

Texas Instruments Robotics System Learning Kit

 Module 19
Lab: Bluetooth Low Energy

Lab: Bluetooth Low Energy

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

19.0 Objectives

The purpose of this lab is to develop a robot system that can be controlled by a
smart device. In this module,

1. You will send commands from the MSP432 to the CC2650 to establish
a BLE link to a smart device.

2. You will use the BLE link to display sensor information from the robot to
the smart device.

3. You will use the BLE link to send commands from the smart device to
the robot.

Good to Know: Bluetooth Low Energy is a ubiquitous protocol used to wirelessly
send and receive data between devices in the same room.

19.1 Getting Started
19.1.1 Software Starter Projects
Look at these three projects:
VerySimpleApplicationProcessor (a barebones BLE interface)
ApplicationProcessor (a BLE interface with abstraction)
Lab19_BLE (starter project for this lab)

Note: BLE is a complex protocol with a wide variety of features. In this module
we have simplified BLE two ways. First, the low-level details of the radio and
wireless communication are implemented on the CC2650 in a system called the
Simple Network Processor (SNP). The high-level abstraction exists on the
MSP432 as the Simple Application Processor (SAP). Second, this SAP-SNP
system supports dozens of commands, but we will expose only the minimal set
needed to establish a simple BLE link.

19.1.2 Student Resources (in datasheets directory-Links)
 CC2650 Technical Reference Manual, (SWCU117)
 CC2650 BLE Software Stack Developers Guide (SWRU393)
 CC2650 Module BoosterPack (SWRU486)
 CC2640_Simple_Network_Processer_API_Guide.pdf API Guide
 SNP_API_Updated.pdf Shorthand guide to the NP-AP system

19.1.3 Reading Materials
Chapter 19, “Embedded Systems: Introduction to Robotics"

19.1.4 Components needed for this lab
All components you need for the lab are provided in the TI-RSLK Max kit
(TIRSLK-EVM), for this portion of the lab you will need to purchase the TI
CC2650MA and also distance sensor kit, OLED or LCD is optional.

Quantity Description Manufacturer Mfg P/N

1 TI-RSLK MAX robot
kit TI TIRSLK-EVM

1 CC2650 BoosterPack TI BOOSTXL-CC2650MA

1 Sharp Distance
sensor kit Pololu #3677

The CC2650 on the booster pack has been programmed with the simplified
network processor (SNP) at the factory. You will need to have a smart device
that can communicate via Bluetooth Low Energy.

19.1.5 Lab equipment needed
None

Lab: Bluetooth Low Energy

 3 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

19.2 System Design Requirements
You will create a BLE link with at least two characteristics with read indications,
which can be used to read sensor parameters of the robot.

Your BLE link will also have at least two characteristics with write indications,
which can be used to write robot parameters like speed and commands.

You will create at least one characteristic with notify indication. Once activated on
the smart device, you can stream data periodically or you can send data on an
event like bump sensors recognizing a wall touch.

The ultimate goal of this lab is to be able to control the robot from the smart
device using BLE.

19.3 Experiment set-up
This lab will run with a wide range of BLE-enabled smart devices. For example:

iPhone running LightBlue
Android running BLE scanner.

Warning: Please ensure the +5V jumper on the MSP432 LaunchPad is
disconnected or removed. Not removing this jumper will cause permanent
damage to the LaunchPad and the TI-RSLK chassis board.

You will need to attach the CC2650 BoosterPack to the MSP432 on the robot.
The following table shows the pins used for the SNP-SAP system.

MSP432 SNP-SAP CC2650 Description

P6.0 GPIO out MRDY DIO7 Master Ready

P2.5 GPIO in SRDY DIO8 Slave Ready

P6.7 GPIO out NRESET reset Reset to CC2650

P3.3 UART TxD RX DIO1 RXS MSP432 -> CC2650

P3.2 UART RxD TX DIO0 TXD CC2650 -> MSP432

In addition to the above signals, 3.3V and ground from the MSP432 are used to
power the CC2650 board. The details of the GPIO interface are described in the
file GPIO.c. The details of the UART interface are described in the file UART1.c.
The CC2650 also supports SPI interface, but this feature in not used in the lab,
and the SPI pins are available for the robot.

Lab: Bluetooth Low Energy

 4 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

19.4 System Development Plan
19.4.1 Run the VerySimpleApplicationProcessor project

For this section you need just the LaunchPad with the CC2650 BoosterPack
attached. The first step in implementing your own BLE interface is to understand
the SAP-SNP protocol. Attach the CC2650 to an MSP432 LaunchPad and build
the VerySimpleApplicationProcessor project. Notice the 20 hard-coded
message strings, which all start with NPI_. These are messages sent from the
MSP432 to the CC2650 to configure BLE and perform communication. BLE goes
through four phases. Notice these phases in the main() program.
1) Hardware initialization. The call to AP_Init initializes the MSP432 interface
pins (P3.2/P3.3 as UART, P6.0/P6.7 as GPIO output, and P2.5 as GPIO input),
and issues a hardware reset to the CC2650. AP_Init will fail if the CC2650 is
broken or missing.
2) Configure the CC2650 as a BLE server. Notice the commands to set the
BLE device name, adds a service with four characteristics, registers the service,
sets the parameters for advertisement and starts advertising.

