TPS40170-Q1 JAJSRX9C - JANUARY 2012 - REVISED NOVEMBER 2023 # TPS40170-Q1 車載用 4.5V~60V、広い入力電圧範囲、同期整流 PWM 降圧コン トローラ ## 1 特長 - 新しい類似製品が利用可能: - LM5145-Q1 広い入力電圧範囲とデューティ・サイ クル範囲の 75V 同期整流降圧コントローラ - LM5146-Q1 広いデューティ・サイクル範囲の **100V** 同期整流降圧 DC/DC コントローラ - 車載アプリケーション向け認定済み - 下記結果で AEC-Q100 認定済み - デバイス温度グレード 1:-40℃~125℃の動作時 周囲温度範囲 - デバイス HBM ESD 分類レベル 1C - デバイス CDM ESD 分類レベル C4B - 広い入力電圧範囲:4.5V~60V - 精度 1% の 600mV 基準電圧 - プログラム可能な UVLO とヒステリシス - 電圧フィード・フォワードによる電圧モード制御 - 100kHz~600kHz のプログラマブル周波数 - プライマリとセカンダリのオプションによる双方向周波 - ローサイド FET センシング過電流保護と、内蔵の熱補 償によるハイサイド FET センシング短絡保護 - プログラム可能な閉ループ・ソフト・スタート - プリバイアス出力をサポート - ヒステリシス付き 165℃でのサーマル・シャットダウン - 電圧トラッキング - パワー・グッド - 1µA の低電流シャットダウン機能による ENABLE - 8V および 3.3V の LDO 出力 - ブートストラップ・ダイオードを内蔵 - 20 ピン、4.5mm × 3.5mm VQFN (RGY) パッケージ ## 2 アプリケーション - 先進運転支援システム (ADAS) - 車載用インフォテインメントおよびクラスタ ## 3 概要 TPS40170-Q1 デバイスは、4.5V~60V の入力電圧で動 作するフル機能の同期整流 PWM 降圧コントローラで、電 力密度が高く信頼性の高い DC/DC コンバータ・アプリケ ーションに最適化されています。このコントローラは、入力 電圧フィードフォワード補償による電圧モード制御を実装 し、入力電圧の変化に対する瞬時の応答を可能にしま す。スイッチング周波数は 100kHz~600kHz の範囲で設 定可能です。 TPS40170-Q1 デバイスは、プログラム可能な UVLO、ロ ーサイド FET の検出によるプログラム可能な過電流保護 (OCP)、ハイサイド FET の検出による選択可能な短絡保 護 (SCP)、サーマル・シャットダウンなど、一連のシステム 保護および監視機能を備えています。 ENABLE ピンによ り、低電流 (代表値 1µA) モードでシステム・シャットダウン が可能です。このコントローラは、プリバイアス出力をサポ ートし、オープン・ドレインの PGOOD 信号を供給するほ か、閉ループのソフトスタート、出力電圧トラッキング、適合 型デッドタイム制御を備えています。 TPS40170-Q1 デバイスは、精度 1% 内の正確な出力電 圧レギュレーショを実現します。さらに、このコントローラは 1 つのコントローラがプライマリ・コントローラとして動作し、 他のダウンストリーム・コントローラが 1 次側に同相、また は 180° 位相不一致に同期しているセカンダリ・コントロー ラとして動作している新しい双方向同期方式を実装してい ます。セカンダリ・コントローラは、フリーランニング・スイッ チング周波数の ±30% 以内で外部クロックと同期できま 新製品 (LM5145-Q1 および LM5146-Q1) には、BOM コストの削減、効率の向上、ソリューション・サイズの小型 化など、多くの特長があります。 ## 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ・サイズ ⁽²⁾ | |-------------|----------------------|--------------------------| | TPS40170-Q1 | RGY (VQFN, 20) | 4.50mm × 3.50mm | - 供給されているすべてのパッケージについては、セクション 10 を 参照してください。 - パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 概略回路図 ## **Table of Contents** | 1 特長 | 1 | 7 Application and Implementation | 34 | |--------------------------------------|---|---|----| | 2 アプリケーション | | 7.1 Application Information | 34 | | 3 概要 | | 7.2 Typical Application | 34 | | 4 Pin Configuration and Functions | | 7.3 Power Supply Recommendations | | | 5 Specifications | | 7.4 Layout | | | 5.1 Absolute Maximum Ratings | | 8 Device and Documentation Support | 46 | | 5.2 ESD Ratings | | 8.1 Device Support | 46 | | 5.3 Recommended Operating Conditions | | 8.2 Documentation Support | | | 5.4 Thermal Information | | 8.3ドキュメントの更新通知を受け取る方法 | | | 5.5 Electrical Characteristics | | 8.4 サポート・リソース | 46 | | 5.6 Typical Characteristics | | 8.5 Trademarks | | | 6 Detailed Description | | 8.6 静電気放電に関する注意事項 | 46 | | 6.1 Overview | | 8.7 用語集 | | | 6.2 Functional Block Diagram | | 9 Revision History | | | 6.3 Feature Description | | 10 Mechanical, Packaging, and Orderable | | | 6.4 Device Functional Modes | | Information | 47 | English Data Sheet: SLVSB90 ## **4 Pin Configuration and Functions** 図 4-1. RGY PACKAGE QFN-20 (Top View) 表 4-1. Pin Functions | PIN | I | TYPE | DECORPORTION | |--------|-----|------|---| | NAME | NO. | (1) | DESCRIPTION | | AGND | 9 | _ | Analog signal ground. This pin must be electrically connected to power ground PGND externally. | | воот | 18 | 0 | Boot-capacitor node for high-side FET gate driver. The boot capacitor is connected from this pin to SW. | | COMP | 8 | 0 | Output of the internal error amplifier. The feedback loop compensation network is connected from this pin to the FB pin. | | ENABLE | 1 | I | This pin must be high for the device to be enabled. If this pin is pulled low, the device is put in a low-power-consumption shutdown mode. | | FB | 7 | 1 | Negative input to the error amplifier. The output voltage is fed back to this pin through a resistor-divider network. | | HDRV | 17 | 0 | Gate-driver output for the high-side FET. | | ILIM | 12 | 1 | A resistor from this pin to PGND sets the overcurrent limit. This pin provides source current used for the overcurrent-protection threshold setting. | | LDRV | 14 | 0 | Gate driver output for the low-side FET. Also, a resistor from this pin to PGND sets the multiplier factor to determine the short-circuit current limit. If no resistor is present, the multiplier defaults to 7 times the ILIM pin voltage. | | M/S | 3 | ı | Primary- or secondary-mode selector pin for frequency synchronization. This pin must be tied to VIN for primary mode. In the secondary mode, this pin must be tied to AGND or left floating. If the pin is tied to AGND, the device synchronizes with a 180° phase shift. If the pin is left floating, the device synchronizes with a 0° phase shift. | | PGND | 13 | _ | Power ground. This pin must externally connect to the AGND at a single point. | | PGOOD | 11 | 0 | Power-good indicator. This pin is an open-drain output pin, and TI recommends a $10-k\Omega$ pullup resistor to be connected between this pin and VDD. | | RT | 4 | 1 | A resistor from this pin to AGND sets the oscillator frequency. Even if operating in secondary mode, it is required to have a resistor at this pin to set the free-running switching frequency. | | SS | 5 | I | Soft-start. A capacitor must be connected from this pin to AGND. The capacitor value sets the soft-start time. | | SW | 16 | 1 | This pin must connect to the switching node of the synchronous buck converter. The high-side and low-side FET current sensing are also done from this node. | | SYNC | 2 | I/O | Synchronization. This is a bidirectional pin used for frequency synchronization. In the primary mode, it is the SYNC output pin. In the secondary mode, it is a SYNC input pin. If unused, this pin can be left open. | | TRK | 6 | I | Tracking. External signal at this pin is used for output voltage tracking. This pin goes directly to the internal error amplifier as a positive reference. The lesser of the voltages between V _{TRK} and the internal 600-mV reference sets the output voltage. If not used, this pin must be pulled up to VDD. | ## 表 4-1. Pin Functions (続き) | PIN | | TYPE | DESCRIPTION | |--|-----|------|---| | NAME | NO. | (1) | DESCRIP HON | | UVLO 20 I Undervoltage lockout. A resistor divider on this pin from VIN to AGND can be used to set the UVLO threshold. | | | | | VBP | 15 | 0 | 8-V regulated output for gate driver. A ceramic capacitor with a value between 1 μ F and 10 μ F must be connected from this pin to PGND | | VDD 10 O | | 0 | 3.3-V regulated output. A ceramic bypass capacitor with a value between 0.1 μ F and 1 μ F must be connected between this pin and the AGND pin and placed closely to this pin. | | VIN 19 | | I | Input voltage for the controller, which is also the input voltage for the dc-dc converter. A 1-µF bypass capacitor from this pin to AGND must be added and placed closed to VIN. | (1) I = input, O = output Copyright © 2023 Texas Instruments Incorporated English Data Sheet: SLVSB90 4 ## **5 Specifications** ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) | | | MIN | MAX | UNIT | | |---------------------|--|-----------------|-----------------------|------|--| | | VIN | -0.3 | 62 | | | | | M/S | -0.3 | VIN | | | | Input voltage | UVLO | -0.3 | 16 | V | | | | SW | - 5 | VIN | | | | | воот | | V _{SW} + 8.8 | | | | | HDRV | V _{SW} | BOOT | | | | Output voltage | BOOT-SW, HDRV-SW (differential from BOOT or HDRV to SW) | -0.3 | 8.8 | V | | | | VBP, LDRV, COMP, RT, ENABLE, PGOOD, SYNC | -0.3 | 8.8 | | | | | VDD, FB, TRK, SS, ILIM | -0.3 | 3.6 | | | | | AGND-PGND, PGND-AGND | 200 | 200 | | | | Grounding | PowerPAD to AGND (must be electrically connected external to device) | | 0 | mV | | | Ambient temperature | T _A | -40 | 125 | °C | | | Storage temperature | T _{stg} | -55 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 5.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|-------------------------|---|---|-------|------| | | | Human body model (HBM), per AEC Q100-002 ⁽¹⁾ | | ±1500 | | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per AEC Q100-011 | Corner pins (SYNC, VDD,
PGOOD, ILIM, VIN, UVLO,
ENABLE) | ±750 | V | | | | | Other pins | ±500 | | ⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |-----------------|---------------|-----|-----|-----|------| | V _{IN} | Input voltage | 4.5 | | 60 | V | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 5 ## **5.4 Thermal Information** | | | TPS40170-Q1 | | |-----------------------|---|-------------|------| | | THERMAL METRIC ⁽¹⁾ | RGY | UNIT | | | | 20 PINS | | | R _{θJA} |
