{? TEXAS
INSTRUMENTS

Interfacing the TMS320C54xx to the TLC320AD535 and
TLC320AD545 Codecs

David M. Alter

ga b~ W N -

ABSTRACT

This application report presents a method for interfacing the TLC320AD535 and
TLC320AD545 codecs from Texas Instruments (TIO) with the multichannel buffered serial
port (McBSP) on TI's C54xx family of digital signal processors (DSPs). As is the case with
many codecs from Tl, these devices utilize a primary and secondary communication protocol
to differentiate between actual signal data and codec control register data. This
communication protocol is discussed, and example C-language code for the DSP is provided
that initializes both the McBSP and the codec and then performs a simple codec echo
function. A description of the code and code flow is given. Finally, there is a brief discussion

Application Report
SLAA091 - February 2000

DSP Appilications — Semiconductor Group

on applying this work to other Tl codecs.

Contents
It OdUCHION . 3
Serial Communication Hardware Interface i e 3.
Configuring the MCBSP ReQIStersS e 5.
Configuring the Codec RegISters i 7.
Example Code DesCription e 8
5.1 RSB VOO .. .o 11
5.2 C NtO0()+ttt 11
5.3 WhiCh _MCBSP () ..o e 11
B NI COME() ottt e 12
5.5 SEMUP _COUBC() o v ittt e e 12
BB W[) .ottt e 12
5.7 setup CPU 0 _COOBC it e e e e e e e e e 13
5.8 CPU_to_codec_chland CPU to codec Ch2 13
Extension t0 Other COOBCS it e e e 13
CONCIUSION L 13
REIEIENCES . i 14

Tl is a trademark of Texas Instruments Incorporated.

b TEXAS

SLAA091 lNSTRUMENTS
Appendlx A EXample Code ... 15
AL File: ADB3S . BAT . e 15
A2 File: ADB35.C . 15
A.3 File: ADB35.CIMD ... 17
A4 File: ADB35.INC . e 18
AL File: ADSAS BAT .. 19
A6 File: ADBAD . C . 20
A7 File: ADBAD.CMD ... 21
A.8 File: ADSBAS . INC ..o 22
A9 File: CODEC.C .. it e e e e 23
A 10 File: CODEC.H ..o e 26
A.11l File: CVECTORS ADS35. ASM ..t e e e e e e e e e 27
A.12 File: CVECTORS ADBAS. ASM ... i e e e e e e e e 29
A L3 File: WAL T ASM . . e e 31
List of Figures
1 McBSP Interface With TLC320AD545 COUBCttt e e e 3
2 McBSP Interface With TLC320ADS535 COUECo v it e e e et e 4
3 Serial Communication Timings for Codecin FSLow Mode 5
4 Primary Communication Data Format i e e e 7
5 Secondary Communication Data Format i 8
6 Function Flowchart for AD545 Example Code 9
7 Function Flowchart for AD535 Example Code 10
List of Tables
1 McBSP Serial Port Control Register 1 (SPCRI1X) Settingscoiiiiii i 5
2 McBSP Serial Port Control Register 2 (SPCR2X) Settings ... 6
3 McBSP Receive Control Register 1 (RCR1X) Settingscoiiii i 6
4 McBSP Receive Control Register 2 (RCR2xX) Settingsttt 6
5 McBSP Transmit Control Register 1 (XCR1X) Settings ...ttt 6
6 McBSP Transmit Control Register 2 (XCR2X) Settingsouiiiiit e 6
7 McBSP Pin Control Register (PCRX) Settingst e 7

2 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

1

Introduction

The TLC320AD535 and TLC320AD545 codecs from Tl (hereafter, referred to as the AD535 and
AD545, respectively) provide a glueless serial interface to the McBSPs on the C54xx DSP
family. The AD535 offers dual channel voice/data capability, while the AD545 is a single channel
data/fax device. Although functionally different, both codecs share the same serial hardware
interface and communication protocols. This application report presents the hardware
connections and software necessary to interface these codecs with the McBSP on the C54xx
DSP. Note that older C54x DSPs without a McBSP (e.g. they may have the standard serial port
or buffered serial port) can also be gluelessly interfaced, although the code provided in this
application report would need to be modified.

Serial Communication Hardware Interface

Figures 1 and 2 show the necessary connections between each codec and the DSP. In the case
of the dual channel AD535, each channel operates and is interfaced independently. In the
remainder of this paper, the term codec will refer to the entire AD545 or to one of the two
channels on the AD535, except where otherwise indicated by context. The codec acts as the
serial bus master, sourcing both the serial clock and the frame synchronization signal. Since
codec data transmission and reception always occur simultaneously, only one clock and one
frame synchronization signal are present. On the single channel AD545, these signals are
DT_SCLK and DT_FS, respectively. On the dual channel AD535, the signals DT_SCLK and
DT_FS are dedicated for the data channel, and VC_SCLK and VC_FS handle the voice
channel.

TMS320C54xx DSP AD545
BDRx | DT_DOUT
BDXx »{DT_DIN
McBSPx BFSRx :j DT_FS
BFSXx Input Clock —¥»DT_MCLK
BCLKRXx :j DT_SCLK
BCLKXx DVpp — SI_SEL
x=0,1, 2, ect.

Figure 1. McBSP Interface With TLC320AD545 Codec

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 3

{'.f TEXAS

SLAA091 INSTRUMENTS
TMS320C54xx DSP AD535
BDRXx |« DT_DOUT
BDXx »{DT_DIN
McBSPx BFSRx :j DT_FS
Data Channel
BFSXx Input Clock —»|DT_MCLK
BCLKRx :j DT_SCLK
BCLKXx DVpp —{SI_SEL
BDRYy |« VC_DOUT
BDXy »{VvC_DIN
McBSPy BFSRy :j VC_FS
BESXy Voice Channel —»{vc meLk
Input Clock
BCLKRy :j VC_SCLK
BCLKXy

X, y=0,1, 2, ect.

Figure 2. McBSP Interface With TLC320AD535 Codec

It is important that the I/O operating voltages of the codec and DSP be considered to avoid the
need for voltage level translators between them. The glueless interfaces shown in Figures 1 and
2 assume 3.3-V interfacing between the devices. Since the TLC320AD535 and TLC320AD545
allow for operation from either 5-V or 3.3-V power supplies, the 3.3-V option should be utilized
(i.e., DVpp = 3.3 V). In addition, the DSP should support 3.3-V 1/O. As of the time of this printing,
C54xx DSPs that operate exclusively with 3.3-V I/O include the TMS320VC5402,
TMS320VC5409, TMS320VC5410, TMS320VC5416, TMS320VC5420, TMS320VC5421, and
TMS320VC5441. C54xx DSPs that allow for 3.3-V I/O operation given the appropriate I/O power
supply include the TMS320UC5402, and TMS320UC5409. The reader should refer to the
specific DSP and codec datasheets for complete information and up-to-date specifications.

The codecs support both active high and active low frame synchronization signals (DT_FS).
Active low is used in this appnote to interface with the DSP, and is selected by tying the SI_SEL
pin high on the codec. Note that the single SI_SEL pin on the AD535 controls both channels on
the device. Figure 3 shows the timing relationships between signals on the codec serial
interface.

4 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

e T UULULUUUUUULT

xX_FS

oo XXX oYX o oo omX oo Yoo
o0 gesaeeeocotooeed

xx =DT or VC

Figure 3. Serial Communication Timings for Codec in FS Low Mode

3 Configuring the McBSP Registers

The McBSP should be configured for standard operating mode (as opposed to multi-channel,
SPI, or A-bis modes), with single phase communication and 16-bit word length. Since the codec
provides both the serial clocks and the frame synchronization signals, the McBSP sample rate
generator is not used. Taking into account the timing relationships in Figure 3, Tables 1 through
7 show suitable settings for the various McBSP control registers. A x value for the bit field
denotes a don’t care condition for register writes. Either a 0 or a 1 can be written to don’t care
bits. Typically, a zero is written.

Table 1. McBSP Serial Port Control Register 1 (SPCR1x) Settings

BIT NAME VALUE EFFECT
15 DLB 0 Digital loopback mode disabled
14-13 | RJUST 00 Right-justify and zero-fill MSBs in DRR[1,2]x
12-11 | CLKSTP 00 Normal clocking for non-SPI mode
10-8 | Reserved XXX Reserved
7 DXENA 0 No extra delay on DX pin
6 ABIS 0 A-bis mode disabled
5-4 RINTM 00 Received interrupt on end of word
3 RSYNCERR 0 Write as 0 (no rx sync error detected)
2 RFULL X Read-only
1 RRDY X Read-only
0 RRST 1 Serial port receiver enabled

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 5

{'}‘ TEXAS

SLAA091 INSTRUMENTS

Table 2. McBSP Serial Port Control Register 2 (SPCR2x) Settings

BIT NAME VALUE EFFECT
15-10 | Reserved XXXXXX Reserved
9 FREE 1 Free-run (ignore emulation halt)
8 SOFT X Don't care when FREE=1
7 FRST 0 Frame sync generator disabled
6 GRST 0 Sample rate generator disabled
5-4 XINTM 00 Transmit interrupt on end of word
XSYNCERR Write as 0 (no tx sync error detected)
XEMPTY Read-only
XRDY Read-only

Table 3. McBSP Receive Control Register 1 (RCR1x) Settings

BIT NAME VALUE EFFECT
15 Reserved X Reserved

14-8 | RFRLEN1 0000000 1 word per frame

7-5 RWDLEN1 010 16 bits per word

4-0 Reserved XXXXX Reserved

Table 4. McBSP Receive Control Register 2 (RCR2x) Settings

BIT NAME VALUE EFFECT
15 RPHASE 0 Single phase frame
14-8 | RFRLEN2 XXXXXXX Don'’t care when RPHASE=0
7-5 RWDLEN2 XXX Don’t care when RPHASE=0
4-3 RCOMPAND 00 No companding, transfer MSB first
2 RFIG 1 Ignore receive frame syncs after the first
1-0 RDATDLY 00 0 bit data delay

Table 5. McBSP Transmit Control Register 1 (XCR1x) Settings

BIT NAME VALUE EFFECT
15 Reserved X Reserved

14-8 | RFRLEN1 0000000 1 word per frame

7-5 RWDLEN1 010 16 bits per word

4-0 Reserved XXXXX Reserved

Table 6. McBSP Transmit Control Register 2 (XCR2x) Settings

BIT NAME VALUE EFFECT
15 XPHASE 0 Sinlge phase frame
14-8 | XFRLEN2 XXXXXXX Don’t care when XPHASE=0
7-5 | XWDLEN2 XXX Don't care when XPHASE=0
4-3 XCOMPAND 00 No companding, transfer MSB first
2 XFIG 1 Ignore receive frame syncs after the first
1-0 XDATDLY 00 0 bit data delay

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

Table 7. McBSP Pin Control Register (PCRx) Settings

BIT NAME VALUE EFFECT
15-14 | Reserved 00 Reserved
13 XIOEN 0 DX, FSX, CLKX pins are not GP 1/O pins
12 RIOEN 0 DR, CLKS, FSR, CLKR are not GP I/O pins
11 FSXM 0 External transmit frame sync signal
10 FSRM 0 External receive frame sync signal
9 CLKXM 0 External transmit clock signal
8 CLKRM 0 External receive clock signal (DLB=0)
7 Reserved X Reserved
6 CLKS_STAT X Read-only
5 DX_STAT X Read-only
4 DR_STAT X Read-only
3 FSXP 1 Transmit frame sync active low
2 FSRP 1 Receive frame sync active low
1 CLKXP 1 Transmit data sampled on rising CLKX edge
0 CLKRP 0 Receive data sampled on falling CLKR edge

4 Configuring the Codec Registers

The DSP configures the control registers via the serial communication data link. Both codecs
utilize the same primary and secondary communication protocol for register programming.
Primary serial communication transfers actual data (as opposed to control register information)
between the DSP and the codec ADC and DAC. Secondary serial communication is used to
access the codec control registers. All serial communication is primary unless a secondary
communication cycle is specifically requested by the DSP.

Secondary communication requests are made by setting the least significant bit (LSB) of the
data word transmitted to the codec during primary communication. If the LSB is a 0, the next
communication cycle will be primary. If the LSB is a 1, the next communication cycle will be
secondary, and the data received by the codec will be diverted to program a codec control
register. Figure 4 depicts the primary communication data format.

15 1 0

DT_DIN D/A Data (to Codec)

S

15 0

Secondary Communication Request Bit

DT_DOUT A/D Data (from Codec)

Figure 4. Primary Communication Data Format

During a secondary communication, the data word transmitted to the codec on the DT_DIN or
VC_DIN line contains codec control register address information, a bit that indicates whether the
register is being written to or read from, and finally the data to be written to the register in the
case of a register write. Figure 5 depicts this data format for a register write. Register reads are
not typically of interest during codec configuration.

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 7

{'f TEXAS
SLAA091 INSTRUMENTS

15 14 13 12 8 7 0

DT_DIN 0 | 0| 1 |Register Address Register Data

(\— Read/Write Bit. Set to 1 For Register Write.
Part of Register Address. These Are Always 0 For AD535 and AD545 Codecs.

Figure 5. Secondary Communication Data Format

The AD535 codec contains 6 configurable control registers, while the AD545 codec contains
only 2. The code provided with this report programs the codec registers with a generic
configuration. It can be easily modified to provide any desired codec configuration. It is beyond
the scope of this paper to discuss specific register settings for the codec. These will depend on
the particular application in which the codec is being used. The reader is referred to the latest
data manual for the codec of interest for further information?. 2.

5 Example Code Description

Appendix A provides example C-language code for interfacing the codec with the McBSP. The
code is generic in that it supports any of the 3 McBSPs (i.e., McBSPO, McBSP1, or McBSP2)
currently available on C54xx platforms (e.g., C5402, C5410, C5420 DSPs), and also supports
both the AD535 and AD545 codecs. The code provides a complete standalone program that
initializes the McBSP and codec, and then uses the DSP CPU to perform an interrupt driven
echo function (i.e., codec ADC input is copied to codec DAC output). The code is an illustrative
example only. Users should modify the code as necessary in order to smoothly incorporate the
various functions into their specific application software. All code has been tested using C54x
Code Generation Tools v3.10. C code has been tested with no optimization and also full (-03)
optimization. The various files needed to perform a build for each codec are listed below.

AD535 Build
adb35.c—-—-——————— main routine
codeCC————————— codec interfacing functions
wait.asm - - —————— delay function
cvectors_ad535.asm — — reset and interrupt vectors
ad535.inc———————— include file for ad535.c
codech- - —-——————— C header file for ad535.c and codec.c
ad535.cmd - —————— example linker command file for VC5402 DSP
adb35.bat———————— batch file to construct executable

AD545 Build
ads45c—-—-—-—————— main routine
codecc————————— codec interfacing functions
wait.asm - —— ————— delay function
cvectors_adb45.asm — — reset and interrupt vectors
ad545.inc———————— include file for ad535.c
codech-—-—-—————— C header file for ad535.c and codec.c
ads545.cmd - —————— example linker command file for VC5402 DSP
ad545.bat——— - ———— batch file to construct executable

8 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

Figures 6 and 7 show block flow charts of the code on a per function basis. Each function will
now be discussed.

DSP Reset

Reset Vector
file: cvectors_AD545.asm

\ 4

Set Up The C Environment
function: _c_int00()
file: part of C-compiler

Initialize The CPU
function: int_core()
file: codec_c.c

Main
function: main()

file: AD545.c <

U

Choose The McBSP
function: which_McBSP()
file: codec_c.c

Set Up The Codec Delay Time Need_ed For
S McBSP Synchronization
function: setup_codec() ;)
- function: wait()
file: codec_c.c)
- file: codec_asm.asm

Set Up The Data to The Codec
function: setup_CPU_to_codec

file: codec_c.c
f brint0

pp— .
McBSP Receiver Interrupt
Endless Loo
: v p : > ISR: CPU_to_codec_chl
<= file: AD545.c

VALY

Figure 6. Function Flowchart for AD545 Example Code

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 9

{'.f TEXAS

SLAA091 INSTRUMENTS
CDSP Reset
Reset Vector
file: cvectors_AD535.asm
\4
Set Up The C Environment
function:_c_int00()
file: part of C-compiler
Initialize The CPU
function: int_core()
file: codec_c.c
Main <
function: main() Choose The McBSP For chl
file: AD535.c function: which_McBSP()
(file: codec_c.c
Choose The McBSP For ch2
D function: which_McBSP()
file: codec_c.c
(Delay Time Needed For
Set Up Codec chl McBSP Synchronization
function: setup_codec() function: wait()
(file: codec_c.c file: codec_asm.asm
Set Up Codec ch2 Delay Time Needed For
> function: setup_codec() > McBSP Synchronization
file: codec c.c function: wait()
C — file: codec_asm.asm
Set Up The Data Folw to Codec chl
function: setup_CPU_to_codec
C file: codec_c.c
Set Up The Data Flow to Codec ch2
function: setup_CPU_to_codec
K— file: codec_c.c
i- _____ -i _ | [DintO McBSPO Receiver Interrupt
| | > ISR: CPU_to_codec_ch1
file: AD535.c
I Endless Loop le
| |
in Main() brintl.
| | rint McBSP1 Receiver Interrupt
ISR: CPU_to_codec_ch2
: I dec_ch
| file: AD535.c
L D
Figure 7. Function Flowchart for AD535 Example Code
10 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

5.1

5.2

5.3

Reset Vector

Complete examples of a reset and interrupt vector table are provided in the files
cvectors_ad545.asm and cvectors_ad535.asm . The labels used in the vector tables are
descriptive for a TMS320VC5402 DSP. However, the vector tables themselves are generic for
any C54xx device. For example, the 24th vector (address 0x5C) on the VC5402 is the timer 1
interrupt, and hence the table entry is labeled TINT1. However, on the VC5410, this vector is
external interrupt #2. The user should consult the data sheet for the device being used to
determine specific vector functionality.

Two entries are of interest in the vector tables. First is the reset vector, which branches to the
start of the C runtime support library at label ¢ _int00. The runtime support library is discussed
further in the next section. Second are the McBSP receive interrupts. In this example program,
the CPU itself handles the codec receive and transmit data. Therefore, the receive interrupt for
each interfacing McBSP branches to an interrupt service routine (ISR) that handles the data.
Recall that the codec simultaneously performs receive and transmit, and therefore only one
McBSP interrupt, either transmit or receive, is needed. The vector table for the single channel
AD545 shows the McBSPO receive interrupt brintO branching to the _CPU _to _codec chl, which
is the data handling ISR. For the dual channel AD535, two McBSP interrupts are used, one for
each codec channel. In this example, McBSPO and McBSP1 are used, and thus brint0 and
brint1 have been assigned to two independent data handling ISRs. If McBSPs other than these
are used (e.g., McBSP2), the vector table must be modified. In the vector table, note the use of
the leading underscore for the branch addresses since these target labels were declared in C.
The remaining (unused) vectors all branch to themselves, which provides a convenient way of
trapping any spurious interrupts that may occur during code development and debug.

_c_into0()

This function sets up the C environment in the DSP (e.g., stack pointer, initialized variables) and
then calls main() . Itis part of the C-compiler runtime support library and not part of the source
code provided with this application report. The runtime support library (e.g., rts.lib) must be
linked in with all C-language applications, as required by the C-compiler. This is done using the
-l option with the C-compiler (in this code, the -l option was specified in the linker command files,
ad535.cmd and ad545.cmd). Further, the runtime support library must be executed prior to
running any C-language modules in a program. One convenient way to ensure this is to simply
have the DSP reset vector branch to this function, as was done in this example code. Refer to
the TMS320C54x Optimizing C Compiler User’s Guide, literature number SPRU103C, for more
information.

which_McBSP()

This function initializes a structure (e.g., McBSP_ch1) that contains pointers to the various
McBSP control registers on the DSP and also two bit masks corresponding to McBSP interrupts.
The McBSP number that the codec is connected to is a passed parameter to this function. This
function allows the code to work with any of the McBSPs. Once a particular McBSP has been
chosen for a user application, this function can be eliminated provided the structure is initialized
elsewhere. This will save some cycles as the function call and decision making used in this
function will no longer be needed.

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 11

{'? TEXAS

SLAA091 INSTRUMENTS

5.4

5.5

5.6

12

init_core()

This function initializes various DSP core functions such as the software programmable PLL and
the software wait-states for the external memory interface. This particular function is a bare
bones example, written specifically for a TMS320VC5402 DSP. It is not intended for unmodified
use in a real application. Users should consult the user’s guide for the specific DSP they are
using and build a complete initialization routine as needed for their application.

setup_codec()

This function first sets up the specified McBSP and then uses that serial port to initialize the
control registers in the codec. The control register data is passed to the function in the array
codec_ctrl_chl[] , and also codec_ctrl_ch2[] in the case of the dual channel AD535.
These arrays are declared in main() . The first entry in each array contains the number of
control registers to be programmed. The remaining entries are the actual control register values
to be written. In this example code, the control data arrays are initialized using an include file,
adb545.inc or ad535.inc, which is included into main() just before setup_codec() s called.
Note that in the AD535 case, the control register data has been split between the voice and data
channels, such that the McBSP associated with each of these channels programs the codec
registers associated with its function (i.e., voice or data). However, each channel has access to
all the control registers in the AD535, and the code could be modified to have one of these
channels program all of the registers. Regardless of which codec is of interest, the user should
modify the control data values in the include files to reflect the particular needs of their
application.

wait()

This function performs a CPU time delay. The delay length is specified in terms of CPU clock
cycles, and is a passed parameter to this function. This function has been written in assembly
code since this allows easy control over DSP cycle counts. In the example code, the constant
N_DELAY_CHXand N_DELAY_CH2 defined in the files ad535.c and ad545.c, serves as the
delay value. Two delay intervals of 2 serial bit clocks each are needed during McBSP setup, as
specified in the TMS320C54x DSP Reference Set Volume 5: Enhanced Peripherals, literature
number SPRU302. Since the wait() function requires the interval to be specified in terms of
CPU clock cycles, knowledge of the clock rate for the McBSP is required. On the codecs,
xX_SCLK (i.e. DT_SCLK and VC_SCLK) is fixed at half the frequency of xx_MCLK (i.e.,
DT_MCLK and VC_MCLK). The necessary delay value can be computed as shown in
equation 1.

CPU clockrate

N_DELAY = 2 x
(XX_MCLK) 1)

2

The choice of DT_MCLK and VC_MCLK is based on sample rate requirements for the code, as
specified in the codec datasheets. For example, to obtain 8 kHz data/fax channel sampling, one
would select DT_MCLK to be 4.096 MHz. Assuming a 100 MHz DSP, one would obtain the
minimum required delay as 98 CPU clock cycles. A similar computation can be made for the
voice channel on the AD535. In this example code, this value was rounded up so that values of
100 were chosen for the delays.

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

5.7 setup_CPU _to _codec

This function performs the tasks necessary to enable the data receive interrupt for the specified
McBSP. Once set up, the CPU will respond to incoming codec data by executing the proper ISR.

5.8 CPU_to_codec _chl and CPU _to_codec_ch2

These are the interrupt service routines for the McBSP receive interrupts. These functions
perform a simple copy from the McBSP receive data register to the McBSP transmit data
register (i.e. the routine performs an echo function). Note that to avoid requesting a secondary
communication cycle from the codec, the outgoing data must have its least significant bit set to
zero.

It is also possible to use the direct memory access controller (DMA) to handle the codec data,
rather than the CPU. In this case, the DMA can be set up to respond directly to a McBSP
receive event, and the CPU need not respond to McBSP interrupts. The DMA is typically
configured to trigger a CPU interrupt after a particular number of data transfers have occurred.
This can relieve significant CPU overhead. Use of the DMA will not be discussed further in this
paper. The reader is referred to the TMS320C54x DSP Reference Set Volume 5: Enhanced
Peripherals, literature number SPRU302, for further information.

6 Extension to Other Codecs

The interfacing method and code presented in this application report are easily extendable to
other TI codecs besides the AD535 and AD545. One only needs to generate a new include file
to initialize the array codec_ctrl_chl[] (and codec_ctrl_ch2]] if a dual channel codec).
This new file would replace AD545.INC in AD545.C (or AD535.INC in AD535.C). Two
requirements must be considered when attempting to incorporate a different codec.

* The codec must be capable of utilizing the same primary and secondary communication
protocol as described in this paper for the AD535 and AD545. Specifically, the secondary
communication request must be under software control using the LSB of the primary
communication data word as the request signal. Many codecs from Tl do in fact use this
protocol. Some Tl codecs also have a hardware pin that can be used to make secondary
communication requests, but this is usually only an option and does not preclude using
software requests.

* The I/O operating voltages of the codec and DSP be considered. The glueless interface
shown in Figures 1 and 2 assume 3.3 V interfacing between the devices. If the codec and
DSP interfacing voltages do not match within their allowable tolerances, some type of
voltage level shifting will be needed.

7 Conclusion

A method has been presented for gluelessly interfacing an AD535 or AD545 codec to the
McBSP on the Texas Instruments C54xx DSP family. The glueless interface assumes 3.3 V
connections between the codec and the McBSP. Modular C-code has been presented that
performs McBSP and codec initialization, and then implements a simple echo function for the
codec. Users should customize this code as needed for their particular application, and integrate
the routines into their code.

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 13

{'f TEXAS
SLAA091 INSTRUMENTS

8 References
1. TLC320AD535C/I Data Manual, literature number SLAS202A.
2. TLC320AD545C/I Data Manual, literature number SLAS206B.

14 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

Appendix A Example Code

This appendix contains all example code necessary to perform complete interfacing software
builds for the AD535 and AD545 codecs.

A.1 File: AD535.BAT

rem *** File: AD535.BAT

rem *** Description: Windows Batch file for building AD535 executable
rem *** Author: David Alter - Texas Instruments

rem *** Last Modified: 09/20/99

c:\dsp\c54x.310\asm500 cvectors_ad535 -Is

c:\dsp\c54x.310\asm500 wait -Is

c:\dsp\c54x.310\cl500 codec -pr -al -g -k -s

c:\dsp\c54x.310\cI500 AD535 -pr -al -g -k -s -03 -z -c -v2 codec.obj -0 ad535.out
-m ad535.map ad535.cmd

rem *** End of file AD535.BAT

A.2 File: AD535.C

/ * *%

* *% * * *% * * *% * *% *%

* File: AD535.C *
* *
* Description: Main program for interfacing a TLC320AD535 codec to *

* a C54xx DSP. *
* *
* Author: David M. Alter - Texas Instruments *

* *
* Last Modified: 06/23/99 *

***/

#include "codec.h”

#define N_McBSP_chl 0 /* McBSP# connected to codec chl */
#define N_McBSP_ch2 1 /* McBSP# connected to codec ch2 */
#define N_delay_chl 100 /* delay value passed to wait() */
#define N_delay_ch2 100 /* delay value passed to wait() */

extern void init_core(void);

extern void setup_codec(McBSP*, int*, unsigned int);
extern void setup_CPU_to_codec(McBSP*);

extern void which_McBSP(char, McBSP¥*);

extern void wait(unsigned int);

[FHKKk *% F*kkkkk *kkkkkkkkkk *hkkkkkkkkk *hkkkkkkkkk *% n/

void main(void)

int codec_ctrl_ch1[3]; [* codec control data array */

int codec_ctrl_ch2[5]; [* codec control data array */

McBSP McBSP_ch1; /* McBSP addresses and masks */

McBSP McBSP_ch2; /* McBSP addresses and masks */
/* Initialize the DSP core */

init_core();

/* Assign addresses for the McBSP connected to the codec channel */
which_McBSP(N_McBSP_chl, &McBSP_chl);
which_McBSP(N_McBSP_ch2, &McBSP_ch2);

/* setup the codec channel */
#include "ad535.inc”
setup_codec(&McBSP_chl, codec ctrl_chl, N _delay chl);
setup_codec(&McBSP_ch2, codec_ctrl_ch2, N_delay_ch2);

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 15

{'f TEXAS
SLAA091 INSTRUMENTS

[* setup the data flow to and from the codec */
setup_CPU_to_codec(&McBSP_chl);
setup_CPU_to_codec(&McBSP_ch2);

[* proceed with main routine */
while(1) {} /* endless loop */

} /* end of main() */

[F** *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk

* Interrupt Service Routine: CPU_to_codec_chl() *
*

* Description: This ISR performs a simple echo of data from McBSP

* receive to McBSP transmit for codec channel 1. The LSB of the *

* transmit data must be masked to avoid possibly making a secondary *

* communication request to the codec. *
*

* Prototype: interrupt void CPU_to_codec_ch1(void) *

**/
interrupt void CPU_to_codec_chl1(void)

#if N_McBSP_ch1 ==
*DXR10 = *DRR10 & (OXFFFE);

#elif N_McBSP_chl ==
*DXR11 = *DRR11 & (OXFFFE);

#else
*DXR12 = *DRR12 & (OXFFFE);
#endif
}
/ *% *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk *% *%
* Interrupt Service Routine: CPU_to_codec_ch2() *
* *

* Description: This ISR performs a simple echo of data from McBSP *

* receive to McBSP transmit for codec channel 2. The LSB of the *

* transmit data must be masked to avoid possibly making a *

* secondary communication request to the codec. *
*

* Prototype: interrupt void CPU_to_codec_ch1(void) *

B S e s T e s e e e *kkkkkkkkkkk nn/

interrupt void CPU_to_codec_ch2(void)
{

#if N_McBSP_ch2 ==
*DXR10 = *DRR10 & (OXFFFE);

#elif N_McBSP_ch2 ==
*DXR11 = *DRR11 & (OXFFFE);

#else
*DXR12 = *DRR12 & (OxFFFE);

#endif

}
/= End of file AD535.C **/

16 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

A.3 File: AD535.CMD

JrFAkx *% *% *% * *% *% * *% *% * *% *%

: File: AD535.CMD . *

: Description: Example linker command file £or TMS320VC5402 DSP. *
: Author: David M. Alter - Texas Instruments* *

* Last Modified: 06/23/99 *

**/

cvectors_ad535.0bj
codec.obj
wait.obj

-l rts.lib
-stack 200h

[* C5402 Configuration: MP/MC’=1, OVLY=1, DROM=1 */
MEMORY

{
PAGE 0: /* Program Memory */
VECS: 0rg=00080h, len=00080h /* part of DARAM_P */
DARAM_P: 0rg=00100h, len=01F00h /* 1st 8K of 16K DARAM */
EXT_P: 0rg=04000h, len=0BF80h /* external */

PAGE 1: /* Data Memory */
B2: org=00060h, len=00020h /* scratch-pad */
DARAM_D: 0rg=02000h, len=02000h /* 2nd 8K of 16K DARAM */

}

SECTIONS

{
text > DARAM_P PAGEDO
.cinit > DARAM_P PAGEDO
.switch > DARAM_P PAGE 0
.const > DARAM D PAGE 1
.bss > DARAM D PAGE 1
.stack > DARAM_D PAGE 1
.sysmem > DARAM_D PAGE 1
vectors > VECS PAGE 0

}
/*+* End of file AD535.CMD ***/

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 17

SLAA091

{'f TEXAS
INSTRUMENTS

A.4 File: AD535.INC

/***

* File: AD535.inc *

* *

* Description: This is a C-language include file that defines *
* control register values for the TLC320AD535 codec. *
* *

* Author: David M. Alter - Texas Instruments, Inc. *

* Last Modified: 06/23/99 *
**/

/*

Control 1 Register: Data Channel Control
0000000100000000b = 0x0100

MINII+++-- 000 = monitor amp PGA gain = mute
[I[I1lI[]|+----- 0 = DAC output sent to monitor amp input
[N+ 0 = reserved
A+-=----- 0 = data channel digital loopback not asserted
[1]]+-------- 0 = data channel software power down disabled
[]+--------- 0 = data channel software reset not asserted
[+++++-mmmeeee 00001 = control 1 reg address
o 0 = write

Fobooonoooe e 00 always zero

Control 2 Register: Data Channel Control
0000001000000000b = 0x0200

1IN+~ 0 = data channel ADC overflow (read-only)
IHI#+--- 0 = monitor speaker driver gain = mute
[II1[]]|+++---- 000 = DAC Data out PGA gain = 0 dB

[[]+++------- 000 = Data in (DTRX) PGA gain =0 dB

I

F++tAomemeeee 00010 = control 2 reg address
B 0 = write
R 00 always zero

Control 3 Register: Voice Channel Control
0000001100000000b = 0x0300

[[|+--- O = handset preamp selected for ADC input
[|[+---- 0 = microphone preamp not selected for ADC input
[+----- 0 = TAPI preamp not selected for ADC input

S 0 = voice channel analog loopback not asserted
D IR 0 = voice channel digital loopback not asserted
R — 0 = voice channel software power down disabled
e 0 = voice channel software reset not asserted
S 00011 = control 3 reg address
R 0 = write
R ——— 00 always zero

Control 4 Register: Voice Channel Control
0000010000000000b = 0x0400
[I1][]]++++++-- 000000 = voice ADC input PGA gain = 0 dB

I

M- 0 = microphone preamp gain = 0 dB
T 0 = TAPI preamp gain =0 dB
[|[+++++-mmmmmmmen 00100 = control 4 reg address

R 0 = write

S 00 always zero

Control 5 Register: Voice Channel Control
0000010100000000b = 0x0500

1II1]I[+-- O = voice channel ADC overflow (read-only)
NHH+--- 0 = 60 ohm speaker L/R buffer gain = mute
[I11]]]]#++++++---- 000000 = voice DAC output PGA gain = 0 dB
Il

I

e 00101 = control 5 reg address
B —— 0 = write
O O, 00 always Zero

18 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS

SLAA091

Control 6 Register: Voice Channel Control
0000011000000000b = 0x0600
[N +++++++-- 0000000 = reserved

T S —— 0 = handset out buffer gain = 0 dB
[[|[+++++--mmm-- 00110 = control 6 reg address
[|+------mm - 0 = write
R 00 always zero

*

/

/* Data channel control register data */

codec_ctrl_ch1[0]=2; [* # of control registers ~ */

codec_ctrl_ch1[1]=0x0100; /* AD535 control 1 reg data */
codec_ctrl_ch1[2]=0x0200; /* AD535 control 2 reg data */
n

/* Voice channel control register data */
codec_ctrl_ch2[0]=4; [* # of control registers ~ */
codec_ctrl_ch2[1]=0x0300; /* AD535 control 3 reg data */
codec_ctrl_ch2[2]=0x0400; /* AD535 control 4 reg data */
codec_ctrl_ch2[3]=0x0500; /* AD535 control 5 reg data */
codec_ctrl_ch2[4]=0x0600; /* AD535 control 6 reg data */

/*** End of file AD535.INC ***/

A.5 File: AD545.BAT

rem *** File: AD545.BAT

rem *** Description: Windows Batch file for building AD545 executable
rem *** Author: David Alter - Texas Instruments

rem *** Last Modified: 09/20/99

c:\dsp\c54x.310\asm500 cvectors_ad545 -Is

c:\dsp\c54x.310\asm500 wait -Is

c:\dsp\c54x.310\cI500 codec -pr -al -g -k -s

c:\dsp\c54x.310\cI500 AD545 -pr -al -g -k -s -03 -z -c -v2 codec.obj -0 ad545.out
-m ad545.map ad545.cmd

rem *** End of file AD545.BAT

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 19

b TEXAS

SLAA091 lNSTRUMENTS

A.6 File: AD545.C

/**

* File: AD545.C . *

*Descr|pt|on Main program for interfacing a TLCSZOAD545 codectoa *
* C54xx DSP. .

* Author. David M. Alter - Texas Instruments X *

* Last Mod|f|ed 06/23/99 *

*% *% *% * * *% * * *% * * *% /

#include "codec.h”

#define N_McBSP_chl1 0 /* McBSP# connected to the codec */
#define N_delay _chl 100 /* delay value passed to wait() */

extern void init_core(void);

extern void setup_codec(McBSP*, int*, unsigned int);
extern void setup_CPU _to codec(McBSP*)

extern void which_McBSP(char, McBSP¥*);

extern void wait(unsigned int);

[xx* *% * *% *% * *% *% * *% * * *% * * /

void main(void)

int codec_ctrl_ch1[3]; /* codec control data array */
McBSP McBSP_chl; /* McBSP addresses and masks */

[* Initialize the DSP core */
init_core();

[* Assign addresses for the McBSP connected to the codec channel */
which_McBSP(N_McBSP_chl, &McBSP_chl);

[* Setup the codec channel */
#include "ad545.inc”
setup_codec(&McBSP_ch1, codec_ctrl_chl1, N_delay_chl);

[* Setup the data flow to and from the codec */
setup_CPU_to_codec(&McBSP_chl);

[* Proceed with main routine */
while(1) {} /* endless loop */

} /* end of main() */
/***

* Interrupt Service Routine: CPU_to_codec_ch1() *
* *

* Description: This ISR performs a simple echo of data from McBSP *
* receive to McBSP transmit for codec channel 1. The LSB of the *
* transmit data must be masked to avoid possibly making a secondary
* communlcatlon request to the codec.

*

* Prototype: interrupt void CPU_to_codec_chl(void) *

***/

interrupt void CPU_to_codec_chl1(void)
{

#if N_McBSP_chl =
*DXR10 = *DRRlO & (OXFFFE);

#elif N McBSP_chl =
*DXR11 = *DRR11 & (OXFFFE);

#else
*DXR12 = *DRR12 & (0XFFFE);

#endif

}
[*** End of file AD545.C ***/

20 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS SLAA091

A.7 File: AD545.CMD

JrFAkx *% *% *% * *% *% * *% *% * *% *%

: File: AD545.CMD . *

: Description: Example linker command file £or TMS320VC5402 DSP. *
: Author: David M. Alter - Texas Instruments* *

* Last Modified: 06/23/99 *

***/

cvectors_ad545.0bj
codec.obj
wait.obj

-l rts.lib
-stack 200h

[* C5402 Configuration: MP/MC’=1, OVLY=1, DROM=1 */
MEMORY

{
PAGE 0: /* Program Memory */
VECS: 0org=00080h, len=00080h /* part of DARAM_P */
DARAM_P: 0rg=00100h, len=01F00h /* 1st 8K of 16K DARAM */
EXT_P: 0org=04000h, len=0BF80h /* external */

PAGE 1: /* Data Memory */
B2: org=00060h, len=00020h /* scratch-pad */
DARAM_D: 0rg=02000h, len=02000h /* 2nd 8K of 16K DARAM */

}

SECTIONS

{
text > DARAM_P PAGEDO
.cinit > DARAM_P PAGEDO
.switch > DARAM_P PAGE 0
.const > DARAM D PAGE 1
.bss > DARAM D PAGE 1
.stack > DARAM_D PAGE 1
.sysmem > DARAM_D PAGE 1
vectors > VECS PAGE 0

}
[*** End of file AD545.CMD ***/

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 21

{'f TEXAS
SLAA091 INSTRUMENTS

A.8 File: AD545.INC

JF** *% * *% *kkkkk *% *kkkkk *% * *% *% * *%

* File: AD545.inc *

* *

* Description: This is a C-language include file that defines *
* control register values for the TLC320AD545 codec. *
* *

* Author: David M. Alter - Texas Instruments, Inc. *

* Last Modified: 06/23/99 *
***/

/*

Control 1 Register:
0000000100000000b = 0x0100

NII[+++-- 000 = monitor amp PGA gain = mute
I+ 0 = DAC output sent to monitor amp input
I +=-=-- 0 = analog loopback not asserted
[N+ 0 = digital loopback not asserted
[]+-------- 0 = software power down disabled
N 0 = software reset not asserted
[+++t+ommmeeees 00001 = control reg 1 address
oo 0 = write

Fhoooomoooe e 00 always zero

Control 2 Register:

0000001000000000b = 0x0200

[II[l]+-- 0 = ADC overflow (read-only)

[[1l|[+--- 0 = monitor speaker driver gain = mute
[[|+++---- 000 = DAC Data out PGA gain = 0 dB
R 000 = Data in (DTRX) gain = 0 dB

R 00010 = control reg 2 address
R — 0 = write
Frbommmmmmmmmeee 00 = always zero
*/
codec_ctrl_ch1[0]=2; [* # of control registers */

codec_ctrl_ch1[1]=0x0100; /* AD545 control 1 reg data */
codec_ctrl_ch1[2]=0x0200; /* AD545 control 2 reg data */

/*** End of file AD545.INC ***/

22 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

b TEXAS

INSTRUMENTS SLAA091

A.9 File: CODEC.C

/***

: File: CODEC.C . *

: Description: C functions for interfacing the*codec to a C54xx DSP. *
: Author: David M. Alter - Texas Instruments* *

* Last Modified: 06/23/99 *

***/

#include "codec.h”

[RAFFFRK I ARk ok *kkkkkkkkhhhhhhkhkkkkkkkkhhkkhhhhhhhhhhrrkkkxirkhik *

* Function: init_core *

*

* Description: This function sets up various items in the CPU core. *
* *

* Prototype: void init_core(void) *
*

*

* Parameters: none *

***/
void init_core(void) {

/* Setup the PLL. Since CLKMD pin settings and device type are
unknown, be safe by disabling the PLL first, and then re-configure.*/

CLKMD = 0x0000; / disable PLL, run in /2 mode */
CLKMD = 0x90b2; [PLL x10 for 10MHz input */

/* Other setup */

SWWSR = 0x2492; / wait-states: 2 p, 2 d, 2 i/o */

SWCR = 0x0000; / wait-state multiplier = 1 */

*PMST =*PMST | 0x0020; /* OVLY=1 (RAM in prog space) */
} /* end of init_core() */
/***

* Function: setup_codec *
* *
* Description: This function performs the serial communication *
* necessary to setup the codec connected to one of the McBSP’s. *
* |t leaves the codec running and the McBSP handling tx and rx *
* data, but it does not setup the CPU or DMA'’s to feed the data *
* to/from the McBSP.
* *
* Prototype void setup_codec(McBSP McBSPXx, *
int *codec_ctrl_data); *
unsigned int N_delay *
Parameters: *
McBSPx = structure of McBSP information *
*codec_ctrl_data = pointer to start of control data array *
N_delay = the number of DSP clock cycles that occur in *
2 serial bit clocks of the codec during codec *
|n|t|aI|zat|on

* *% * *% * * *% * *% *% * *% *% *

void setup_ codec(McBSP *McBSPx, int *codec_ctrl_data, unsigned int N_delay)
{

* %k 3k 3k X X X

unsigned int DMPREC_SAVE; /* place to save DMPREC reg */
inti; /* general purpose integer */

/* All interrupts must be disabled for this routine since codec
initialization is poll based, and a serial communication period
cannot be missed. */

asm(” SSBX INTM"); /* disable global interrupts */

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 23

SLAA091

{'f TEXAS
INSTRUMENTS

[* Configure the specified McBSP */

McBSPx->SPSAx = SPCR1x_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x0000; [disable rx */

McBSPx->SPSAx = SPCR2x_SUBADDR; / set McBSP sub-address */

McBSPx->SPSADx = 0x0200; [disable tx, FREE=1 */
McBSPx->SPSAx = PCRx_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x000c; / external FS and CLK, tx on

rising edge, rx on falling */

McBSPx->SPSAx = RCR1x_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x0040; / 1 word/frame, 16-bit/word */

McBSPx->SPSAx = RCR2x_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x0004; / 1 rx phase, no compand */

McBSPx->SPSAx = XCR1x_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x0040; / 1 word/frame, 16-bit/word */

McBSPx->SPSAx = XCR2x_SUBADDR; / set McBSP sub-address */
McBSPx->SPSADx = 0x0004; / 1 tx phase, no compand */

wait(N_delay); /* must wait 2 bit clock cycles
for proper McBSP init */

[* Configure the McBSP interrupt for polling operation. Must set
INTOSEL[1:0]=00b in DMPREC register to mux McBSP BXINTX interrupt
to the core for McBSP1 and McBSP2 on some C54xx devices */

DMPREC_SAVE = *DMPREC; /* save the DMPREC register */
*DMPREC = *DMPREC & Oxff3f; /* set INTOSEL[1:0]=00b */

[* Configure the codec */

McBSPx->SPSAx = SPCR1x_SUBADDR; / set McBSPx sub-address */
McBSPx->SPSADx = 0x0001; [enable rx, rx int on e/o word */

McBSPx->SPSAx = SPCR2x_SUBADDR; / set McBSPx sub-address */
McBSPx->SPSADx = 0x0201; / enable tx, tx interrupt on
end of word, FREE=1 */

wait(N_delay); /* must wait 2 bit clock cycles
for proper McBSP init */

IFR = McBSPx->BXINTx_MASK; I clear BXINTX flag */
for(i=1; i <= codec_ctrl_data[0]; i++) {

*McBSPx->DXR1x = 0x0001;
[* primary comm data to request a secondary comm */

while(!(*IFR & McBSPx->BXINTx_MASK)) {}
/* primary data in DXR1x reg, wait for BXINT flag */

IFR = McBSPx->BXINTx_MASK; / clear BXINT flag */

*McBSPx->DXR1x = codec_ctrl_data]i];
[* secondary comm data */

while(!(*IFR & McBSPx->BXINTx_MASK)) {}
/* secondary data in DXR1 reg, wait for BXINT flag */

IFR = McBSPx->BXINTX_MASK; / clear BXINT flag */
}

[* Post-setup cleanup */

McBSPx->DXR1x = 0x0000; / flush last word tx’d from DXR1
register in case its LSB was 1 */

DMPREC = DMPREC_SAVE; / restore the DMPREC register */
} [* end of setup_codec() */

24 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{9 TEXAS
INSTRUMENTS

SLAA091

/***

* Function: setup_CPU_to_codec *

* *

* Description: This function sets up the interrupts needed for the *

* CPU to directly handle tx and rx data to the codec. Simultaneous *

* transmit and receive are assumed, such that only the McBSP receive *
* interrupt is setup. The transmit interrupt is disabled. *

* *

* Prototype: void setup_CPU_to_codec(McBSP McBSPXx) *
* *

* Parameters: *
* McBSPx = structure of McBSP information *

***/

void setup_CPU_to_codec(McBSP *McBSPx)

volatile int temp; [* general purpose int */

/* Must set INTOSEL[1:0]=00b in DMPREC register to mux McBSP BRINTx
interrupt to the core for McBSP1 and McBSP2 on some C54xx devices.*/

if((McBSPx->McBSPnum==1) || (McBSPx->McBSPnum==2)) {
*DMPREC = *DMPREC & Oxff3f; /* set INTOSEL[1:0]=00b */

IFR = McBSPx->BRINTx_MASK; / clear BRINT flag */

temp = *DRR10; /* read DRR10 to clear RRDY bit */
*IMR = *IMR | McBSPx->BRINTx_MASK; /* enable BRINT interrupt */
asm(” RSBX INTM"); /* enable global interrupts */

} /* end of setup_CPU_to_codec() */

/***

* Function: which_McBSP *

* *

* Description: This function sets up control register addresses and *
* interrupt mask contstants for the selected McBSP. *

* *

* Prototype: void which_McBSP(char N, McBSP *McBSPXx) *
* *

* Parameters: *
* N =the McBSP number that the codec is connected to *
* *McBSPx = structure of MCBSP register pointers *

***/

void which_McBSP(char N, McBSP *McBSPXx)
{

/* Assign pointers for the specified McBSP */
McBSPx->McBSPnum = N;

if(N==1){ /* McBSP1 selected */
McBSPx->SPSAx = SPSA1;
McBSPx->SPSADx = SPSAD],;
McBSPx->DRR1x = DRR11;
McBSPx->DXR1x = DXR11;
McBSPx->BRINTx_MASK = BRINT1_MASK;
McBSPx->BXINTx_MASK = BXINT1_MASK;

}

else if(N ==2) { [* McBSP2 selected */
McBSPx->SPSAx = SPSA2;
McBSPx->SPSADx = SPSAD2,;
McBSPx->DRR1x = DRR12;
McBSPx->DXR1x = DXR12;
McBSPx->BRINTx_MASK = BRINT2_MASK;
McBSPx->BXINTx_MASK = BXINT2_MASK;

}
else { /* McBSPO is default */

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 25

SLAA091

b TEXAS

lNSTRUMENTS

McBSPx->SPSAx = SPSAQO;
McBSPx->SPSADx = SPSADO;
McBSPx->DRR1x = DRR10;
McBSPx->DXR1x = DXR10;
McBSPx->BRINTx_MASK = BRINTO_MASK;
McBSPx->BXINTx_MASK = BXINTO_MASK;

}
} /* end of which_McBSP() */
/** End of file CODEC.C ***/

A.10 File: CODEC.H

/**

* File: codec.h *

* *

* Description: C header file containing variable type deﬁnmons and *
* C54xx register address definitions.

*

* Author. David M. Alter - Texas Instruments *
* *

* Last Modified: 06/23/99 *

**/

[¥** Type definitions ***/

typedef struct McBSP{
unsigned char McBSPnum; /* McBSP # codec is connected to */
volatile unsigned int *SPSAX; /* McBSPx sub-addr reg */
volatile unsigned int *SPSADX; /* McBSPx sub-addr data reg */
volatile unsigned int *DRR1x; /* McBSPx data rx reg 1 */
volatile unsigned int *DXR1x; /* McBSPx data tx reg 1 */
unsigned int BRINTx_MASK; /* IFR/IMR mask for BRINTX */
unsigned int BXINTXx_MASK; /* IFR/IMR mask for BXINTx */

} McBSP;

[*** C54x core memory mapped register definitions ***/
[* This is an incomplete set. Only those registers
needed by the example code have been included. */

#define IMR (volatile unsigned int *)0x0000 /* interrupt mask reg */
#define IFR (volatile unsigned int *)0x0001 /* interrupt flag reg */

#define PMST (volatile unsigned int *)0x001d /* processor mode status */
#define SWWSR (volatile unsigned int *)0x0028 /* sw wait-state reg */
#define CLKMD (volatile unsigned int *)0x0058 /* PLL clock mode reg */

[*** \VVC54xx McBSP Memory-Mapped Register Address Definitions ***/

#define DRR20 (volatile unsigned int *)0x0020 /* McBSPO data rx reg 2 */
#define DRR10 (volatile unsigned int *)0x0021 /* McBSPO data rx reg 1 */
#define DRR21 (volatile unsigned int *)0x0040 /* McBSP1 data rx reg 2 */
#define DRR11 (volatile unsigned int *)0x0041 /* McBSP1 data rx reg 1 */
#define DRR22 (volatile unsigned int *)0x0030 /* McBSP2 data rx reg 2 */
#define DRR12 (volatile unsigned int *)0x0031 /* McBSP2 data rx reg 1 */

#define DXR20 (volatile unsigned int *)0x0022 /* McBSPO data tx reg 2 */
#define DXR10 (volatile unsigned int *)0x0023 /* McBSPO data tx reg 1 */
#define DXR21 (volatile unsigned int *)0x0042 /* McBSP1 data tx reg 2 */
#define DXR11 (volatile unsigned int *)0x0043 /* McBSP1 data tx reg 1 */
#define DXR22 (volatile unsigned int *)0x0032 /* McBSP2 data tx reg 2 */
#define DXR12 (volatile unsigned int *)0x0033 /* McBSP2 data tx reg 1 */

#define SPSAQ (volatile unsigned int *)0x0038 /* McBSPO sub-addr reg */
#define SPSAL (volatile unsigned int *)0x0048 /* McBSP1 sub-addr reg */
#define SPSA2 (volatile unsigned int *)0x0034 /* McBSP2 sub-addr reg */

26 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

b TEXAS

INSTRUMENTS

SLAA091

#define SPSADO (volatile unsigned int *)0x0039 /* McBSPO sub-addr data reg*/
#define SPSADL1 (volatile unsigned int *)0x0049 /* McBSP1 sub-addr data reg*/
#define SPSAD2 (volatile unsigned int *)0x0035 /* McBSP2 sub-addr data reg*/

#define SPCR1x_SUBADDR 0x0000 /* McBSPx control reg 1 sub-addr */
#define SPCR2x_SUBADDR 0x0001 /* McBSPx control reg 2 sub-addr */
#define RCR1x_SUBADDR 0x0002 /* McBSPx rx control reg 1 sub-addr */
#define RCR2x_SUBADDR 0x0003 /* McBSPx rx control reg 2 sub-addr */
#define XCR1x_SUBADDR 0x0004 /* McBSPx tx control reg 1 sub-addr */
#define XCR2x_SUBADDR 0x0005 /* McBSPx tx control reg 2 sub-addr */

#define SRGRi1x_SUBADDR 0x0006 /* McBSPx sample rate gen reg 1 sub-addr */
#define SRGR2x_SUBADDR 0x0007 /* McBSPx sample rate gen reg 2 sub-addr */

#define MCR1x_SUBADDR 0x0008 /* McBSPx multichannel reg 1 sub-addr */
#define MCR2x_SUBADDR 0x0009 /* McBSPx multichannel reg 2 sub-addr */
#define RCERAX_SUBADDR 0x000a /* McBSPx rx ch enable reg A sub-addr */
#define RCERBx_SUBADDR 0x000b /* McBSPx rx ch enable reg B sub-addr */
#define XCERAX_SUBADDR 0x000c /* McBSPx tx ch enable reg A sub-addr */
#define XCERBXx_SUBADDR 0x000d /* McBSPx tx ch enable reg B sub-addr */
#define PCRx_SUBADDR 0x000e /* McBSPx pin control reg sub-addr */

[*** other register definitions ***/

#define DMPREC (volatile unsigned int *)0x0054
/* DMA priority & enable control reg */

#define SWCR (volatile unsigned int *)0x002B
[* software wait-state control reg */

[*** Interrupt related definitions ***/

#define BRINTO_MASK 0x0010 /* mask for BRINTO flag */
#define BRINT1_MASK 0x0400 /* mask for BRINTL1 flag */
#define BRINT2_MASK 0x0040 /* mask for BRINT2 flag */
#define BXINTO_MASK 0x0020 /* mask for BXINTO flag */
#define BXINT1_MASK 0x0800 /* mask for BXINT1 flag */
#define BXINT2_MASK 0x0080 /* mask for BXINT2 flag */

/*** End of file CODEC.H ***/

A.11 File: CVECTORS_AD535.ASM

kkkkkkkkkkkkkkkhkkkkkkkkkhhkhhkkkkkkhkkkhkkkhkkhkkkhkkhkhkkkhkkkkhkkkkkkhkkkk

: File: CVECTORS_AD535.ASM . *
: Description: reset and interrupt vector tablg. *
:Author: David M. Alter - Texas Instruments* *
* Last Modified: 06/22/99 *

kkkkkkkkkkkkkkhkkkkhkkkkkkhhkkhkkkhkkhhkkkhkkkhkkhkkkhkkkkhkkkhkkkkkkkkkkhkkkk

.ref _c int00, CPU to_codec _chl, CPU_to codec ch2

.sect "vectors”

rs: BD _c_int00 ;reset, SINTR
NOP
NOP

nmi: BD nmi :NMI, SINT16
NOP
NOP

sintl7: BD sintl7 :SINT17
NOP
NOP

sintl8: BD sint18 :SINT18
NOP
NOP

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 27

SLAA091

{'f TEXAS
INSTRUMENTS

sintl9: BD
NOP
NOP
sint20: BD
NOP
NOP
sint21: BD
NOP
NOP
sint22: BD
NOP
NOP
sint23: BD
NOP
NOP
sint24: BD
NOP
NOP
sint25: BD
NOP
NOP
sint26: BD
NOP
NOP
sint27: BD
NOP
NOP
sint28: BD
NOP
NOP
sint29: BD
NOP
NOP
sint30: BD
NOP
NOP
int0: BD
NOP
NOP
intl: BD
NOP
NOP
int2: BD
NOP
NOP
tint0: BD
NOP
NOP
brint0: BD
NOP
NOP
bxint0: BD
NOP
NOP

sint19 :SINT19

sint20 :SINT20

sint21 ;SINT21

sint22 ' SINT22

sint23 ;SINT23

sint24 ;SINT24

sint25 :SINT25

sint26 ;SINT26

sint27 ;SINT27

sint28 :SINT28

sint29 :SINT29

sint30 ;SINT30

int0 ;INTO, SINTO

intl ;INTL, SINT1

int2 ;INT2, SINT2

tint0 ;TINTO, SINT3

_CPU _to _codec_chl ;BRINTO, SINT4

bxint0 ;BXINTO, SINTS

dmac0O: BD dmacO :DMACO, SINT6

NOP
NOP
tintl: BD
NOP
NOP
int3: BD
NOP
NOP

tintl ;TINT1 or DMAC1, SINT7

int3 ;INT3, SINT8

28 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

{f’ TEXAS

INSTRUMENTS

SLAA091

hpint: BD hpint

NOP
NOP

;HPINT, SINT9

brintl: BD _CPU_to_codec_ch2 ;BRINT1 or DMAC2, SINT10

NOP
NOP
bxintl: BD
NOP
NOP

dmac4: BD dmac4

NOP
NOP

dmach5: BD dmach

NOP
NOP
rsvdl: BD
NOP
NOP
rsvd2: BD
NOP
NOP

bxintl

rsvdl

rsvd2

;BXINT1 or DMACS, SINT11

;DMAC4, SINT12

;DMACS, SINT13

reserved

rreserved

;End of file CVECTORS_AD535.ASM

A.12 File: CVECTORS_AD545.ASM

*% *kkkkkk

*% *%

*% *kkkkkkkkkk *kkkkkkkkkk *kkkkkk

* File: CVECTORS_AD545.ASM *
* *

* Description: reset and interrupt vector table. *
* *

* Author: David M. Alter - Texas Instruments *
* *

* Last Modified: 06/22/99

*%

*%

*% *% * *% *% * *% *% *

.ref _c_int00, CPU _to_codec chl
.sect "vectors”

rs: BD _c_int00

NOP
NOP
nmi: BD
NOP
NOP
sintl7: BD
NOP
NOP
sintl8: BD
NOP
NOP
sint19: BD
NOP
NOP
sint20: BD
NOP
NOP
sint21: BD
NOP
NOP
sint22: BD
NOP
NOP
sint23: BD

nmi

sintl7

sint18

sint19

sint20

sint21

sint22

sint23

reset, SINTR

;NMI, SINT16

SINT17

;SINT18

;SINT19

;SINT20

;SINT21

;SINT22

;SINT23

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

29

SLAA091

{'f TEXAS
INSTRUMENTS

NOP
NOP
sint24: BD sint24
NOP
NOP
sint25: BD sint25
NOP
NOP
sint26: BD sint26
NOP
NOP
sint27: BD sint27
NOP
NOP
sint28: BD sint28
NOP
NOP
sint29: BD sint29
NOP
NOP
sint30: BD sint30
NOP
NOP
int0: BD intO
NOP
NOP
intl: BD intl
NOP
NOP
int2: BD int2

tint0: BD tintO

;SINT24

;SINT25

;SINT26

;SINT27

;SINT28

;SINT29

;SINT30

;INTO, SINTO

;INT1, SINT1

;INT2, SINT2

;TINTO, SINT3

brint0: BD _CPU_to_codec_chl ;BRINTO, SINT4

NOP
NOP

bxint0: BD bxintO
NOP
NOP

dmacO: BD dmacO
NOP
NOP

tintl: BD tintl
NOP
NOP

int3: BD int3
NOP
NOP

hpint: BD hpint
NOP
NOP

brintl: BD brintl
NOP
NOP

bxintl: BD bxintl
NOP
NOP

dmac4: BD dmac4
NOP
NOP

dmach5: BD dmach

30 Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs

;BXINTO, SINTS

;DMACO, SINT6

;TINT1 or DMAC1, SINT7

;INT3, SINT8

;HPINT, SINT9

;BRINT1 or DMAC2, SINT10

;BXINT1 or DMACS, SINT11

;DMACA4, SINT12

;DMACS5, SINT13

b TEXAS

INSTRUMENTS

SLAA091

NOP
NOP

rsvdl: BD rsvdl rreserved
NOP
NOP

rsvd2: BD rsvd2 rreserved
NOP
NOP

;End of file CVECTORS_AD545.ASM

A.13 File: WAIT.ASM

*kkkkkk *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkkkkkkk *kkkkkk

* File: WAIT.ASM *
*

* Function: wait() *
*

* Description: This C-callable function executes a NOP delay loop

* for specified number of CPU clock cycles. Maximum delay is 65, 535 *

* cycles which equates to 655 us on a 100MHz device.

* Prototype: void wait(unsigned int N) *
* *

* Parameters: *
= length of the delay in CPU clock cycles *
*

* Author: David M. Alter - Texas Instruments *
* *

* Last Modified: 06/24/99 *

Kkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhkkkhkkkkkkhkkkkhkkkhkkkkkkkkkkhkkkk

def _wait

text
_wait:
STM #0008h, ARO ;ARO points to ACCL
RPT *ARO ;repeat the # of times specified in ACCL
NOP ;do nothing in the delay loop
RET ;return

:End of file WAIT.ASM

Interfacing the TMS320C54xx to the TLC320AD535 and TLC320AD545 Codecs 31

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