3) Establishing the pairing. The CC2650/MSP432 smart object will be the
slave. It advertises it is available for pairing. The smart device (cell phone) will be
the master (client) and will initiate pairing. In this simple project, the main
program runs the while loop until pairing has occurred.
4) Communication. Since the smart device is the master you will ask it to read
and write indications for the four characteristics. This is a crude but simple way to
read and write variables within the MSP432 from the smart device. The MSP432
AP_RecvStatus function returns a true when the BLE link sends an indication.
The MSP432 AP_RecvMessage function returns that message describing the
indication. The project has a simple and hard-coded way to process each
possible indication.

Open a terminal program like TExaSdisplay in text mode. Build, debug, and run
the VerySimpleApplicationProcessor project. Communication between the
SNP (CC2650) and SAP (MSP432) is echoed to the PC on the UART0 channel
(via USB cable). The first few lines of debugging output you should see on
TExaSdisplay are

Very Simple Application Processor
 Reset CC2650
 Reset CC2650
 LP->SNP FE,03,00,55,04,1D,FC,01,B2
 SNP->LP FE,03,00,55,04,00,1D,FC,B3
 GATT Set DeviceName
 LP->SNP FE,12,00,35,8C,01,00,00,53,68,61,70,65,<…>,6C,64,DE
 SNP->LP FE,01,00,75,8C,00,F8
 NPI_GetStatus
 LP->SNP FE,00,00,55,06,53
 SNP->LP FE,04,00,55,06,00,00,00,00,57
 NPI_GetVersion
 LP->SNP FE,00,00,35,03,36
 SNP->LP FE,0D,00,75,03,00,01,10,00,02,02,00,00,91,<…>,00,EC
 Add service
 LP->SNP FE,03,00,35,81,01,F0,FF,B9
 SNP->LP FE,01,00,75,81,00,F5
 Add CharValue1
 LP->SNP FE,08,00,35,82,03,0A,00,00,00,02,F1,FF,BA
 SNP->LP FE,03,00,75,82,00,1E,00,EA

Note: The output LP->SNP shows a message from MSP432 to CC2650. The
output SNP->LP shows a message from CC2650 to MSP432. Also notice that
protocol typically involves a command/response behavior.

On the smart device (phone), open an application like LightBlue, and click the
name of the MSP432/CC2650 BLE object, which has been programmed by the

Lab: Bluetooth Low Energy

 5 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

project VerySimpleApplicationProcessor to be called “Shape the World”.
Once the client (phone) is paired with the server (MSP432/CC2650), you will see
the “Connected” on the phone. On TExaSdisplay, you can see the messages
sent between the MSP432 and CC2650 as this connection is established.

Next, scroll down and observe the four characteristics, which have been
programmed by the project to be Data, Switches, LEDs, and Count. To interact
with a characteristic, click on it. The Data characteristic has been programmed in
this example for read and write properties, meaning information can flow both
directions. Characteristics can be 1, 2, or more bytes. The Data characteristic
has been programmed in this example to be 1 byte. Once the characteristic
window is open you can read the characteristic by clicking the “Read again”.

On BLE Scanner you see the characteristics listed by their UUID, which in this
project will be 0000FFF1 0000FFF2 0000FFF3 and 0000FFF4. These four UUID
numbers refer to Data, Switches, LEDs, and Count respectively.

On TExaSdisplay, you can see the messages sent between the MSP432 and
CC2650 as a read characteristic operation is performed.

You can write the characteristic by clicking “Write new value”. Writing a new
value will open a dialog window, into which you type the new value. On
LightBlue, the information is entered in hexadecimal. Once you have specified
the value, click “Send” to write the information to the MSP432/CC2650 object.

On BLE Scanner you use the “byte array” format to write information from the
smart device (phone) to the MSP432/CC2650 BLE object.

Lab: Bluetooth Low Energy

 6 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

On TExaSdisplay, you can see the messages sent between the MSP432 and
CC2650 as a write characteristic operation is performed.

Go back to the characteristic list and click the Switches characteristic. On the
MSP432, press one of the LaunchPad switches and click “Read again”. You will
be able to read the four possible values of the switches. (With BLE Scanner, the
Switches characteristic has a UUID of 0000FFF2.)

Go back to the characteristic list and click the LEDs characteristic. On the smart
device (phone) click “Write new value”. You will be able to send the eight
possible values (0 to 7) to the LED. (With BLE Scanner, the LEDs characteristic
has a UUID of 0000FFF3.)

We will create a characteristic with notify properties to stream information from
the MSP432/CC2650 to the smart device (phone). Go back to the characteristic
list and click Count. (With BLE Scanner, the Count characteristic has a UUID of
0000FFF4.) On the smart device (phone) click “Listen for notifications”. This will
configure the MSP432 to stream data to the smart object.

On TExaSdisplay, you can see the messages sent between the MSP432 and
CC2650 as a notify characteristic operation is performed.

Notice in the main program loop that the BLE messages are handled.

19.4.2 Run the ApplicationProcessor project
Similar to the last section, you need just the LaunchPad with the CC2650
BoosterPack attached. In this example we will abstract the SAP-SNP protocol to
create a more programmer-friendly software layer call an abstraction. Attach the
CC2650 to an MSP432 LaunchPad and build the ApplicationProcessor project.
This project runs in a similar

Notice the BLE interface is configured with a sequence of high-level function
calls. See that each read/write characteristic has a global variable, a function to
execute on read indication, a function to execute on a write indication. See that
each notify characteristic has a global variable, a function to execute on a
change of notification status (listen for notifications, stop listening).

Lab: Bluetooth Low Energy

 7 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

 r = AP_Init();
 AP_GetStatus(); // optional
 AP_GetVersion(); // optional
 AP_AddService(0xFFF0);
 AP_AddCharacteristic(0xFFF1,1,&ByteData,0x03,0x0A,
 "ByteData",&ReadByteData,&WriteByteData);
 AP_AddCharacteristic(0xFFF2,2,&HalfWordData,
 0x01,0x02,"HalfWordData",&ReadHalfWordData,0);
 AP_AddCharacteristic(0xFFF3,4,&WordData,
 0x02,0x08,"WordData",0,&WriteWordData);
 AP_AddNotifyCharacteristic(0xFFF4,2,&Switch1,
 "Button 1",&Button1);
 AP_AddNotifyCharacteristic(0xFFF5,4,&Switch2,
 "Button 2",&Button2);
 AP_RegisterService();
 AP_StartAdvertisement();

Notice in the main program loop that the BLE messages are handled. The
function AP_BackgroundProcess(); must be called periodically to handle the
read, write, and listen messages.

In a client-server paradigm, typically the client makes a request and the server
answers. However, with a notify property, the server sends information to the
client at times determined solely in the server. If the listen feature is active, the
MSP432 calls AP_SendNotification() either periodically, as configured in this
example, or it could be called at other times as your application needs.

 Note: At the lowest layer of the SNP <-> SAP interface, the MSP432 interrupt
synchronization to receive messages from the CC2650. Look
EUSCIA2_IRQHandler in the UART1.c file. No BLE data is lost if the call to
RxFifo_Put never results in a full FIFO. Refer back to module 18 for the
importance of FIFOs in complex systems.

19.4.3 Low-level software development

There are a couple of low-level functions you need complete for this lab. In the
file AP.c you need to create NPI_SetAdvertisementDataJacki, which will be a
hard-coded message to specify the advertising name of your object. For an
example, see NPI_SetAdvertisementData, which was used for the

ApplicationProcessor project. For a detailed description of this message, see
the 0x55,0x43 “Set Advertisement Data” command in the SNP API guide
CC2640_Simple_Network_Processer_API_Guide.pdf.

Next, you need to implement the AP_StartAdvertisementJacki function in AP.c
that uses the NPI_SetAdvertisementDataJacki message to start advertising.
For an example, see the function AP_StartAdvertisement, which was used for
the ApplicationProcessor project.

19.4.4 High-level software development

Make a list of the robot sensors you wish to communicate. Choose whichever
sensors you plan to use during the robot challenge, and configure them as read-
indication characteristics:

1. Bump sensors
2. Line sensor
3. IR distance sensors
4. Tachometer

Choose parameters you might which to set during the robot challenge, and
configure them as write-indication characteristics:

1. Default duty-cycle to PWM
2. Controller setpoint and/or gain
3. Robot function commands (go, stop, turn, etc.)

Choose parameters you might which to stream during the robot challenge, and
configure them as notify characteristics:

1. Controller error(s)
2. Controller intermediate decisions
3. Strategic sensor data

Combine software from previous systems to create a BLE-enabled robot system.
Again, look ahead to the robot challenge and implement BLE features that will
assist in debugging the challenge.

19.5 Troubleshooting

BLE will not communicate:

• The two projects VerySimpleApplicationProcessor and
ApplicationProcessor should run without hardware or software

Lab: Bluetooth Low Energy

 8 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

modifications. The SNP<->SAP messages can be viewed on
TExaSdisplay.

• The MSP432 needs to have these five pins free to implement
communication with the CC2650 P6.0, P2.5, P6.7, P3.3, and P3.2.
Make sure there is no other hardware connected to these pins.

• There is a way to reflash the CC2650 with the SNP software. See end
of lab for details,

Data looks funny:

• Make sure the size of the characteristic (1 2 or 4 bytes) matches the
size of the variable uint8_t uint16_t or uint32_t.

• Recall the LightBlue application read and writes in hexadecimal.

19.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to have a brief introduction to BLE.

• In this system which is the client and which is the server? How is a
client different from a server?

• Why is this system called a personal area network?
• You should have a clear understanding between a profile, service, and

characteristic.
• What are handles, and how are they used in this system?
• What is the advantage of interrupt driven receiver communication on

this system? E.g., an incoming message from the CC2650 to the
MSP432 causes interrupts on the MSP430.

• What are the advantages and disadvantages of implementing this
system using two microcontrollers: MSP432 and CC2650? Compare
this approach to implementing the entire robot on the CC2650
LaunchPad.

19.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• This system is a personal area network. How can it be extended to be
an Internet of Thinks object? Explore the Cloud Connect feature of the
smart device (phone).

• This lab used an existing application (e.g., LightBlue) in the client.
Explore the steps to creating a custom application.

• Search TI.com for information on SensorTag. This is a rich
development environment (parts, boards, and software) for BLE
systems involving the CC2640.

19.8 Which modules are next?

After this module, you are ready to solve any of the robot design challenges. If
you wish to extend your robot to include wifi communication you complete:
Module 20) Add Wifi functionality.

19.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand the basic concepts in BLE communication.
• Know profile, service, characteristic, client and server.
• Know how to use interrupts simplify software develop on complex

systems.

19.10 Reflash the CC2650

This should not be needed. It should be used only as a last resort.Step 0) Create
an account on https://my.ti.com/ and log in.

Step 1) Search TI.com for “Smartrf flash programmer”. Download and unzip a
file called flash-programmer-2-1.7.5.zip. In administrator mode, install the
application, Setup_SmartRF_Flash_Programmer_2.exe

Step 2) Download and unzip hex files from this web link
ble_2_02_simple_np_setup.exe

http://software-
dl.ti.com/dsps/forms/self_cert_export.html?prod_no=ble_2_02_simple_np_setup.

https://my.ti.com/
http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=ble_2_02_simple_np_setup.exe&ref_url=http://software-dl.ti.com/lprf/BLE-Simple-Network-Processor-Hex-Files

Lab: Bluetooth Low Energy

 9 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP155

exe&ref_url=http://software-dl.ti.com/lprf/BLE-Simple-Network-Processor-Hex-
Files

These hex files (object code) implement the BLE stack in the form of the simple
network processor (SNP). This download creates two directories: one with files
for the BoosterPack (cc2650bp) and one with files for the LaunchPad (cc2650lp).

Step 3) Find this hex file on your computer:
simple_np_cc2650bp_uart_pm_xsbl.hex
Notice the letters bp (for BoosterPack) uart means serial communications, pm
means hardware handshake and xsbl means no serial bootloader.

Step 4) Use the Flash Programmer to burn this hex file onto your CC2650
BoosterPack. The MSP432 LaunchPad can be the debugger/loader for the
CC2650.

19.11 Using the CC2650 LaunchPad

Follow steps 0, 1, 2 from Section 19.10

Step 3) Find this hex file on your computer:
simple_np_cc2650lp_uart_pm_xsbl.hex
Notice the letters lp (for LaunchPad) uart means serial communications, pm
means hardware handshake and xsbl means no serial bootloader.

Step 4) Use the Flash Programmer to burn this hex file onto your CC2650
BoosterPack. The CC2650 LaunchPad can be programmed by simply plugging
in its USB, like other LaunchPad.

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLK MAX_19_BLE_Lab_NEW
	19.0 Objectives
	19.1 Getting Started
	19.1.1 Software Starter Projects
	19.1.2 Student Resources (in datasheets directory-Links)
	19.1.3 Reading Materials
	19.1.4 Components needed for this lab
	19.1.5 Lab equipment needed

	19.2 System Design Requirements
	19.3 Experiment set-up
	19.4 System Development Plan
	19.4.1 Run the VerySimpleApplicationProcessor project
	19.4.2 Run the ApplicationProcessor project
	19.4.3 Low-level software development
	19.4.4 High-level software development

	19.5 Troubleshooting
	19.6 Things to think about
	19.7 Additional challenges
	19.8 Which modules are next?
	19.9 Things you should have learned
	19.10 Reflash the CC2650
	19.11 Using the CC2650 LaunchPad

	TI-RSLKMax_Cover