Junction-to-ambient thermal resistance | 35.4 | | | R _{0JC(top)} | Junction-to-case(top) thermal resistance | 38.1 | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 10.8 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 0.5 | C/VV | | ΨЈВ | | | | | R _{θJC(bot)} | Junction-to-case(bottom) thermal resistance | 4.3 | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. #### 5.5 Electrical Characteristics These specifications apply for -40° C \leq T_A \leq +125 $^{\circ}$ C, V_{VIN} = 12 V, unless otherwise noted. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|---|---|------|-----|------|------| | INPUT SUPI | PLY | | • | | | | | V _{VIN} | Input voltage range | | 4.5 | | 60 | V | | I _{SD} | Shutdown current | V _{ENABLE} < 100 mV | | 1 | 2.5 | μΑ | | I _{QQ} | Operating current, drivers not switching | V _{ENABLE} ≥ 2 V, f _{SW} = 300 kHz | | | 4.5 | mA | | ENABLE | | | | | | | | V _{DIS} | ENABLE pin voltage to disable the device | | | | 100 | mV | | V _{EN} | ENABLE pin voltage to enable the device | | 600 | | | mV | | I _{ENABLE} | ENABLE pin source current | | | | 300 | nA | | 8-V AND 3.3 | -V REGULATORS | | 1 | | | | | V_{VBP} | 8-V regulator output voltage | $V_{\text{ENABLE}} \ge 2 \text{ V}, 8.2 \text{ V} < V_{\text{VIN}} \le 60 \text{ V}, \\ 0 \text{ mA} < I_{\text{IN}} < 20 \text{ mA}$ | 7.8 | 8.0 | 8.3 | V | | V _{DO} | 8-V regulator dropout voltage,
V _{VIN-VVBP} | $4.5 < V_{VIN} \le 8.2 \text{ V}, V_{EN} \ge 2 \text{ V},$
$I_{IN} = 10 \text{ mA}$ | | 110 | 200 | mV | | V_{VDD} | 3.3-V regulator output voltage | $V_{\text{ENABLE}} \ge 2 \text{ V, } 4.5 \text{ V} < V_{\text{VIN}} \le 60 \text{ V,} \\ 0 \text{ mA} < I_{\text{IN}} < 5 \text{ mA}$ | 3.22 | 3.3 | 3.42 | V | | FIXED AND | PROGRAMMABLE UVLO | | | | | | | V _{UVLO} | Programmable UVLO ON voltage (at UVLO pin) | V _{ENABLE} ≥ 2 V | 878 | 900 | 919 | mV | | I _{UVLO} | Hysteresis current out of UVLO pin | V _{ENABLE} ≥ 2 V , UVLO pin > V _{UVLO} | 4.06 | 5 | 6.2 | μΑ | | VBP _{ON} | VBP turnon voltage | | 3.85 | | 4.4 | V | | VBP _{OFF} | VBP turnoff voltage | V _{ENABLE} ≥ 2 V, UVLO pin > V _{UVLO} | 3.6 | | 4.05 | V | | VBP _{HYS} | VBP UVLO Hysteresis voltage | | 180 | | 400 | mV | | REFERENC | E | | • | | ' | | | V_{REF} | Reference voltage (+ input of the | T _J = 25°C, 4.5 V < V _{VIN} ≤ 60 V | 594 | 600 | 606 | mV | | V REE | error amplifier) | $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}, 4.5 \text{ V} < \text{V}_{\text{VIN}} \le 60 \text{ V}$ | 591 | 600 | 609 | 1117 | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated 6 Product Folder Links: *TPS40170-Q1*English Data Sheet: SLVSB90 These specifications apply for $-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$, V_{VIN} = 12 V, unless otherwise noted. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------------|--|---|-----|-----|-----|------| | | | Range (typical) | 100 | | 600 | kHz | | f | | $R_{RT} = 100 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$ | 90 | 100 | 110 | | | t _{SW} | Switching frequency | $R_{RT} = 31.6 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$ | 270 | 300 | 330 | | | | | $R_{RT} = 14.3 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$ | 540 | 600 | 660 | | | V _{VALLEY} | Valley voltage | | 0.7 | 1 | 1.2 | V | | K _{PWM} ⁽¹⁾ | PWM gain (V _{VIN} / V _{RAMP}) | 4.5 V < V _{VIN} ≤ 60 V | 14 | 15 | 16 | V/V | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 These specifications apply for $-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$, $V_{\text{VIN}} = 12 \text{ V}$, unless otherwise noted. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------------------|---|--|------|------|------|------| | PWM AND DUT | TY CYCLE | | | | | | | | | V _{VIN} = 4.5 V, f _{SW} = 300 kHz | | 100 | 150 | | | t _{ON(min)} (1) | Minimum controlled pulse | V _{VIN} = 12 V, f _{SW} = 300 kHz | | 75 | 100 | ns | | | | V _{VIN} = 60 V, f _{SW} = 300 kHz | | 50 | 80 | | | t _{OFF(max)} (1) | Minimum OFF time | V _{VIN} = 12V, f _{SW} = 300 kHz | | 170 | 250 | ns | | | | f _{SW} = 100 kHz, 4.5 V < V _{VIN} ≤ 60 V | 95% | | | | | D _{MAX} (1) | Maximum duty cycle | f _{SW} = 300 kHz, 4.5 V < V _{VIN} ≤ 60 V | 91% | | | | | | | f _{SW} = 600 kHz, 4.5 V < V _{VIN} ≤ 60 V | 82% | | | | | ERROR AMPLI | FIER | | | | | | | GBWP ⁽¹⁾ | Gain bandwidth product | | 7 | 10 | 13 | MHz | | A _{OL} (1) | Open-loop gain | | 80 | 90 | 95 | dB | | I _{IB} | Input bias current | | | | 100 | nA | | I _{EAOP} | Output source current | V _{VFB} = 0 V | 2 | | | mA | | I _{EAOM} | Output sink current | V _{VFB} = 1 V | 2 | | | mA | | PROGRAMMA | BLE SOFT START | | | | | | | I _{SS(source,start)} | Soft-start source current | V _{SS} < 0.5 V, V _{SS} = 0.25 V | 42 | 52 | 62 | μA | | I _{SS(source,normal)} | Soft-start source current | V _{SS} > 0.5 V, V _{SS} = 1.5 V | 9.3 | 11.6 | 13.9 | μA | | I _{SS(sink)} | Soft-start sink current | V _{SS} = 1.5 V | 0.77 | 1.05 | 1.33 | μA | | V _{SS(fltH)} | SS pin HIGH voltage during fault (OC or thermal) reset timing | | 2.38 | 2.5 | 2.61 | V | | V _{SS(fltL)} | SS pin LOW voltage during fault (OC or thermal) reset timing | | 235 | 300 | 375 | mV | | V _{SS(steady_state)} | SS pin voltage during steady-state | | 3.25 | 3.3 | 3.5 | V | | V _{SS(offst)} | Initial offset voltage from SS pin to error amplifier input | | 525 | 650 | 775 | mV | | TRACKING | | | | | | | | V _{TRK(ctrl)} (1) | Range of TRK which overrides V _{REF} | 4.5 V < V _{IN} ≤ 60 V | 0 | | 600 | mV | | SYNCHRONIZA | ATION (PRIMARY/SECONDARY) | | | | | | | V _{MSTR} | M/S pin voltage in primary mode | | 3.9 | | VIN | V | | V _{SLV(0)} | M/S pin voltage in secondary 0° mode | | 1.25 | | 1.75 | V | | V _{SLV(180)} | M/S pin voltage in secondary 180° mode | | 0 | | 0.75 | V | | I _{SYNC(in)} | SYNC pin pulldown current | | 8 | 11 | 14 | μA | | V _{SYNC(in_high)} | SYNC pin input high-voltage level | | 2 | | | V | | V _{SYNC(in_low)} | SYNC pin input low-voltage level | M/S configured as secondary- 0° or | | | 0.8 | V | | t _{SYNC(high_min)} | Minimum SYNC high pulse duration | secondary-180° | 40 | 50 | | ns | | t _{SYNC(low_min)} | Minimum SYNC low pulse duration | | 40 | 50 | | ns | Copyright © 2023 Texas Instruments Incorporated 8 These specifications apply for $-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$, $V_{\text{VIN}} = 12 \text{ V}$, unless otherwise noted. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------------|--|--|------|------|-------|------| | GATE DRIVER | S | | | | | | | R _{HDHI} | High-side driver pullup resistance | | 1.37 | 2.64 | 4 | Ω | | R _{HDLO} | High-side driver pulldown resistance | C _{LOAD} = 2.2 nF, I _{DRV} = 300 mA, T _A = -40°C | 1.08 | 2.4 | 4 | Ω | | R _{LDHI} | Low-side driver pullup resistance | to 125°C | 1.37 | 2.4 | 4 | Ω | | R _{LDLO} | Low-side driver pulldown resistance | | 0.44 | 1.1 | 1.7 | Ω | | t _{NON-OVERLAP1} | Time delay between HDRV fall and LDRV rise | C _{LOAD} = 2.2 nF, | | 50 | | no | | t _{NON-OVERLAP2} | Time delay between HDRV rise and LDRV fall | $V_{HDRV} = 2 V$, $V_{LDRV} = 2 V$ | | 60 | | ns | | OVERCURREN | IT PROTECTION (LOW-SIDE MOSF | ET SENSING) | | | ' | | | 1 | II IM nin course current | 4.5 V < V _{IN} < 60 V, T _A = 25°C | 9 | 9.75 | 10.45 | | | I _{ILIM} | ILIM pin source current | 4.5 V < V _{IN} < 60 V, T _A = -40°C to 125°C | 7 | | 12 | μA | | | ILIM pin source current during | 4.5 V < V _{IN} < 60 V, T _A = 25°C | | 15 | | | | I _{ILIM} ,(ss) | soft-start | 4.5 V < V _{IN} < 60 V, T _A = -40°C to 125°C | 7 | | 12 | μA | | I _{ILIM, Tc} (1) | Temperature coefficient of ILIM current | 4.5 V < V _{IN} < 60 V | | 1400 | | ppm | | V _{ILIM} (1) | ILIM pin voltage operating range | 4.5 V < V _{IN} < 60 V | 50 | | 300 | mV | | OCP _{TH} | Overcurrent protection threshold (voltage across low-side FET for detecting overcurrent) | R _{ILIM} = 10 kΩ, I _{ILIM} = 10 μA
(V _{ILIM} = 100 mV) | -110 | -100 | -84 | mV | | SHORT CIRCU | IT PROTECTION HIGH-SIDE MOSF | ET SENSING) | | | | | | V _{LDRV(max)} | LDRV pin maximum voltage during calibration | R _{LDRV} = open | | 300 | 360 | mV | | A _{OC3} | Multiplier factor to set the SCP | R_{LDRV} = 10 k Ω | 2.75 | 3.2 | 3.6 | V/V | | A _{OC7} | based on OCP level setting at the | R _{LDRV} = open | 6.4 | 7.25 | 7.91 | V/V | | A _{OC15} | ILIM pin | $R_{LDRV} = 20 \text{ k}\Omega$ | 13.9 | 16.4 | 18 | V/V | | THERMAL SH | UTDOWN | | | | | | | T _{SD,set} (1) | Thermal shutdown set threshold | | 155 | 165 | 175 | °C | | T _{SD,reset} (1) | Thermal shutdown reset threshold | 4.5 V < V _{VIN} < 60 V | 125 | 135 | 145 | °C | | T _{hyst} ⁽¹⁾ | Thermal shutdown hysteresis | | | 30 | | °C | | POWER GOOD |) | | | | | | | V _{OV} | FB pin voltage upper limit for power good | | 627 | 647 | 670 | | | V _{UV} | FB pin voltage lower limit for power good | | 527 | 552 | 570 | mV | | V _{PG,HYST} | Power good hysteresis voltage at FB pin | 4.5 V < V _{VIN} < 60 V | 8.5 | 20 | 32 | | | V _{PG(out)} | PGOOD pin voltage when FB pin voltage > V _{OV} or < V _{UV} , I _{PGD} = 2 mA | | | | 100 | mV | | V _{PG(np)} |
PGOOD pin voltage when device power is removed | V_{VIN} is open, 10-kΩ to V_{EXT} = 5 V | | 1 | 1.5 | V | | BOOT DIODE | | | | | | | | V _{DFWD} | Bootstrap diode forward voltage | I = 20 mA | 0.5 | 0.7 | 0.9 | V | These specifications apply for $-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$, $V_{\text{VIN}} = 12 \text{ V}$, unless otherwise noted. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|-----------------|-----|-----|-----|------| | R _{BOOT-SW} Discharge resistor from BOOT t | | | 1 | | ΜΩ | (1) Not production tested. Copyright © 2023 Texas Instruments Incorporated English Data Sheet: SLVSB90 10 ## 5.6 Typical Characteristics ## 5.6 Typical Characteristics (continued) English Data Sheet: SLVSB90 ## **5.6 Typical Characteristics (continued)** 13 ## **6 Detailed Description** #### 6.1 Overview The TPS40170-Q1 device is a synchronous PWM buck controller that accepts a wide range of input voltages from 4.5 V to 60 V and features voltage-mode control with input-voltage feed-forward compensation. The switching frequency is programmable from 100 kHz to 600 kHz. The TPS40170-Q1 device has a complete set of system protections such as programmable UVLO, programmable overcurrent protection (OCP), selectable short-circuit protection (SCP), and thermal shutdown. The ENABLE pin allows for system shutdown in a low-current (1-µA typical) mode. The controller supports pre-biased outputs, provides an open-drain PGOOD signal, and has closed-loop programmable soft-start, output-voltage tracking, and adaptive dead-time control. The TPS40170-Q1 device provides accurate output voltage regulation within 1% accuracy. Additionally, the controller implements a novel scheme of bidirectional synchronization with one controller acting as the primary and other downstream controllers acting as secondaries, synchronized to the primary in-phase or 180° out-of-phase. Secondary controllers can be synchronized to an external clock within ±30% of the internal switching frequency. ### 6.2 Functional Block Diagram #### **6.3 Feature Description** #### 6.3.1 LDO Linear Regulators and Enable The TPS40170-Q1 device has two internal low-dropout (LDO) linear regulators. One has a nominal output voltage of V_{VBP} and is present at the VBP pin. This is the voltage that is mainly used for the gate-driver output. The other linear regulator has an output voltage of V_{VDD} and is present at the VDD pin. This voltage can be used in external low-current logic circuitry. The maximum allowable current drawn from the VDD pin must not exceed 5 mA. The TPS40170-Q1 device has a dedicated device-enable pin (ENABLE). This simplifies user-level interface design because no multiplexed functions exist. If the ENABLE pin of the TPS40170-Q1 device is higher than V_{EN} , then the LDO regulators are enabled. To ensure that the LDO regulators are disabled, the ENABLE pin must be pulled below V_{DIS} . By pulling the ENABLE pin below V_{DIS} , the device is completely disabled and the current consumption is very low (nominally, 1 μ A). Both LDO regulators are actively discharged when the ENABLE pin is pulled below V_{DIS} . A functionally equivalent circuit to the enable circuitry on the TPS40170-Q1 device is shown in \boxtimes 6-1. 図 6-1. TPS40170-Q1 ENABLE Functional Block The ENABLE pin must not be allowed to float. If the ENABLE function is not needed for the design, then it is suggested that the ENABLE pin be pulled up to VIN by a high-value resistor, ensuring that the current into the ENABLE pin does not exceed 10 μ A. If it is not possible to meet this clamp current requirement, then it is suggested that a resistor divider from VIN to GND be used to connect to ENABLE pin. The resistor divider must be such that the ENABLE pin is higher than V_{EN} and lower than 8 V. ## 6.3.2 Input Undervoltage Lockout (UVLO) The TPS40170-Q1 device has both fixed and programmable input undervoltage lockout (UVLO). In order for the device to turn ON, all of the following conditions must be met: - The ENABLE pin voltage must be greater than V_{EN}. - The VBP voltage (at VBP pin) must be greater than V_{VBP(on)}. - The UVLO pin must be greater than V_{UVLO}. In order for the device to turn OFF, any one of the following conditions must be met: - The ENABLE pin voltage must be less than V_{DIS}. - The VBP voltage (at the VBP pin) must be less than V_{VBP(off)}. - The UVLO pin must be less than V_{UVLO}. Programming the input UVLO can be accomplished using the UVLO pin. A resistor divider from the input voltage (VIN pin) to GND sets the UVLO level. Once the input voltage reaches a value that meets the V_{UVLO} level at the UVLO pin, then a small hysteresis current, I_{UVLO} at the UVLO pin is switched in. The programmable UVLO function is shown in \boxtimes 6-2. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated 図 6-2. UVLO Functional Block Schematic #### 6.3.3 Equations for Programming the Input UVLO Components R1 and R2 represent external resistors for programming UVLO and hysteresis; their values can be calculated in \pm 1 and \pm 2, respectively. $$R_1 = \frac{V_{ON} - V_{OFF}}{I_{UVLO}} \tag{1}$$ $$R_2 = R_1 \times \frac{V_{UVLO}}{\left(V_{ON} - V_{UVLO}\right)} \tag{2}$$ #### where - V_{ON} is the desired turnon voltage of the converter. - V_{OFF} is the desired turnoff voltage for the converter. - I_{UVLO} is the hysteresis current generated by the device, 5 μA (typical). - V_{UVLO} is the UVLO pin threshold voltage, 0.9 V (typical). 注 If the UVLO pin is connected to a voltage greater than 0.9 V, the programmable UVLO is disabled and the device defaults to an internal UVLO ($V_{VBP(on)}$ and $V_{VBP(off)}$). For example, the UVLO pin can be connected to VDD or the VBP pin to disable the programmable UVLO function. A 1-nF ceramic bypass capacitor must be connected between the UVLO pin and GND. #### 6.3.4 Overcurrent Protection and Short-Circuit Protection (OCP and SCP) The TPS40170-Q1 device has the capability to set a two-level overcurrent protection. The first level of overcurrent protection (OCP) is the normal overload setting based on low-side MOSFET voltage sensing. The second level of protection is the heavy overload setting, such as short-circuit based, on the high-side MOSFET voltage sensing. This protection takes effect immediately. The second level is termed short-circuit protection (SCP). The OCP level is set by the ILIM pin voltage. A current (I_{ILIM}) is sourced into the ILIM pin from which a resistor R_{ILIM} is connected to GND. Resistor R_{ILIM} sets the first level of overcurrent limit. The OCP is based on the low- Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 17 side FET voltage at the switch-node (SW pin) when LDRV is ON after a blanking time, which is the product of inductor current and low-side FET turnon resistance $R_{DS(on)}$. The voltage is inverted and compared to ILIM pin voltage. If it is greater than the ILIM pin voltage, then a 3-bit counter inside the device increments the fault-count by 1 at the start of the next switching cycle. Alternatively, if it is less than the ILIM pin voltage, then the counter inside the device decrements the fault-count by 1. When the fault-count reaches 7, an overcurrent fault (OC_FAULT) is declared and both the HDRV and LDRV are turned OFF. Resistor $R_{\rm ILIM}$ can be calculated by $\stackrel{>}{\to}$ 3. $$R_{ILIM} = \frac{I_{OC} \times R_{DS(on)}}{I_{ILIM}} = \frac{I_{OC} \times R_{DS(on)}}{9.0 \,\mu\text{A}} \tag{3}$$ The SCP level is set by a multiple of the ILIM pin voltage. The multiplier has three discrete values, 3, 7, or 15 times, which can be selected by choosing a $10\text{-k}\Omega$, open-circuit, or $20\text{-k}\Omega$ resistor, respectively, from the LDRV pin to GND. This multiplier AOC information is translated during the t_{CAL} time, which starts after the enable and UVLO conditions are met. The SCP is based on sensing the high-side FET voltage drop from V_{VIN} to V_{SW} when HDRV is ON after a blanking time, which is product of inductor current and high-side FET turnon resistance $R_{DS(on)}$. The voltage is compared to the product of the multiplier and the ILIM pin voltage. If the voltage exceeds the product, then the fault-count is immediately set to 7 and the OC_FAULT is declared. HDRV is terminated immediately without waiting for the duty cycle to end. When an OC_FAULT is declared, both the HDRV and LDRV are turned OFF. The appropriate multiplier (A), can be selected using $\not \equiv 4$. $$A = \frac{I_{SC} \times R_{DS(on)HS}}{I_{OC} \times R_{DS(on)LS}}$$ (4) 6-3 is a functional block diagram of the two-level overcurrent protection. 図 6-3. OCP and SCP Protection Functional Block Diagram 注 Both OCP and SCP are based on low-side and high-side MOSFET voltage sensing at the SW node. Excessive ringing on the SW node can have a negative impact on the accuracy of OCP and SCP. Adding an R-C snubber from the SW node to GND helps minimize the potential impact. #### 6.3.5 Oscillator and Voltage Feed-Forward TPS40170-Q1 device implements an oscillator with input-voltage feed-forward compensation that enables instant response to input voltage changes. \boxtimes 6-4 shows the oscillator timing diagram for the TPS40170-Q1 device. The resistor from the RT pin to GND sets the free-running oscillator frequency. Voltage V_{RT} on the RT pin is made proportional to the input voltage (see \pm 5). $$V_{RT} = \frac{V_{IN}}{K_{PWM}} \tag{5}$$ where • K = 15 The resistor at the RT pin sets the current in the RT pin. The proportional current charges an internal 100-pF oscillator capacitor. The ramp voltage on this capacitor is compared with the RT pin voltage, V_{RT} . Once the ramp voltage reaches V_{RT} , the oscillator capacitor is discharged. The ramp that is generated by the oscillator (which is
proportional to the input voltage) acts as voltage feed-forward ramp to be used in the PWM comparator. The time between the start of the discharging oscillator capacitor and the start of the next charging cycle is fixed at 170 ns (typical). During the fixed discharge time, the PWM output is maintained as OFF. This is the minimum OFF-time of the PWM output. 図 6-4. Feed-Forward Oscillator Timing Diagram #### 6.3.5.1 Calculating the Timing Resistance (R_{RT}) $$R_{RT} = \left(\frac{10^4}{f_{SW}}\right) - 2(k\Omega)$$ (6) where 19 - f_{SW} is the switching frequency in kHz. - R_{RT} is the resistor connected from RT pin to GND in $k\Omega$. #### 6.3.6 Feed-Forward Oscillator Timing Diagram 注 The switching frequency can be adjusted between 100 kHz and 600 kHz. The maximum switching frequency before skipping pulses is determined by the input voltage, output voltage, FET resistances, DCR of the inductor, and the minimum on-time of the TPS40170-Q1 device. Use 式 7 to determine the maximum switching frequency. For further details, see application note SLYT293. $$f_{SW(max)} = \frac{V_{OUT(min)} + \left(I_{OUT(min)} \times \left(R_{DS2} + R_{LOAD}\right)\right)}{t_{ON(min)} \times \left(V_{IN(max)} - I_{OUT(min)} \times \left(R_{DS1} - R_{DS2}\right)\right)}$$ (7) #### where - f_{SW(max)} is the maximum switching frequency. - V_{OUT(min)} is the minimum output voltage. - $V_{IN(max)}$ is the maximum input voltage. - I_{OUT(min)} is the minimum output current. - R_{DS1} is the high-side FET resistance. - R_{DS2} is the low-side FET resistance. - R_{LOAD} is the inductor series resistance. #### 6.3.7 Soft-Start and Fault-Logic A capacitor from the SS pin to GND defines the SS time, t_{SS}. The TPS40170-Q1 device enters into soft-start immediately after completion of the overcurrent calibration. The SS pin goes through the internal level-shifter circuit of the device before reaching one of the positive inputs of the error amplifier. The SS pin must reach approximately 0.65 V before the input to the error amplifier begins to rise above 0 V. To charge the SS pin from 0 V to 0.65 V faster, an extra charging current (40.4 μA, typical.) is switched-in to the SS pin at the beginning of the soft-start in addition to the normal charging current (11.6 µA, typical.). As the SS capacitor reaches 0.5 V, the extra charging current is turned off and only the normal charging current remains. Z 6-5 shows the soft-start function block. Copyright © 2023 Texas Instruments Incorporated 図 6-5. Soft-Start Schematic Block As the SS pin voltage approaches 0.65 V, the positive input to the error amplifier begins to rise (see \boxtimes 6-6). The output of the error amplifier (the COMP pin) starts rising. The rate of rise of the COMP voltage is mainly limited by the feedback-loop compensation network. Once V_{COMP} reaches the V_{valley} of the PWM ramp, the switching begins. The output is regulated to the error amplifier input through the FB pin in the feedback loop. Once the FB pin reaches the 600-mV reference voltage, the feedback node is regulated to the reference voltage, V_{REF} . The SS pin continues to rise and is clamped to VDD. The SS pin is discharged through an internal switch during the following conditions: - Input (VIN) undervoltage lock out UVLO pin less than V_{UVLO} - Overcurrent protection calibration time (t_{CAI}) - VBP less than threshold voltage (V_{BP(off)}) Because it is discharged through an internal switch, the discharging time is relatively fast compared with the discharging time during the fault restart, which is discussed in the 2000×10^{-2} 6.3.7.1 section. 図 6-6. Soft-Start Waveforms 注 Referring to **B** 6-6: - (1) VREF dominates the positive input of the error amplifier. - (2) SS EAMP dominates the positive input of the error amplifier. For 0 < V_{SS EAMP} < V_{REF} $$V_{OUT} = V_{SS(EAMP)} \times \frac{(R1 + R2)}{R2}$$ (8) For $V_{SS EAMP} > V_{REF}$ $$V_{OUT} = V_{REF} \times \frac{(R1 + R2)}{R2}$$ (9) ## 6.3.7.1 Soft-Start During Overcurrent Fault The soft-start block also has a role to control the fault-logic timing. If an overcurrent fault (OC_FAULT) is declared, the soft-start capacitor is discharged internally through the device by a small current $I_{SS(sink)}$ (1.05 μ A, typical). Once the SS pin capacitor is discharged to below $V_{SS(flt,low)}$ (300 mV, typical), the soft-start capacitor begins charging again. If the fault is persistent, a fault is declared which is determined by the overcurrent-protection state machine. If the soft-start capacitor is below $V_{SS(flt,high)}$ (2.5 V, typical), then the soft-start 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2023 Texas Instruments Incorporated English Data Sheet: SLVSB90 capacitor continues to charge until it reaches $V_{SS(flt,high)}$ before a discharge cycle is initiated. This ensures that the re-start time-interval is always constant. \boxtimes 6-7 shows the restart timing. 図 6-7. Overcurrent Fault Restart Timing 注 For the feedback to be regulated to the SS_EAMP voltage, the TRK pin must be pulled high directly or through a resistor to VDD. #### 6.3.7.2 Equations for Soft-Start and Restart Time The soft-start time (t_{SS}) is defined as the time taken for the internal SS_EAMP node to go from 0 V to the 0.6-V V_{REF} voltage. SS_EAMP starts rising as the SS pin goes beyond 0.65 V. The offset voltage between SS and SS_EAMP starts increasing as the SS pin voltage starts rising. \boxtimes 6-6 shows that the SS time can be defined as the time taken for the SS pin voltage to change by 1.05 V (see \precsim 10). $$C_{SS} = \frac{t_{SS}}{0.09} \tag{10}$$ The restart time (t_{RS}) is defined in \pm 11 as the time taken for the soft-start capacitor (C_{SS}) to discharge from 2.5 V to 0.3 V and to then recharge up to 2.5 V. $$t_{RS} \approx 2.28 \times C_{SS}$$ (11) where - C_{SS} is the soft-start capacitance in nF - t_{SS} is the soft-start time in ms - t_{RS} is the restart time in ms 注 During soft-start (V_{SS} < 2.5 V), the overcurrent protection limit is 1.5 times the normal overcurrent protection limit. This allows a higher output capacitance to charge fully without activating overcurrent protection. #### 6.3.8 Overtemperature Fault \boxtimes 6-8 shows the over temperature protection scheme. If the junction temperature of the device reaches the thermal shutdown limit of $t_{SD(set)}$ (165°C, typical) and SS charging is completed, an overtemperature FAULT is Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 23 declared. The soft-start capacitor begins to be discharged. During soft-start discharging period, the PWM switching is terminated; therefore, both HDRV and LDRV are driven low, turning off both MOSFETs. The soft-start capacitor begins to charge and an overtemperature fault is reset whenever the soft-start capacitor is discharged below $V_{SS(flt,low)}$ (300 mV, typical). During each restart cycle, PWM switching is turned on. When SS is fully charged, PWM switching is terminated. These restarts repeat until the temperature of the device has fallen below the thermal reset level, $t_{SD(reset)}$ (135°C typical). PWM switching continues and the system returns to normal regulation. 図 6-8. Overtemperature Fault Restart Timing The soft-start timing during an overtemperature fault is the same as the soft-start timing during an overcurrent fault. See the *Equations for Soft-Start and Restart Time* section. #### 6.3.9 Tracking The TRK pin is used for output voltage tracking. The output voltage is regulated so that the FB pin equals the lowest of the internal reference voltage (V_{REF}) or the level-shifted SS pin voltage (S_{EAMP}) or the TRK pin voltage. Once the TRK pin goes above the reference voltage, then the output voltage is no longer governed by the TRK pin, but it is governed by the reference voltage. If the voltage tracking function is used, then it must be noted that the SS pin capacitor must remain connected to SS pin and is also used for FAULT timing. For proper tracking using the TRK pin, the tracking voltage must be allowed to rise only after SS_{EAMP} has exceeded V_{REF} , so that there is no possibility of the TRK pin voltage being higher than the SS_{EAMP} voltage. From \boxtimes 6-6, for SS_{EAMP} = 0.6 V, the SS pin voltage is typically 1.7 V. The maximum slew rate on the TRK pin must be determined by the output capacitance and feedback loop bandwidth. A higher slew rate can possibly trip overcurrent protection. 図 6-9 shows the tracking functional block. For SS_{EAMP} voltages greater than TRK pin voltage, the V_{OUT} is given by 式 12 and 式 13. For 0 V < V_{TRK} < V_{REF} $$V_{OUT} = V_{TRK} \times \frac{(R1 + R2)}{R2}$$ (12) For $V_{TRK} > V_{RFF}$ $$V_{OUT} = V_{REF} \times \frac{(R1 + R2)}{R2}$$ (13) English Data Sheet: SLVSB90 図 6-9. Tracking Functional Block There are three potential applications for the tracking function. - · Simultaneous voltage tracking - · Ratiometric voltage tracking - · Sequential start-up mode The tracking function configurations and waveforms are shown in \boxtimes 6-10, \boxtimes 6-11, \boxtimes 6-12, \boxtimes 6-13, \boxtimes 6-14, and \boxtimes 6-15 respectively. In simultaneous voltage tracking, shown in \boxtimes 6-10, tracking signals VTRK1 and VTRK2 of two modules, POL1 and POL2, start up at the same time, and their output voltages VOUT1initial and VOUT2initial are approximately the same during initial startup. Because VTRK1 and VTRK2 are less than V_{REF} (0.6 V, typical), $\not \equiv$ 12 is used. As a result, components selection must meet $\not \equiv$ 14. $$\left(\frac{\left(R_{1}+R_{2}\right)}{R_{1}}\right) \times V_{TRK1} = \left(\frac{\left(R_{3}+R_{4}\right)}{R_{3}}\right) \times V_{TRK2} \Rightarrow \frac{R_{5}}{R_{6}} = \left(\frac{\left(\frac{R_{1}}{\left(R_{1}+R_{2}\right)}\right)}{\left(\frac{R_{3}}{\left(R_{3}+R_{4}\right)}\right)} - 1\right) \tag{14}$$ After the lower output
voltage setting reaches the output-voltage V_{OUT1} set point, where V_{TRK1} increases above V_{REF} , the output voltage of the other one (V_{OUT2}) continues increasing until it reaches its own set point, where V_{TRK2} increases above V_{REF} . At that time, $\not \equiv 13$ is used. As a result, the resistor settings must meet $\not \equiv 15$ and $\not \equiv 16$. $$V_{OUT1} = \left(\frac{\left(R_1 + R_2\right)}{R_1}\right) \times V_{REF}$$ (15) $$V_{OUT2} = \left(\frac{\left(R_3 + R_4\right)}{R_3}\right) \times V_{REF}$$ (16) 式 14 can be simplified into 式 17 by substituting terms from 式 15 and 式 16. English Data Sheet: SLVSB90 $$\left(\frac{R_5}{R_6}\right) = \left(\left(\frac{V_{OUT2}}{V_{OUT1}}\right) - 1\right)$$ (17) If 5-V V_{OUT2} and 2.5-V V_{OUT1} are required, according to \pm 15, \pm 16, and \pm 17, the selected components can be as follows: - $R_5 = R_6 = R_4 = R_2 = 10 \text{ k}\Omega$ - $R_1 = 3.16 \text{ k}\Omega$ - $R_3 = 1.37 \text{ k}\Omega$ 図 6-11. Simultaneous Voltage-Tracking Waveform 図 6-10. Simultaneous Voltage-Tracking Schematic In ratiometric voltage tracking as shown in \boxtimes 6-12, the two tracking voltages, VTRK1 and VTRK2, for two modules, POL1 and POL2, are the same. Their output voltages, VOUT1 and VOUT2, are different with different voltage dividers, R2–R1 and R4–R3. VOUT1 and VOUT2 increase proportionally and reach their output voltage set points at approximately the same time. 図 6-13. Ratiometric Voltage-Tracking Waveform 図 6-12. Ratiometric Voltage-Tracking Schematic Sequential start-up is shown in 🗵 6-14. During start-up of the first module, POL1, its PGOOD1 is pulled to low. Because PGOOD1 is connected to soft-start SS2 of the second module, POL2, is not able to charge its soft-start capacitor. After output voltage VOUT1 of POL1 reaches its setting point, PGOOD1 is released. POL2 starts charging its soft-start capacitor. Finally, output voltage V_{OUT2} of POL2 reaches its setting point. 図 6-15. Sequential Start-Up Waveform 27 注 The TRK pin has high impedance, so it is a noise-sensitive terminal. If the tracking function is used, TI recommends a small R-C filter at the TRK pin to filter out high-frequency noise. If the tracking function is not used, the TRK pin must be pulled up directly or through a resistor (with a value between 10 k Ω and 100 k Ω) to VDD. #### 6.3.10 Adaptive Drivers The drivers for the external high-side and low-side MOSFETs are capable of driving a gate-to-source voltage, V_{VBP} . The LDRV driver for the low-side MOSFET switches between VBP and PGND, while the HDRV driver for the high-side MOSFET is referenced to SW and switches between BOOT and SW. The drivers have non-overlapping timing that is governed by an adaptive delay circuit to minimize body-diode conduction in the synchronous rectifier. #### 6.3.11 Start-Up Into Pre-Biased Output The TPS40170-Q1 device contains a circuit to prevent current from being pulled out of the output during startup, in case the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft-start becomes greater than feedback voltage $[V_{VFB}]$), the controller slowly activates synchronous rectification by starting the first LDRV pulses with a narrow on-time (see \boxtimes 6-16), where: - V_{IN} = 5 V - V_{OUT} = 3.3 V - V_{PRF} = 1.4 V - f_{SW} = 300 kHz - $L = 0.6 \mu H$ LDRV pulses then increments the on-time on a cycle-by-cycle basis until it coincides with the time dictated by (1 - D), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the pre-bias output, and ensures that the output voltage (V_{OUT}) starts and ramps up smoothly into regulation and the control loop is given time to transition from pre-biased startup to normal mode operation with minimal disturbance to the output voltage. The time from the start of switching until the low-side MOSFET is turned on for the full (1 - D) interval is between approximately 20 and 40 clock cycles. かせ) を送信 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: *TPS40170-Q1* 図 6-16. Start-Up Switching Waveform During Pre-Biased Condition #### 6.3.12 If the output is pre-biased to a voltage higher than the voltage commanded by the reference, then the PWM switching does not start. 注 When output is pre-biased at $V_{PREBIAS}$, that voltage also applies to the SW node during start-up. When the pre-bias circuitry commands the first few high-side pulses before the first low-side pulse is initiated, the gate voltage for the high-side MOSFET is as described in \pm 18. Alternatively, if the pre-bias level is high, it is possible that SCP can be tripped due to high the turnon resistance of the high-side MOSFET with low gate voltage. Once tripped, the device resets and then attempts to restart. The device can not be able to start up until the output is discharged to a lower voltage level either by an active load or through feedback resistors. In the case of a high pre-bias level, a low gate-threshold-voltage-rated device is recommended for the high-side MOSFET, and increasing the SCP level also helps alleviate the problem. $$V_{GATE(hs)} = (V_{BP} - V_{DFWD} - V_{PRE-BIAS})$$ (18) #### where - V_{GATE(hs)} is the gate voltage for the high-side MOSFET. - V_{BP} is the BP regulator output. - V_{DFWD} is bootstrap diode forward voltage. ## 6.3.13 Power Good (PGOOD) The TPS40170-Q1 device provides an indication that the output voltage of the converter is within the specified limits of regulation as measured at the FB pin. The PGOOD pin is an open-drain signal and pulls low when any Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ) を送信 29 condition exists which can indicate that the output of the supply can be out of regulation. These conditions include: - V_{VFB} is not within the PGOOD threshold limits. - Soft-start is active, that is, the SS pin voltage is below V_{SS,FLT,HIGH} limit. - An undervoltage condition exists for the device. - · An overcurrent or short-circuit fault is detected. - An overtemperature fault is detected. \boxtimes 6-17 shows a situation where no fault is detected during the start-up, (the normal PGOOD situation). It shows that PGOOD goes high t_{PGD} (20 μ s, typical) after all the conditions (previously listed) are met. 図 6-17. PGOOD Signal When there is no power to the device, PGOOD is not able to pull close to GND if an auxiliary supply is used for the power-good indication. In this case, a built-in resistor connected from drain to gate on the PGOOD pulldown device allows the PGOOD pin to operate as a diode to GND. #### 6.3.14 PGND and AGND 注 The TPS40170-Q1 device provides separate signal ground (AGND) and power ground (PGND) pins. PGND is primarily used for gate-driver ground return. AGND is an internal logic-signal ground return. These two ground signals are internally loosely connected by two anti-parallel diodes. PGND and AGND must be electrically connected externally. ## 6.3.15 Bootstrap Capacitor A bootstrap capacitor with a value between 0.1 μ F and 0.22 μ F must be placed between the BOOT pin and the SW pin. It must be 10 times higher than MOSFET gate capacitance. #### 6.3.16 Bypass and Filtering In an integrated circuit, supply bypassing is important for jitter-free operation. To decrease noise in the converter, ceramic bypass capacitors must be placed as close to the package as possible. VIN to GND: use a 0.1-µF ceramic capacitor Copyright © 2023 Texas Instruments Incorporated - BP to GND: use a 1-μF to 10-μF ceramic capacitor. It must be 10 times greater than the bootstrap capacitance - VDD to GND: use a 0.1-µF to 1-µF ceramic capacitor #### **6.4 Device Functional Modes** #### 6.4.1 Frequency Synchronization The TPS40170-Q1 device has three modes. - **Primary mode**: In this mode, the primary- or secondary-selector pin, (M/S) is connected to VIN. The SYNC pin emits a stream of pulses at the same frequency as the PWM switching frequency. The pulse stream at the SYNC pin is of 50% duty cycle and the same amplitude as V_{VBP}. Also, the falling edge of the voltage on SYNC pin is synchronized with the rising edge of HDRV. - Secondary-180° mode: In this mode, the M/S pin is connected to GND. The SYNC pin of the TPS40170-Q1 device accepts a synchronization clock signal, and HDRV is synchronized with the rising edge of the incoming synchronization clock. - Secondary-0° mode: In this mode, the M/S pin is left open. The SYNC pin of the TPS40170-Q1 device accepts a synchronization clock signal, and HDRV is synchronized with the falling edge of the incoming synchronization clock. The two secondary modes can be synchronized to an external clock through the SYNC pin. They are shown in ☑ 6-18. The synchronization frequency must be within ±30% of its programmed free-running frequency. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 31 図 6-18. Frequency Synchronization Waveforms in Different Modes TPS40170-Q1 device provides a smooth transition for the SYNC clock-signal loss in secondary mode. In secondary mode, a synchronization clock signal is provided externally through the SYNC pin to the device. The switching frequency is synchronized to the external SYNC clock signal. If for some reason the external clock signal is missing, the device switching frequency is automatically overridden by a transition frequency which is 0.7 times its programmed free-running frequency. This transition time is approximately 20 μ s. After that, the device switching frequency is changed to its programmed free-running frequency. \boxtimes 6-19 shows this process. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated English Data Sheet: SLVSB90 図 6-19. Transition for SYNC Clock Signal Missing (for Secondary-180° Mode) 注 When the device is operating in the primary mode with duty ratio around 50%, PWM jittering can occur. Always configure the device into the secondary mode by
either connecting the M/S pin to GND or leaving it floating if primary mode is not used. When the external SYNC clock signal is used for synchronization, limit the maximum slew rate of the clock signal to 10 V/ μ s to avoid potential PWM jittering,and connect the SYNC pin to the external clock signal through a 5-k Ω resistor. 33 ## 7 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 #### 7.1 Application Information The wide-input TPS40170-Q1 controller can function in a very wide range of applications. This example describes the design process for a very wide-input (10 V to 60 V) to regulated 5-V output at a load current of 6 A. ## 7.2 Typical Application 図 7-1. Design Example Application 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2023 Texas Instruments Incorporated 34 ## 7.2.1 Design Requirements The design parameters are provided in 表 7-1. 表 7-1. Design Example Parameters | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |-------------------------|----------------------------------|--|-----|-----|------|-----------------| | V _{IN} | Input voltage | | 10 | · | 60 | V | | V _{IN(ripple)} | Input ripple | I _{OUT} = 6 A | | | 0.5 | V | | V _{OUT} | Output voltage | 0 A ≤ I _{OUT} ≤ 20 A | 4.8 | 5 | 5.2 | V | | | Line regulation | 10 V ≤ V _{IN} ≤ 60 V | | | 0.5% | | | | Load regulation | 0 A ≤ I _{OUT} ≤ 6 A | | | 0.5% | | | V _{RIPPLE} | Output ripple | I _{OUT} = 6 A | | | 100 | mV | | V _{OVER} | Output overshoot | ΔI _{OUT} = 2.5 A | | 250 | | mV | | V _{UNDER} | Output undershoot | ΔI _{OUT} = -2.5 A | | 250 | | mV | | I _{OUT} | Output current | 10 V ≤ V _{IN} ≤ 60 V | 0 | | 6 | Α | | t _{SS} | Soft-start time | V _{IN} = 24 V | | 4 | | ms | | I _{SCP} | Short circuit current trip point | | 8 | | | Α | | η | Efficiency | V _{IN} = 24 V, I _{OUT} = 6 A | | 94% | | | | f _{SW} | Switching frequency | | | 300 | | kHz | | | Size | | | 1 | 1.5 | in ² | ## 7.2.2 Detailed Design Procedure ## 表 7-2. Design Example List of Materials | REFERENCE
DESIGNATOR | QTY | VALUE | DESCRIPTION | SIZE | PART NUMBER | MANUF | |-------------------------|------|----------------|--|--|--------------------|-----------| | C1 | 4 | 2.2 µF | Capacitor, ceramic, 100-V, X7R, 15% | 1210 | Std | Std | | C6 | 1 | 120 µF | Capacitor, aluminum, 63-V, 20%, KZE series | 0.315
inch
(0.8
cm) | KZE63VB121M10X16LL | Chemi-con | | C7 | 1 | 0.1 μF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | C9 | 2 ea | 22 μF
10 μF | Capacitor, ceramic, 16-V, X7R, 15% | 1210 | Std | Std | | C13 | 1 | 8200 pF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | C14 | 1 | 220 pF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | C15 | 1 | 47 nF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | C16 | 1 | 1 μF | Capacitor, 16-V, X7R, 15% | 603 | Std | Std | | C17 | 1 | 1000 pF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | C18 | 1 | 1 μF | Capacitor, ceramic, 100-V, X7R, 15% | 1206 | Std | Std | | C19 | 1 | 4.7 µF | Capacitor, ceramic, 16-V, X5R, 15% | 805 | Std | Std | | C21 | 1 | 1500 pF | Capacitor, ceramic, 50-V, X7R, 15% | 603 | Std | Std | | L1 | 1 | 8.2 µH | Inductor, SMT, 10-A, 16-mΩ | 0.51
inch ²
(1.3
cm ²) | IHLP5050FDER8R2M01 | Vishay | | Q1 | 1 | | MOSFET, N-channel, 60-V, 50-A, 11-mΩ | | BSC110N06NS3G | Infineon | | Q2 | 1 | | MOSFET, N-channel, 60-V, 50-A, 7.6-mΩ | | BSC076N06NS3G | Infineon | | R10 | 1 | 2.74 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R4 | 1 | 3.83 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R5 | 1 | 10.0 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | ## 表 7-2. Design Example List of Materials (続き) | REFERENCE
DESIGNATOR | QTY | VALUE | DESCRIPTION | SIZE | PART NUMBER | MANUF | |-------------------------|-----|---------|---|------|----------------|----------------------| | R9 | 1 | 12.1 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R11 | 1 | 20.0 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R6 | 1 | 22.1 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R7 | 1 | 31.6 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R2 | 1 | 200 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | R13 | 1 | 511 kΩ | Resistor, chip, 1/16W, 1% | 603 | Std | R603 | | U1 | | | IC, 4.5 V–60 V wide input sync. PWM buck controller | | TPS40170-Q1RGY | Texas
Instruments | #### 7.2.2.1 Select A Switching Frequency To maintain acceptable efficiency and meet minimum on-time requirements, a 300-kHz switching frequency is selected. #### 7.2.2.2 Inductor Selection (L1) Synchronous buck power inductors are typically sized for approximately 20%–40% of peak-to-peak ripple current (I_{RIPPLE}). Given this target ripple current, the required inductor size can be calculated in \pm 19. $$L \approx \frac{V_{IN(max)} - V_{OUT}}{0.3 \times I_{OUT}} \times \frac{V_{OUT}}{V_{IN(max)}} \times \frac{1}{f_{SW}} = \frac{60 \, V - 5 \, V}{0.3 \times 6 \, A} \times \frac{5 \, V}{60 \, V} \times \frac{1}{300 \, kHz} = 8.5 \, \mu H \tag{19}$$ Selecting a standard 8.2- μ H inductor value, solving for I_{RIPPLE} = 1.86 A. The rms current through the inductor is approximated by ± 20 . $$I_{L(rms)} = \sqrt{\left(I_{L(avg)}\right)^2 + I_{12}^{\prime} \times \left(I_{RIPPLE}\right)^2} = \sqrt{\left(I_{OUT}\right)^2 + I_{12}^{\prime} \times \left(I_{RIPPLE}\right)^2} = \sqrt{\left(6\right)^2 + I_{12}^{\prime} \times \left(1.86\right)^2} = 6.02 A$$ (20) ### 7.2.2.3 Output Capacitor Selection (C9) The selection of the output capacitor is typically driven by the output transient response. \pm 21 and \pm 22 overestimate the voltage deviation to account for delays in the loop bandwidth and can be used to determine the required output capacitance: $$V_{OVER} < \frac{I_{TRAN}}{C_{OUT}} \times \Delta T = \frac{I_{TRAN}}{C_{OUT}} \times \frac{I_{TRAN} \times L}{V_{OUT}} = \frac{\left(I_{TRAN}\right)^2 \times L}{V_{OUT} \times C_{OUT}}$$ (21) $$V_{UNDER} < \frac{I_{TRAN}}{C_{OUT}} \times \Delta T = \frac{I_{TRAN}}{C_{OUT}} \times \frac{I_{TRAN} \times L}{\left(V_{IN} - V_{OUT}\right)} = \frac{\left(I_{TRAN}\right)^2 \times L}{\left(V_{IN} - V_{OUT}\right) \times C_{OUT}}$$ (22) If $V_{IN(min)} > 2 \times V_{OUT}$, use overshoot to calculate minimum output capacitance. If $V_{IN(min)} < 2 \times V_{OUT}$, use undershoot to calculate minimum output capacitance. $$C_{OUT(min)} = \frac{\left(I_{TRAN(max)}\right)^{2} \times L}{V_{OUT} \times V_{OVER}} = \frac{\left(3\right)^{2} \times 8.2 \,\mu\text{H}}{5 \times 250 \,\text{mV}} = 59 \,\mu\text{F}$$ (23) With a minimum capacitance, the maximum allowable ESR is determined by the maximum ripple voltage and is approximated by ± 24 . $$ESR_{MAX} = \frac{V_{RIPPLE(tot)} - V_{RIPPLE(cap)}}{I_{RIPPLE}} = \frac{V_{RIPPLE(tot)} - \left(\frac{I_{RIPPLE}}{8 \times C_{OUT} \times f_{SW}}\right)}{I_{RIPPLE}} = \frac{100 \, \text{mV} - \left(\frac{1.86 \, \text{A}}{8 \times 59 \, \mu F \times 300 \, \text{kHz}}\right)}{1.86 \, \text{A}} = 47 \, \text{m}\Omega \tag{24}$$ Two 1210, 22- μ F, 16-V X7R ceramic capacitors plus two 0805 10- μ F, 16-V X7R ceramic capacitors are selected to provide more than 59 μ F of minimum capacitance (including tolerance and dc bias derating) and less than 47 m Ω of ESR (parallel ESR of approximately 4 m Ω). ## 7.2.2.4 Peak Current Rating of Inductor With output capacitance, it is possible to calculate the charge current during start-up and determine the minimum saturation-current rating for the inductor. The start-up charging current is approximated by ± 25 . $$I_{CHARGE} = \frac{V_{OUT} \times C_{OUT}}{t_{SS}} = \frac{5 V \times \left(2 \times 22 \mu F + 2 \times 10 \mu F\right)}{4 ms} = 0.08 A \tag{25}$$ $$I_{L(peak)} = I_{OUT(max)} + (\frac{1}{2} \times I_{RIPPLE}) + I_{CHARGE} = 6 \text{ A} + \frac{1}{2} \times 1.86 \text{ A} + 0.08 \text{ A} = 7.01 \text{ A}$$ (26) An IHLP5050FDER8R2M01 8.2- μ H capacitor is selected. This 10-A, 16-m Ω inductor exceeds the minimum inductor ratings in a 13-mm × 13-mm package. ## 7.2.2.5 Input Capacitor Selection (C1, C6) The input voltage ripple is divided between capacitance and ESR. For this design, VRIPPLE(cap) = 400 mV and VRIPPLE(ESR) = 100 mV. The minimum capacitance and maximum ESR are estimated by: $$C_{IN(min)} = \frac{I_{LOAD} \times V_{OUT}}{V_{RIPPLE(cap)} \times V_{IN} \times f_{SW}} = \frac{6 \, A \times 5 \, V}{400 \, mV \times 10 \, V \times 300 \, kHz} = 25 \, \mu F \tag{27}$$ $$ESR_{MAX} = \frac{V_{RIPPLE(esr)}}{I_{LOAD} + \frac{1}{2} \times I_{RIPPLE}} = \frac{100 \,\text{mV}}{6.93 \text{A}} = 14.4 \,\text{m}\Omega$$ (28) The rms current in the input capacitors is estimated in ± 29 . $$I_{RMS(cin)} = I_{LOAD} \times \sqrt{D \times (1-D)} = 6 A \times \sqrt{0.5 \times (1-0.5)} = 3.0 A$$ (29) To achieve these values, four 1210, 2.2- μ F, 100-V, X7R ceramic capacitors plus a 120- μ F electrolytic capacitor are combined at the input. This provides a smaller size and overall cost than 10 ceramic input capacitors or an electrolytic capacitor with the ESR required. 表 7-3. Inductor Summary | | VALUE | UNIT | | |----------------------|----------------------------------|------|----| | L | Inductance | 8.2 | μH | | I _{L(rms)} | RMS current (thermal rating) | 6.02 | Α | | I _{L(peak)} | Peak current (saturation rating) | 7.01 | Α | Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 37 #### 7.2.2.6 MOSFET Switch Selection (Q1, Q2) Using the J/K method for MOSFET optimization, apply 式 30 through 式 33. High-side gate (Q1): $$J = (10)^{-9} \times \left(\frac{V_{IN} \times I_{OUT}}{I_{DRIVE}} + \frac{Q_{G}}{Q_{SW}} \times V_{DRIVE}
\right) \times f_{SW} \quad (W_{nC})$$ (30) $$K = (10)^{-3} \left((I_{OUT})^2 + \frac{1}{12} \times (I_{P-P})^2 \right) \times \left(\frac{V_{OUT}}{V_{IN}} \right) \left(\frac{W_{M\Omega}}{V_{M\Omega}} \right)$$ (31) Low-side gate (Q2): $$K = (10)^{-3} \left((I_{OUT})^2 + \frac{1}{12} \times (I_{P-P})^2 \right) \times \left(1 - \frac{V_{OUT}}{V_{IN}} \right) \left(\frac{W}{m\Omega} \right)$$ (32) $$J = 10^{-9} \left(\frac{V_{FD} \times I_{OUT}}{I_{DRIVE}} + \frac{Q_{G}}{Q_{SW}} \times V_{DRIVE} \right) \times f_{SW} \left(\frac{W}{nC} \right)$$ (33) Optimizing for 300 kHz, 24-V input, 5-V output at 6 A, calculate ratios of 5.9 m Ω /nC and 0.5 m Ω /nC for the high-side and low-side FETS, respectively. BSC110N06NS2 (ratio 1.2) and BSC076N06NS3 (ratio 0.69) MOSFETS are selected. ## 7.2.2.7 Timing Resistor (R7) The switching frequency is programmed by the current through R_{RT} to GND. The R_{RT} value is calculated using $\stackrel{\scriptstyle *}{\not \sim} 34$. $$R_{RT} = \frac{(10)^4}{f_{SW}} - 2k\Omega = \frac{(10)^4}{300 \, \text{kHz}} - 2 = 31.3 \, \text{k}\Omega \approx 31.6 \, \text{k}\Omega$$ (34) #### 7.2.2.8 UVLO Programming Resistors (R2, R6) The UVLO hysteresis level is programmed by R2 using 式 35. $$R_{UVLO(hys)} = \frac{V_{UVLO(on)} - V_{UVLO(off)}}{I_{UVLO}} = \frac{9V - 8V}{5.0 \,\mu\text{A}} = 200 \,\text{k}\Omega \tag{35}$$ $$R_{UVLO(set)} > R_{UVLO(hys)} \frac{V_{UVLO(max)}}{\left(V_{UVLO_ON(min)} - V_{UVLO(max)}\right)} = 200 \, k\Omega \frac{0.919 \, V}{\left(9.0 \, V - 0.919 \, V\right)} = 22.7 k\Omega \approx 22.1 k\Omega \tag{36}$$ ## 7.2.2.9 Bootstrap Capacitor (C7) To ensure proper charging of the high-side FET gate, limit the ripple voltage on the boost capacitor to less than 250 mV. $$C_{BOOST} = \frac{Q_{G1}}{V_{BOOT(ripple)}} = \frac{25 \text{ nC}}{250 \text{ mV}} = 100 \text{ nF}$$ (37) #### 7.2.2.10 VIN Bypass Capacitor (C18) Place a capacitor with a value of 1 μF. Select a capacitor with a value between 0.1 μF and 1.0 μF, X5R or better ceramic bypass capacitor for VIN as specified in $\frac{1}{2}$ For this design, a 1.0-μF, 100 V, X7R capacitor has been selected. #### 7.2.2.11 VBP Bypass Capacitor (C19) Select a capacitor with a value between 1 μ F and 10 μ F, X5R or better ceramic bypass capacitor for BP as specified in $\frac{1}{8}$ 7-2. For this design a 4.7- μ F, 16 V capacitor has been selected. ## 7.2.2.12 SS Timing Capacitor (C15) The soft-start capacitor provides a smooth ramp of the error-amplifier reference voltage for controlled start-up. The soft-start capacitor is selected by using ± 38 . $$C_{SS} = \frac{t_{SS}}{0.09} = \frac{4ms}{0.09} = 44nF \approx 47nF$$ (38) #### 7.2.2.13 ILIM Resistor (R19, C17) The TPS40170-Q1 controller uses the negative drop across the low-side FET at the end of the OFF time to measure the inductor current. Allowing for 30% over the minimum current limit for transient recovery and a 20% rise in $R_{DS(on)Q2}$ for self-heating of the MOSFET, the voltage drop across the low-side FET at the current limit is given by $\vec{\pm}$ 39. $$V_{OC} = ((1.3 \times I_{OCP(min)}) + (\frac{1}{2} \times I_{RIPPLE})) \times 1.25 \times R_{DS(on)G2} = (1.3 \times 8 \text{ A} + \frac{1}{2} \times 1.86 \text{ A}) \times 1.25 \times 7.6 \text{ m}\Omega = 107.6 \text{ mV}$$ (39) The internal current-limit temperature coefficient helps compensate for the MOSFET $R_{DS(on)}$ temperature coefficient, so the current-limit programming resistor is selected by ± 3.0 $$R_{ILIM} = \frac{V_{OC}}{I_{OCSET(min)}} = \frac{107.6 \text{mV}}{9.0 \,\mu\text{A}} = 12.0 \,\text{k}\Omega \approx 12.1 \text{k}\Omega \tag{40}$$ A 1000-pF capacitor is placed in parallel to improve noise immunity of the current-limit set-point. #### 7.2.2.14 SCP Multiplier Selection (R5) The TPS40170-Q1 controller uses a multiplier (A_{OC}) to translate the low-side overcurrent protection into a high-side $R_{DS(on)}$ pulse-by-pulse short-circuit protection. Ensure that $\not \equiv 41$ is true. $$A_{OC} > \frac{I_{OCP(min)} + \left(\frac{1}{2} \times I_{RIPPLE}\right)}{I_{OCP(min)} + \left(\frac{1}{2} \times I_{RIPPLE}\right)} \times \frac{R_{DS(on)Q1}}{R_{DS(on)Q2}} = \frac{8A + \frac{1}{2} \times 1.86A}{8A + \frac{1}{2} \times 1.86A} \times \frac{11 \,\text{m}\Omega}{7.6 \,\text{m}\Omega} = 1.45 \tag{41}$$ A_{OC} = 3 is selected as the next-greater $A_{OC}.$ The value of R5 is set to 10 k $\!\Omega.$ #### 7.2.2.15 Feedback Divider (R10, R11) The TPS40170-Q1 controller uses a full operational amplifier with an internally fixed 0.6-V reference. The value of R11 is selected between 10 k Ω and 50 k Ω for a balance of feedback current and noise immunity. With the value of R11 set to 20 k Ω , the output voltage is programmed with a resistor divider given by $\not \equiv 42$. $$R10 = \frac{V_{FB} \times R11}{\left(V_{OUT} - V_{FB}\right)} = \frac{0.600 \, V \times 20.0 \, k\Omega}{\left(5.0 \, V - 0.600 \, V\right)} = 2.73 \, k\Omega \approx 2.74 \, k\Omega \tag{42}$$ Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 39 #### 7.2.2.16 Compensation: (R4, R13, C13, C14, C21) Using the TPS40k Loop Stability Tool for a 60-kHz bandwidth and a 50° phase margin with an R10 value of 20 $k\Omega$, the following values are obtained. The tool is available from the TI Web site, Literature Number SLUC263. - C21 = C1 = 1500 pF - C13 = C2 = 8200 pF - C14 = C3 = 220 pF - R13 = R2 = 511 Ω - R4 = R3 = $3.83 \text{ k}\Omega$ #### 7.2.3 Application Curves #### 7.3 Power Supply Recommendations #### 7.3.1 Bootstrap Resistor A small resistor in series with the bootstrap capacitor reduces the turnon time of the internal MOSFET, thereby reducing the rising edge ringing of the SW node and reducing shoot-through induced by dv/dt. A bootstrap resistor value that is too large delays the turnon time of the high-side switch and can trigger an apparent SCP fault. See the *Design Examples* section. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2023 Texas Instruments Incorporated #### 7.3.2 SW-Node Snubber Capacitor Observable voltage ringing at the SW node is caused by fast switching edges and parasitic inductance and capacitance. If the ringing results in excessive voltage on the SW node, or erratic operation of the converter, an R-C snubber can be used to dampen the ringing and ensure proper operation over the full load range. See the *Design Examples* section. #### 7.3.3 Input Resistor The TPS40170-Q1 device has a wide input-voltage range, which allows for the device input to share a power source with the power-stage input. Power-stage switching noise can pollute the device power source if the layout is not adequate in minimizing noise. Power-stage switching noise can trigger a short-circuit fault. If so, adding a small resistor between the device input and power-stage input is recommended. This resistor, together with the device input capacitor, composes an R-C filter that filters out the switching noise from power stage. See the *Design Examples* section. #### 7.3.4 LDRV Gate Capacitor Power-device selection is important for proper switching operation. If the low-side MOSFET has low gate capacitance Cgs (if Cgs < Cgd), there is a risk of short-through induced by high dv/dt at the switching node during high-side turnon. If this happens, add a small capacitance between LDRV and GND. See the *Design Examples* section. ## 7.4 Layout ## 7.4.1 Layout Guidelines ☑ 7-5 illustrates an example layout. For the controller, it is important to connect carefully noise-sensitive signals such as RT, SS, FB, and COMP as close to the IC device as possible and connect to AGND as shown. The thermal pad must be connected to any internal PCB ground planes using multiple vias directly underneath the IC device. AGND and PGND must be connected at a single point. High-performance FETs such as NexFET[™] power MOSFETs from Texas Instruments, require careful attention to the layout. Minimize the distance between the positive node of the input ceramic capacitor and the drain pin of the control (high-side) FET. Minimize the distance between the negative node of the input ceramic capacitor and the source pin of the synchronize (low-side) FET. Because of the large gate drive, smaller gate charge, and faster turn-on times of the high-performance FETs, use a minimum of four 10-µF ceramic input capacitors such as TDK #C3216X5R1A106M. Ensure the layout allows a continuous flow of the power planes. The layout of the HPA578 EVM is shown in **図** 7-5 through **図** 7-8 for reference. ## 7.4.2 Layout Example 図 7-5. Top Copper, Viewed From Top 図 7-6. Bottom Copper, Viewed From Bottom 43 Product Folder Links: TPS40170-Q1 図 7-7. Internal Layer 1, Viewed From Top 図 7-8. Internal Layer 2, Viewed From Top 45 Product Folder Links: TPS40170-Q1 ## 8 Device and Documentation Support ## 8.1 Device Support #### 8.1.1 サード・パーティ製品に関する免責事項 サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。 #### 8.2 Documentation Support #### 8.2.1 Related Documentation For related documentation see the following: - Steve Mappus, DV/DT Immunity Improved in Synchronous Buck Converters. July, 2005, Power Electronics Technology. - Texas Instruments, TPS4005x Wide-Input Synchronous Buck Controller data sheet - Texas Instruments, TPS40k Loop Stability Tool ## 8.3 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 #### 8.4 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 8.5 Trademarks NexFET[™] and テキサス・インスツルメンツ E2E[™] are trademarks of Texas Instruments.
すべての商標は、それぞれの所有者に帰属します。 #### 8.6 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 8.7 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 かせ) を送信 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: *TPS40170-Q1* # 9 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision B (December 2014) to Revision C (November 2023) | Page | |---|-------| | 「特長」セクションに新しい類似製品の導入を追加 | 1 | | データシートのタイトルに「車載用」を追加 | | | ドキュメント全体にわたって表、図、相互参照の採番方法を更新 | 1 | | 「概要」セクションに新しい類似製品の導入を追加 | | | • 本体サイズからパッケージ・サイズに変更し、「パッケージ情報」表に表の注を追加 | | | Changes from Revision A (March 2012) to Revision B (December 2014) | Page | | Added Handling Rating table, Feature Description section, Device Functional Modes, Applications Implementation section, Power Supply Recommendations section, Layout section, Device and | | | Documentation Support section, and Mechanical, Packaging, and Orderable Information section | tion5 | | Changes from Revision * (January 2012) to Revision A (March 2012) | Page | | Changed R _{HDHI} , RHDLO and R _{LDLO} MAX values | 6 | | Changed I _{ILIM} and I _{ILIM(ss)} values | 6 | | | | # 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 47 www.ti.com 3-Nov-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | | | | | | | | (6) | | | | | | TPS40170QRGYRQ1 | ACTIVE | VQFN | RGY | 20 | 3000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | PXXQ | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TPS40170-Q1: # **PACKAGE OPTION ADDENDUM** www.ti.com 3-Nov-2023 • Catalog : TPS40170 ● Enhanced Product : TPS40170-EP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Enhanced Product - Supports Defense, Aerospace and Medical Applications # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Nov-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | U | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS40170QRGYRQ1 | VQFN | RGY | 20 | 3000 | 330.0 | 12.4 | 3.8 | 4.8 | 1.6 | 8.0 | 12.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Nov-2023 ## *All dimensions are nominal | Г | Device Package Ty | | Package Drawing | Pins SPQ | | Length (mm) | Width (mm) | Height (mm) | | |---|-------------------|------|-----------------|----------|------|-------------|------------|-------------|--| | | TPS40170QRGYRQ1 | VQFN | RGY | 20 | 3000 | 367.0 | 367.0 | 35.0 | | 3.5 x 4.5, 0.5 mm pitch PLASTIC QUAD FGLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated