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IMPROVED NOISE PERFORMANCE OF THE
ACF2101 SWITCHED INTEGRATOR

By Bonnie C. Baker (602) 746-7984

Once the ACF2101 has integrated the input signal over a
predetermine period, the HOLD switch is opened, allowing
the user to read the output of the switched integrator at a held
voltage. The HOLD switch performs a sample/hold function
on the signal. Once the signal is read, the RESET switch is
closed in order to discharge the integration capacitor, CINT,
and bring the output back to the same potential as the
inverting input of the amplifier. Once the output returns to
ground, the RESET switch is opened. Shortly after the
RESET switch is opened, the HOLD switch closes to start
the integration cycle again.

Typically, a photodiode is used as the sensor for both
circuits shown in Figure 1. A photodiode can be modeled
using the sensor model shown in Figure 3. This model
includes a current source (IIN), parasitic resistor (R1), and
parasitic capacitor (C1). Typical values of R1 range from
100kΩ to 100GΩ. Typical values of C1 range from 20pF to
1000pF. C1 can be higher if the sensor is placed at a remote
location, and a cable, with parasitic capacitance to ground,
is used to transmit the signal to the input of the switched
integrator.

The ACF2101 is a dual switched integrator, as shown in
Figure 2. The current from the sensor is integrated by the
capacitor (CINT) in the feedback loop of the amplifier. Since
the inverting input of the amplifier is kept at a virtual
ground, the output of the integrator changes in a negative
direction over time. The resulting transfer function of the
switched integrator is:

VOUT =            IIN dt

The signal-to-noise ratio and bandwidth of the combination
of the ACF2101 dual, switched integrator and a low-level
input current is exceptional when compared to the perfor-
mance of a classical transimpedance amplifier (Figure 1). To
further improve the ACF2101 signal-to-noise ratio, a resis-
tor can be added in series with the input sensor.

FIGURE 1. Typical Circuits Used to Convert Current Sig-
nals to Voltage.

Where:
VOUT = output voltage of op amp
CINT = integration capacitor
IIN = sensor current

The output of the ACF2101 switched integrator is a time
averaged representation of the input.

FIGURE 2. The ACF2101 Switched Integrator Block Dia-
gram.
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The three dominate sources of noise at the output of the
switched integrator are the gained op amp noise, the charge
injection noise of the switches and the KT/C noise of the
integration capacitor. A bode plot of the op amp noise gain
of the switched integrator is shown in Figure 6. The low-
frequency pole of the noise gain is equal to:

This pole is usually found at very low frequencies. For
example, if RRESET = 1000GΩ and CINT = 100pF, the pole
would occur at 0.00159Hz.

The zero of the noise gain plot is equal to:

This zero is also usually found at very low frequencies. For
example, if R1 = 100MΩ, C1 = 50pF, RRESET = 1000GΩ, and
CINT = 100pF, fZ would equal 10.6Hz.

As a consequence, the op amp output noise of the switched
integrator is dominated by the high frequency op amp noise
multiplied by:

The total rms noise can be estimated as equal to:

The charge injection noise of the switches and the integra-
tion capacitor noise both have broad band noise equivalent
to 10µVrms. The total characterized noise of the ACF2101
switched integrator with various input capacitance and inte-
gration capacitance is shown in Figure 6.
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FIGURE 3. Photodiode Model Used in Noise Analysis.

The noise model for the complete photodiode/switched
integrator application is shown in Figure 4. In most applica-
tions the switched integrator is in the integrate mode for
most of the total integration cycle. The model in Figure 4
represents the ACF2101 with the HOLD switch closed and
the RESET switch opened. The typical on-resistance of the
HOLD switch is 1.5kΩ, and the typical open-resistance of
the RESET switch is 1000GΩ.

FIGURE 5. Noise Gain of the ACF2101, Switched Integra-
tor.
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FIGURE 4. ACF2101 Switched Integrator and Photodiode
Model Used for Noise Analysis.
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An application example is shown in Figure 9. The photo-
diode is modeled with a parasitic capacitance of 1000pF and
parasitic resistance of 50MΩ. The integration capacitor used
in the feedback loop of the op amp in the ACF2101 is equal
to 100pF. The 20-bit, 40kHz ADC750 A/D converter block
diagram is shown in Figure 10. Extreme care should be
taken to properly guard the high impedance input pins of the
ACF2101 in order to reduce the possibility of coupled noise
into the signal.

The design trade-off for improved noise performance of the
switched integrator is a slight degradation in the linearity
performance of the photodetector. The current from the
sensing device will cause an IR drop across RN. This IR drop
will impress a voltage across the sensor, causing a small
degree of dark current to start to conduct. As shown in
Figure 8, the pole generated by the additional resistor, RN, is
equal to:

The pole is directly affected by the value of RN and C1

(photodetector parasitic capacitance). Higher values for C1

will reduce the noise without compromising the linearity
performance of the photodetector. The overall circuit perfor-
mance is best optimized when the photodetector parasitic
capacitance, C1, is 200pF or greater.

The ACF2101 switched integrator is optimized for good
noise and bandwidth performance for low-level input cur-
rents. The addition of a resistor in series with the photodiode
further improves the noise performance without sacrificing
bandwidth.

To further improve the signal-to-noise ratio of the ACF2101
switched integrator, a resistor can be added in series with the
sensor, as shown in Figure 7. This additional resistor, RN, in
series with RHOLD, adds a pole/zero pair at higher frequen-
cies. When RN equals 0Ω, the pole/zero pair generated by
HOLD switch on-resistance (RHOLD = 1.5kΩ) occurs at
frequencies close to the open loop gain of the amplifier. As
shown in the bode plot in Figure 8, RN plus RHOLD attenuates
high frequency noise.

FIGURE 7. The ACF2101 Switched Integrator with an
Additional Resistor, RN, Added in Series with
the Photodiode to Reduce Noise.

FIGURE 8. Noise Gain Plots of ACF2101 with an Addi-
tional Resistor, RN, in Series with the Photo-
diode.
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The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
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FIGURE 9. Circuit and Timing Diagram used to Test the Noise Performance of the ACF2101 with and without RN.
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