Corner pins (1, 4, 5, 8, 9, 12, 13, and 16) | ±750 | V | | | | (100-011 | Other pins | ±500 | | ⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## **6.3 Recommended Operating Conditions** | | | MIN | MAX | UNIT | |------------------|---------------------------------------|-----|-----|------| | V _{BB} | Power supply voltage | 8 | 38 | V | | V_{DD} | Logic voltage | 0 | 5.5 | V | | f _{PWM} | Applied PWM signal (PHASE and ENABLE) | 0 | 100 | kHz | | T _A | Ambient temperature | -40 | 125 | °C | ## **6.4 Thermal Information** | | | DRV8801-Q1 | | |-----------------------|--|------------|------| | | THERMAL METRIC ⁽¹⁾ | RTY (QFN) | UNIT | | | | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 46.1 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 43.0 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 22.5 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 0.6 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 22.5 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 3.8 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. ⁽²⁾ All voltage values are with respect to network ground terminal. ### **6.5 Electrical Characteristics** over recommended operating conditions (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | | TYP | MAX | UNIT | |----------------------|-----------------------------------|--|-------------------------|-----|------|------|------| | POWER SU | PPLIES (VBB) | | | • | | , | | | VBB | VBB operating voltage | | | 8 | | 38 | V | | | VPD energting augusts august | f _{PWM} < 50 kHz | | | 6 | | A | | I _{VBB} | VBB operating supply current | Charge pump on, outputs disable | | 3.2 | | mA | | | I _{VBBQ} | VBB sleep-mode supply current | nSLEEP = 0, T _J = 25°C | | | | 10 | μΑ | | CONTROL | NPUTS (PHASE, ENABLE, MODE1 | , MODE2, nSLEEP) | | • | | ' | | | V _{IL} | Input logic low voltage | | | | | 8.0 | V | | V _{IH} | Input logic high voltage | PHASE, ENABLE,
MODE1, MODE2 | 2 | | | V | | | V _{IHYS} | Input hysteresis | I WODE 1, WODE2 | | 100 | 500 | 800 | mV | | I _{IL} | Input logic low current | DUACE MODEL MODEO | V _{IN} = 0.8 V | -20 | < -2 | 20 | | | I _{IH} | Input logic high current | PHASE, MODE1, MODE2 | V _{IN} = 2.0 V | | < 1 | 20 | μΑ | | I _{IL} | Input logic low current | ENADLE | V _{IN} = 0.8 V | | 16 | 40 | | | I _{IH} | Input logic high current | ENABLE | V _{IN} = 2.0 V | | 40 | 100 | μA | | V _{IL} | Input logic low voltage | | | | | 0.8 | V | | V _{IH} | Input logic high voltage | -01 FFD | | 2.7 | | | V | | I _{IL} | Input logic low current | -nSLEEP | V _{IN} = 0.8 V | | <1 | 10 | | | I _{IH} | Input logic high current | V _{IN} = 2.7 V | | | 27 | 50 | μΑ | | CONTROL | OUTPUTS (nFAULT) | | ' | | | ' | | | V _{OL} | Output logic low voltage | I _O = 1 mA | | | | 0.4 | V | | VBBNFR | VBB nFAULT release | 8 V < VBB < 40 V | | | 12 | 13.8 | V | | DMOS DRI\ | /ERS (OUT+, OUT-, SENSE, VPRO | PI) | | 1 | | , | | | | | Source driver, I _{OUT} = -2.8 A, T _J = | = 25°C | | 0.48 | | | | _ | Outrast ON marietamen | Source driver, I _{OUT} = –2.8 A, T _J = 125°C | | | 0.74 | 0.85 | 0 | | R _{DS(on)} | Output ON resistance | Sink driver, I _{OUT} = 2.8 A, T _J = 25°C | | | 0.35 | | Ω | | | | Sink driver, I _{OUT} = 2.8 A, T _J = 12 | 5°C | | 0.52 | 0.7 | | | V _{TRIP} | SENSE trip voltage | R _{SENSE} between SENSE and GND | | | 500 | | mV | | ., | Deduction for several values | Source diode, I _f = -2.8 A | | | | 1.4 | | | V_f | Body diode forward voltage | Sink diode, I _f = 2.8 A | | | | 1.4 | V | | A _{VDA} | Differential AMP gain | SENSE = 0.1 V to 0.4 V | | | 5 | | V/V | | PROTECTION | ON CIRCUITRY | | | | | I | | | VUV | UVLO threshold | VBB increasing | | | 6.5 | 7.5 | V | | I _{OCP} | Overcurrent protection trip level | VBB = 8.0 approximately 38 V | | 3 | | | Α | | T _{OTW} | Thermal warning temperature | Die temperature T _j ⁽¹⁾ | | | 160 | | °C | | T _{OTW HYS} | Thermal warning hysteresis | Die temperature T _j | | 15 | | °C | | | T _{OTS} | Thermal shutdown temperature | Die temperature T _j ⁽²⁾ | | | 175 | | °C | | T _{OTS HYS} | Thermal shutdown hysteresis | Die temperature T _i | | | 15 | | °C | ⁽¹⁾ Once the device reaches the thermal warning temperature of 160°C, the device remains in thermal warning until the device cools to 145°C. This is known as the thermal-warning hysteresis of the device. ⁽²⁾ Once the device reaches the thermal shutdown temperature of 175°C, the device remains in thermal shutdown until the device cools to 160°C. This is known as the thermal-shutdown hysteresis of the device. ## **6.6 Timing Requirements** | | | | MIN | NOM | MAX | UNIT | | |------------------|---------------------------|----------------------------------|-----|-----|-----|------|--| | + . | Propagation delay time | Input edge to source or sink ON | | 600 | | no | | | ^L pd | Fropagation delay time | Input edge to source or sink OFF | | 100 | | ns | | | t _{COD} | Crossover delay | | | 500 | | ns | | | t _{DEG} | Overcurrent deglitch time | | | 3 | | μs | | | t _{OCP} | Overcurrent retry time | | | 1.2 | | ms | | 図 6-1. PWM Control Timing 図 6-2. Overcurrent Control Timing ## **6.7 Typical Characteristics** ## 7 Detailed Description ### 7.1 Overview The DRV8801-Q1 is an integrated motor driver solution for brushed-DC motors. The device integrates a DMOS H-bridge and current sense and protection circuitry. The device can be powered with a supply voltage between 8 and 38 V, and is capable of providing an output current up to 2.8 A peak. A simple PHASE-ENABLE interface allows control of the motor speed and direction. A shunt amplifier output is provided for accurate current measurements by the system controller. The VPROPI pin will output a voltage that is 5 times the voltage seen at the SENSE pin. A low-power sleep mode is included which allows the system to save power when not driving the motor. ## 7.2 Functional Block Diagram Copyright © 2016, Texas Instruments Incorporated #### 7.3 Feature Description #### 7.3.1 Power Supervisor The control input, nSLEEP, is used to minimize power consumption when the DRV8801-Q1 device is not in use. A logic low on the nSLEEP input disables much of the internal circuitry, including the internal voltage rails and charge pump. A logic high on this input pin results in normal operation. When switching from low to high, the user should allow a 1-ms delay before applying PWM signals. This time is needed for the charge pump to stabilize. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 7.3.2 Bridge Control 表 7-1 shows the logic for the DRV8801-Q1: 表 7-1. Bridge Control Logic Table | nSLEEP | PHASE | ENABLE | MODE1 | MODE2 | OUTA | OUTB | OPERATION | |--------|-------|--------|-------|-------|------|------|-------------------------| | 0 | X | X | Х | Х | Z | Z | Sleep mode | | 1 | 0 | 1 | Х | Х | L | Н | Reverse | | 1 | 1 | 1 | Х | Х | Н | L | Forward | | 1 | 0 | 0 | 0 | Х | Н | L | Fast decay | | 1 | 1 | 0 | 0 | Х | L | Н | Fast decay | | 1 | Х | 0 | 1 | 0 | L | L | Low-side Slow
decay | | 1 | х | 0 | 1 | 1 | Н | Н | High-side Slow
decay | To prevent reversal of current during fast-decay synchronous rectification, outputs go to the high impedance state as the current approaches 0 A. The path of current flow for each of the states in the above logic table is shown in 🗵 7-1. #### 7.3.2.1 MODE 1 Input MODE 1 is used to toggle between fast-decay mode and slow-decay mode. A logic high puts the device in slow-decay mode. #### 7.3.2.2 MODE 2 MODE 2 is used to select which set of drivers (high side versus low side) is used during the slow-decay recirculation. MODE 2 is meaningful only when MODE 1 is asserted high. A logic high on MODE 2 has current recirculation through the high-side drivers. A logic low has current recirculation through the low-side drivers. ### 7.3.3 Fast Decay with Synchronous Rectification This decay mode is equivalent to a phase change where the FETs opposite of the driving FETs are switched on (2 in \boxtimes 7-1). When in fast decay, the motor current is not allowed to go negative because this would cause a change in direction. Instead, as the current approaches zero, the drivers turn off. See the $2/2 \times 2$ section for an equation to calculate power. #### 7.3.4 Slow Decay with Synchronous Rectification (Brake Mode) In slow-decay mode, both low-side and high-side drivers turn on, allowing the current to circulate through the low-side and high-side body diodes of the H-bridge and the load (3 and 4 in 図 7-1). See the セクション 8.2.2.2 section for equations to calculate power for both high-side and low-side slow decay. 図 7-1. H-Bridge Operation Modes #### 7.3.5 Charge Pump The charge pump is used to generate a supply above V_{BB} to drive the source-side DMOS gates. A 0.1- μ F ceramic monolithic capacitor should be connected between CP1 and CP2 for pumping purposes. A 0.1- μ F ceramic monolithic capacitor should be connected between VCP and V_{BB} to act as a reservoir to run the high-side DMOS devices. #### **7.3.6 SENSE** A low-value SENSE resistor is used to set an overcurrent threshold lower than the default maximum value of 2.8 A and to provide a voltage for VPROPI. This SENSE resistor must be connected between the SENSE pin and ground. To minimize ground-trace IR drops in sensing the output current level, the current-sensing resistor should have an independent ground return to the star ground point. This trace should be as short as possible. For low-value sense resistors, the IR drops in the PCB can be significant, and should be taken into account. Product Folder Links: DRV8801-Q1 式 1 shows the value of the resistor to a particular current setting. $$R_{\text{sense}} = \frac{500 \text{ mV}}{I_{\text{trip}}}$$ (1) The overcurrent trip level selected cannot be greater than I_(OCP). 図 7-2. Overcurrent Control Timing ### **7.3.7 VPROPI** The analog output VPROPI offers SENSE current information as an analog voltage proportional to the current flowing through the DC motor winding. This voltage can be used by an analog to digital converter and microcontroller to accurately determine how much current is flowing through the controlled DC motor. The later section discussing the SENSE resistor provides guidance on how to choose the SENSE resistor value. ### 7.3.7.1 Connecting VPROPI Output to ADC The analog output VPROPI varies proportionally with the SENSE voltage according to \pm 2. It's important to note even if V_{SENSE} is negative VPROPI will remain at 0 V. $$VPROPI = 5 \times V_{SENSE}$$ (2) An RC network in series with the VPROPI output is recommended, if this voltage is to be sampled by an analog to digital converter. 図 7-3. RC Network in Series With the VPROPI Output It is imperative to realize that VPROPI will decrease to 0 V while the H-Bridge enters slow decay recirculation. #### 7.3.8 Protection Circuits The DRV8801-Q1 device is fully protected against V_{BB} undervoltage, overcurrent, and overtemperature events. | | | | - | | |-------------------------------------|--|----------|-------------|------------------------------------| | FAULT | ERROR REPORT | H-BRIDGE | CHARGE PUMP | RECOVERY | | V _{BB} undervoltage (UVLO) | No error report – nFAULT is hi-Z | Disabled | Shut Down | V _{BB} > VUVLO RISING | | Overcurrent (OCP) | nFAULT pulled low | Disabled | Operating | Retry time, t _(OCP) | | Overtemperature Warning (OTW) | nFAULT pulled low | Enabled | Operating | $T_J < T_{(OTW)} - T_{hys(OTW)}$ | | Overtemperature
Shutdown (OTS) | nFAULT remains pulled low (set during OTW) | Disabled | Shut Down | $T_{J} < T_{(OTS)} - T_{hys(OTS)}$ | 表 7-2. DRV8801-Q1 Fault Responses ## 7.3.8.1 V_{BB} Undervoltage Lockout (UVLO) If at any time the voltage on the V_{BB} pin falls below the undervoltage lockout threshold voltage, all FETs in the H-bridge are disabled and the charge pump is disabled. The nFAULT pin does not report the UVLO fault condition and remains hi-Z. Operation resumes when V_{BB} rises above the UVLO threshold. #### 7.3.8.2 Overcurrent Protection (OCP) The current flowing through the high-side and low-side drivers is monitored to ensure that the motor lead is not shorted to supply or ground. If a short is detected, all FETs in the H-bridge are disabled, nFAULT is driven low, and a $t_{(OCP)}$ fault timer is started. After this period, $t_{(OCP)}$, the device is then allowed to follow the input commands and another turn-on is attempted (nFAULT releases during this attempt). If there is still a fault condition, the cycle repeats. If the short condition is not present after $t_{(OCP)}$ expires, normal operation resumes and nFAULT is released. ### 7.3.8.3 Overtemperature Warning (OTW) If the die temperature increases past the thermal warning threshold the nFAULT pin is driven low. When the die temperature has fallen below the hysteresis level, the nFAULT pin is released. If the die temperature continues to increase, the device enters overtemperature shutdown as described in the #D>3> 7.3.8.4 section. #### 7.3.8.4 Overtemperature Shutdown (OTS) If the die temperature exceeds the thermal shutdown temperature, all FETs in the H-bridge are disabled and the charge pump shuts down. The nFAULT pin remains pulled low during this fault condition. When the die temperature falls below the hysteresis threshold, operation automatically resumes. ## 7.3.9 Thermal Shutdown (TSD) Two die-temperature monitors are integrated on the chip. As die temperature increases toward the maximum, a thermal warning signal is triggered at 160°C. This fault drives nFAULT low, but does not disable the operation of Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated the chip. If the die temperature increases further, to approximately 175°C, the full-bridge outputs are disabled until the internal temperature falls below a hysteresis of 15°C. ### 7.4 Device Functional Modes The DRV8801-Q1 device is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled and the H-bridge FETs are disabled hi-Z. The DRV8801-Q1 device is brought out of sleep mode automatically if nSLEEP is brought logic high. Product Folder Links: DRV8801-Q1 ## 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## **8.1 Application Information** The DRV8801-Q1 device is used in medium voltage brushed DC motor control applications. ### 8.2 Typical Application 図 8-1. Typical Application Schematic #### 8.2.1 Design Requirements For this design example, use the parameters listed in 表 8-1 as the input parameters. 表 8-1. Design Parameters | DESIGN PARAMETER | REFERENCE | EXAMPLE VALUE | | | |--------------------------|-----------|---------------|--|--| | Motor Voltage | VBB | 24 V | | | | Motor RMS Current | IRMS | 0.8 A | | | | Motor Startup Current | ISTART | 2 A | | | | Motor Current Trip Point | ITRIP | 2.5 A | | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 8.2.2 Detailed Design Procedure #### 8.2.2.1 Motor Voltage The motor voltage to use will depend on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings. #### 8.2.2.2 Power Dissipation The power dissipation of the DRV8801-Q1 is a function of the RMS motor current and the each output's FET resistance ($R_{DS(ON)}$). Power $$\approx I_{RMS}^2 \times (High-Side R_{DS(ON)} + Low-Side R_{DS(ON)})$$ (3) For this example, the ambient temperature is 35°C, and the junction temperature reaches 65°C. At 65°C, the sum of RDS(ON) is about 1 Ω . With an example motor current of 0.8 A, the dissipated power in the form of heat will be 0.8 A²x 1 Ω = 0.64 W. The temperature that the DRV8801-Q1 reaches will depend on the thermal resistance to the air and PCB. It is important to solder the device thermal pad to the PCB ground plane, with vias to the top and bottom board layers, to dissipate heat into the PCB and reduce the device temperature. In the example used here, the DRV8801-Q1 had an effective thermal resistance $R_{\theta,JA}$ of 47° C/W, and: $$T_J = T_A + (P_D \times R_{\theta JA}) = 35^{\circ}C + (0.64 \times 47^{\circ}C/W) = 65^{\circ}C$$ (4) #### 8.2.2.3 Thermal Considerations Although DRV8801-Q1 is rated at 2.8-A of current handling, the previous only holds true as long as the internal temperature does not exceed 170°C. In order to operate at this rate, the following measures must be taken under consideration. #### 8.2.2.3.1 Junction-to-Ambiant Thermal Impedance (OJA) At any given time during the steady state portion of the cycle, two FETs are enabled: A high side sourcing FET and a low side sinking FET. The increase in die temperature above ambient can be estimated by ± 5 $$T_{die} = \theta_{JA} \frac{{}^{\circ}C}{W} \times I_{winding}^{2} \times RDS_{ON} + T_{A}$$ (5) ### 8.2.2.4 Motor Current Trip Point When the voltage on pin SENSE exceeds V_{TRIP} (0.5 V), overcurrent is detected. The R_{SENSE} resistor should be sized to set the desired I_{TRIP} level. $$R_{SENSE} = 0.5 \text{ V} / I_{TRIP} \tag{6}$$ To set I_{TRIP} to 2.5 A, R_{SENSE} = 0.5 V / 2.5 A = 0.2 Ω . To prevent false trips, I_{TRIP} must be higher than regular operating current. Motor current during startup is typically much higher than steady-state spinning, because the initial load torque is higher, and the absence of back-EMF causes a higher voltage and extra current across the motor windings. It is beneficial to limit startup current by using series inductors on the DRV8801-Q1 output, as that allows I_{TRIP} to be lower, and it may decrease the system's required bulk capacitance. Startup current can also be limited by ramping the forward drive duty cycle. #### 8.2.2.5 Sense Resistor Selection For optimal performance, it is important for the sense resistor to be: - Surface-mount - Low inductance - · Rated for high enough power - · Placed closely to the motor driver #### 8.2.2.6 Drive Current This current path is through the high-side sourcing DMOS driver, motor winding, and low-side sinking DMOS driver. Power dissipation I^2R losses in one source and one sink DMOS driver, as shown in ± 7 . $$P_{D} = I^{2}(r_{DS(on)Source} + r_{DS(on)Sink})$$ (7) ### 8.2.3 Pulse-Width Modulating ## 8.2.3.1 Pulse-Width Modulating ENABLE The most common H-Bridge direction/speed control scheme is to use a conventional GPIO output for the PHASE (selects direction) and pulse-width modulate ENABLE for speed control. ### 8.2.3.2 Pulse-Width Modulating PHASE A technique that uses a speed/direction control scheme where ENABLE is connected to a GPIO output and the PHASE is pulse-width modulated. In this case, both direction and speed are controlled with a single signal. ENABLE is only used to disable the motor and stop all current flow. When pulse-width modulating PHASE, a 50% duty cycle will stop the motor. Duty cycles above 50% will have the motor moving on the clockwise direction with proportional control; 100% duty cycle represents full speed. Duty cycles below 50% will have the motor rotating with a counter clockwise direction; 0% duty cycle represents full speed. #### 8.2.4 Application Curves ## 8.3 Parallel Configuration It is possible to drive higher than the 2.8 A of current by connecting more than one devices in parallel. To properly use this option the guidelines documented below must be followed. #### 8.3.1 Parallel Connections 図 8-6. Functional Block Diagram (Connected Signals) #### 8.3.2 Non - Parallel Connections ⊠ 8-7 shows the signals that should not be connected together and will be driven on an individual basis. These are: VCP, CP1, CP2, and VPROPI. 図 8-7. Functional Block Diagram (Individual Signals) #### 8.3.3 Wiring nFAULT as Wired OR Since nFAULT is an open drain output, multiple nFAULT outputs can be paralleled with a single resistor. The end result is a wired OR configuration. When any individual nFAULT output goes to a logic low, the wired OR output will go to the same logic low. There is no need to determine which device signaled the fault condition, as once they are connected in parallel they function as a single device. 図 8-8. nFAULT as Wired OR #### 8.3.4 Electrical Considerations #### 8.3.4.1 Device Spacing It is recommended that devices be connected as close as possible and with trace lengths as short as possible. Doing this minimizes the potential of generating timing differences between devices. Although it may seem like a harmful situation for the power stage, DRV8801-Q1 contains enough protection to effectively deal with enable time skews from device to device. This consideration focuses on motion quality, as total current needed for acceleration and proper speed control will only be available when all power stages are brought online. #### 8.3.4.2 Recirculation Current Handling During recirculation, it is not possible to synchronize all devices connected in parallel so that the current is equally distributed. Also, during the asynchronous portion of the current decay, the body diode with the lowest forward voltage will start conducting and sink all of the current. Said body diode is not meant to handle the new increased current capacity and will be severely affected if allowed to sink current of said magnitude. In order to assure proper operation when devices are connected in parallel, it is imperative that external schottky diodes be used. These schottky diodes will conduct during the asynchronous portion of the recirculation mode and will sink the inductive load current until the respective FET switches are brought online. Copyright © 2023 Texas Instruments Incorporated Schottky diodes should be connected as shown in **8-9**. 図 8-9. Schottky Diodes Connection #### 8.3.4.3 Sense Resistor Selection The guideline for the SENSE resistor chosen doesn't change in parallel mode. As the goal of this configuration is to evenly distribute the current load across multiple devices, each device should be configured with the same I_{TRIP} setting. Therefore, the same SENSE resistor should be used for all devices connected in parallel. Connection of the SENSE resistors should be as shown in **28-10**. 図 8-10. SENSE Resistors Connection #### 8.3.4.4 Maximum System Current $$SystemI_{TRIP} = (I_{TRIP} \times N)$$ (8) Product Folder Links: DRV8801-Q1 Where: N is the number of devices connected in parallel. I_{TRIP} is the individual I_{TRIP} value per device. However, although in theory accurate, due to tolerances in internal SENSE amplifier/comparator circuitry, the system I_{TRIP} should be expected to be less than the addition of all the individual I_{TRIP} . The reason for this is that as soon as one of the devices senses a current for which the H Bridge should be disabled, the remaining devices will end up having to conduct the same current but with less capacity. Therefore, remaining devices are expected to get disabled shortly after. A good rule of thumb is to expect 90% of the theoretical maximum. By way of example, if the system level requirements indicate that 6 A of current are required to meet the motion control requirements, then: $$6 A = (2.8 A \times 0.9)N$$ $$N = (6 A) / (2.8 A \times 0.9)$$ $$N = 2.38$$ In this example, three devices would be required to safely meet the needs of the system. ## 9 Power Supply Recommendations ### 9.1 Bulk Capacitance Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The amount of local capacitance needed depends on a variety of factors, including: - The highest current required by the motor system. - The capacitance of the power supply and its ability to source current. - The amount of parasitic inductance between the power supply and motor systems. - The acceptable voltage ripple. - The type of motor used (Brushed DC, Brushless DC, Stepper). - · The motor braking method. The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied. The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor. 図 9-1. Example Setup of Motor Drive System With External Power Supply ## 10 Layout ## 10.1 Layout Guidelines - The printed-circuit-board (PCB) should use a heavy ground plane. For optimal electrical and thermal performance, the DRV8801-Q1 must be soldered directly onto the board. On the underside of the DRV8801Q1 is a thermal pad, which provides a path for enhanced thermal dissipation. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias are used to transfer heat to other layers of the PCB. - The load supply pin VBB, should be decoupled with an electrolytic capacitor (typically 100 μF) in parallel with a ceramic capacitor (0.1 μF) placed as close as possible to the device. - The ceramic capacitors (0.1 μF) between VCP and VBB and between CP1 and CP2 should be placed as close as possible to the device. - The SENSE resistor should be close as possible to the SENSE pin and ground return to minimize parasitic inductance. ### 10.2 Layout Example 図 10-1. RTY Layout Example ## 11 Device and Documentation Support ## 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation, see the following: #### QFN/SON PCB Attachment #### 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 11.3 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。 #### 11.4 Trademarks TI E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わないと、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 10-Feb-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | DRV8801QRTYRQ1 | ACTIVE | QFN | RTY | 16 | 3000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | DRV
8801Q | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE OPTION ADDENDUM** www.ti.com 10-Feb-2023 #### OTHER QUALIFIED VERSIONS OF DRV8801-Q1: ● Catalog : DRV8801 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product ## **PACKAGE MATERIALS INFORMATION** www.ti.com 10-Feb-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---|----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ١ | DRV8801QRTYRQ1 | QFN | RTY | 16 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 10-Feb-2023 ### *All dimensions are nominal | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---|----------------|--------------|-----------------|------|------|-------------|------------|-------------| | I | DRV8801QRTYRQ1 | QFN | RTY | 16 | 3000 | 356.0 | 356.0 | 35.0 | RTY (S-PWQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994. - B. This drawing is subject to change without notice. - C. Quad Flatpack, No-leads (QFN) package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions. E. Falls within JEDEC MO-220. ## RTY (S-PWQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD #### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. NOTE: A. All linear dimensions are in millimeters # RTY (S-PWQFN-N16) ## PLASTIC QUAD FLATPACK NO-LEAD NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - F. Customers should contact their board fabrication site for solder mask tolerances. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated