Application Note **Analog Input Configurations, Mixing and Muxing of TAx5x1x-Q1 Devices**

Peter Djuandi, Anand Subramanian

ABSTRACT

The TAx5x1x-Q1 (TAC5412-Q1, TAC5311-Q1, TAC5312-Q1, TAC5411-Q1, TAA5412-Q1) family of devices have single or dual-channel analog-to-digital converters which supports highly configurable inputs for audio applications. This application note looks at the different input configurations, the input swing, the input coupling mode as well as the mixing and muxing option that are supported in this TAx5x1x-Q1 device family. TAC5412-Q1, a stereo device is used in this application note with audio source provided at the LINE input. Microphone inputs or a mono version of this device can be configured in the similar manner.

Table of Contents

1 Introduction	2
2 Analog Input Configuration	
2.1 Differential AC Coupled Configuration	
2.2 Single Ended AC Coupled Configuration	6
2.3 Differential DC Coupled Configuration	
2.4 Single Ended DC Coupled Configuration	8
2.5 Analog Input Mux Configuration	9
3 Analog Mixing	
4 Summary	11
5 References	11

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

TAC5412-Q1 is a CODEC with dual-channel analog-to-digital converters whose input pins (IN1P/M and IN2P/M) are configurable as differential inputs, single-ended inputs or single-ended mux inputs in AC or DC coupling. The type of input is configured through ADC_CH1_INSRC and the AC or DC coupling mode is configured through ADC_CH1_CM_TOL [00] or ADC_CH1_CM_TOL [01].

Input Configuration Setting	B0_P0_R80 (ADC_CH1_CFG0) [7:6]	Input Channel Configuration
0	ADC_CH1_INSRC=[00]	Analog differential input
1	ADC_CH1_INSRC=[01]	Analog single-ended input
2	ADC_CH1_INSRC=[10]	Analog single-ended mux INP1 input
3	ADC_CH1_INSRC=[11]	Analog single-ended mux INM1 input

Table 1-1. Input Configuration Selection

2 Analog Input Configuration

This application note shares some of these configurations and the performances. Table 2-1 provides a summary of the different input configurations for IN1 in this note, the same applies to IN2 input with the register channel change to 2.

Input Pin	Input Mode	Topology	Input Swing
IN1P-IN1M	LINE-IN Differential, AC-coupled		10 Vrms
IN1P	LINE-IN Single-Ended, AC-coupled		5 Vrms
IN1P	LINE-IN Single-Ended Mux IN1P, AC-coupled		5 Vrms
IN1M	LINE-IN Single-Ended Mux IN1M, AC-coupled		5 Vrms
IN1P-IN1M	LINE-IN Differential, DC-coupled		10 Vrms
IN1P	LINE-IN Single-ended, DC-coupled		5 Vrms
IN1P	LINE-IN Single-ended Mux IN1P, DC-coupled	-0	5 Vrms
IN1M	LINE-IN Single-ended Mux IN1M, DC-coupled		5 Vrms

Table 2-1.	IN1	Input	Configuration	and Inpu	ut Swing
------------	-----	-------	---------------	----------	----------

For each of the tests, audio signal is provided from APx500 analog balance or unbalanced output with the input level referenced to the full-scale swing of the device configuration for example 0dBrG is referenced to 5 Vrms single ended swing or 10 Vrms for the differential input swing.

2.1 Differential AC Coupled Configuration

In AC-Coupled differential input configuration, the common mode voltage, can be configured through an external bias resistor and MICBIAS. This Excel tool *TAX5X1X-Q1-EXT-RES-CALCULATOR* can be found from this link The tool calculates this external resistance based on input swing and the desired MICBIAS voltage.

Figure 2-1. AC-Coupled External Resistor Calculator

As an example using differential input swing of 10 Vrms and 8 V MICBIAS, the maximum resistance allowed is 2399.4 Ω and the closest standard resistance is 2375 Ω . Based on this standard value resistance, the effective impedance looking into the device is about 2184 Ω . This effective input impedance forms a high pass filter with the external capacitor for these inputs and Vcm is the respective common voltage.

The following script configures the device to differential AC-Coupling mode.

	1			ŧ R	ecor	d i	AC-Couple IN1-IN2 path ######
		ŧ	Ta	rae	t Mo	de	, TDM, 32-bit
	3	÷	Pr	ima	rv A	ST	only, multiple of 48KHz Sampling
	4	÷.					
		w	a0	00	00	÷	Set page 0
	6	w	a0	01	01	4	Software Reset
	7	w	a0	02	09	÷	Wake up with AVDD > 2v and all VDDIO level
		w	a0	10	50	ŧ	Configure DOUT as Primary ASI (PASI) DOUT
	9	w	a0	19	00	÷	1 data input and 1 data output for PASI
		w	a0	1a	30	÷	PASI TDM, 32 bit format
		w	a0	1e	20	÷	PASI Chi on slot 0
1		w	a0	1f	21	÷	PASI Ch2 on slot 1
1		w	a0	00	01	÷	Set page 1
1	4	w	a0	73	d0	÷	auto device, set MICBIAS = 9V
		w	a0	00	00	÷	Set page 0
	6	w	a0	50	00	÷	Auto device ADC Ch1 diff input, fixed 33.3KOhm, 10Vrms ac-coupled, audio band
1		w	a0	55	00	÷	Auto device ADC Ch2 diff input, fixed 33.3KOhm, 10Vrms ac-coupled, audio band
1		w	a0	76	cÛ	÷	Enable Input Ch1 and Ch2, disable output channels
1	9	w	a0	78	a0	÷	Power up ADC and MICBIAS
							-

Figure 2-2. Differential AC-Coupled Register Setting

Figure 2-3. Differential AC-Coupled Input Swing at -1dBrG (0dBrG = 10Vrms)

A frequency plot of the Dynamic Range with -60dBrG input and SNR with input AC signal shorted to ground are provided here.

Figure 2-4. Differential AC-Coupled Dynamic Range at -60dBrG Input

Figure 2-5. SNR with Input AC Signal shorted to GND

Table 2-2 summarizes the performances for the different device variants.

Table 2	2-2. De	vice V	/ariants
---------	---------	--------	----------

Т	HDN (at-1dBrG	3)		DR (dB)		SNR (dB)			
TAC541x	TAA541x	TAC531x	TAC541x	TAA541x	TAC531x	TAC541x	TAA541x	TAC531x	
-101	-100	-89	112	112	101	112	112	101	

2.2 Single Ended AC Coupled Configuration

The following script configures the device to single-ended AC-Coupling mode.

1	##### Record AC-Couple Single-Ended IN1-IN2 path ######
2	# Target Mode, TDM, 32-bit
3	# Primary ASI only, multiple of 48KHz Sampling
4	÷
5	w a0 00 00 # Set page 0
6	w a0 01 01 # Software Reset
- 7	w a0 02 09 # Wake up with AVDD > 2v and all VDDIO level
8	w a0 10 50 # Configure DOUT as Primary ASI (PASI) DOUT
9	w a0 19 00 # 1 data input and 1 data output for PASI
10	w a0 la 30 # PASI TDM, 32 bit format
11	w a0 le 20 # PASI Chl on slot 0
12	w a0 1f 21 # PASI Ch2 on slot 1
13	w a0 00 01 # Set page 1
14	w a0 73 d0 # auto device, set MICBIAS = 9V
15	w a0 00 00 # Set page 0
16	w a0 50 40 # Auto device ADC Ch1 SE input, 5KOhm Impedance, ac-coupled, audio band
17	w a0 55 40 # Auto device ADC Ch2 SE input, 5KOhm Impedance, ac-coupled, audio band
18	w a0 76 c0 # Enable Input Chl and Ch2, disable output channels
19	w a0 78 a0 # Power up ADC and MICBIAS
_	
Fi	aure 2-6. Single Ended AC-Coupled Register

Setting

Figure 2-7. Single Ended AC-Coupled Input Swing at -1dBrG (0dBrG = 5 Vrms)

A frequency plot of the Dynamic Range with -60dBrG input and SNR with input AC signal shorted to ground are provided here.

Figure 2-8. Single Ended AC-Coupled Dynamic Range at -60dBrG Input

Figure 2-9. SNR with Input AC Signal shorted to GND

2.3 Differential DC Coupled Configuration

In the DC-Coupled differential input configuration, the following device register setting is used and the input waveform provided to IN1P/M for the full-scale swing with 6 V Vcm.

1			r Re	ecor	a .	DC-Couple Differential INI-IN2 path ######				
2	2 # Target Mode, TDM, 32-bit									
3	4	Pr:	ima	ry F	SI	only, multiple of 48KHz Sampling				
4	4									
5	w	a0	00	00		Set page 0				
6	w	a0	01	01	. #	Software Reset				
7	w	a0	02	09	÷	Wake up with AVDD > 2v and all VDDIO level				
8	w	a0	10	50	#	Configure DOUT as Primary ASI (PASI) DOUT				
9	w	a0	19	00	÷	1 data input and 1 data output for PASI				
	w	a0	1a	30	÷	PASI TDM. 32 bit format				
	w	a0	1e	20	÷	PASI Chi on slot 0				
12	w	a0	1f	21	+	PASI Ch2 on slot 1				
	w	a0	00	01	+	Set page 1				
14	w	a0	73	d0	. 4	auto device, set MICBIAS = 9V				
	w	a0	00	00	. #	Set page 0				
16	ω	a0	50	04		Auto device ADC Chl diff input, fixed 33,3KOhm, 10Vrms dc-coupled, audio band				
17	w	a0	55	04	#	Auto device ADC Ch2 diff input, fixed 33,3KOhm, 10Vrms dc-coupled, audio band				
	w	a0	76	c0	÷	Enable Input Ch1 and Ch2, disable output channels				
19	w	a0	78	a0		Power up ADC and MICBIAS				
- 6	- 1	2		r٥		2-10 Differential DC-Coupled Register				

Figure 2-10. Differential DC-Coupled Register Setting

Figure 2-11. Differential DC-Coupled Input Swing at -1dBrG (0dBrG = 10Vrms)

A frequency plot of the Dynamic Range with -60dBrG input and SNR with input AC signal shorted to ground are provided here of the 1Vpp common-mode setting. A similar plot can be obtained for supply common-mode tolerances.

Figure 2-12. Differential DC-Coupled Dynamic Range at -60dBrG Input

Figure 2-13. SNR with Input AC Signal shorted to GND

Table 2-3 summarizes the performances for the different device variants.

٦	HDN (at-1dBrG	3)		DR (dB)		SNR (dB)			
TAC541x	TAA541x	TAC531x	TAC541x	TAA541x	TAC531x	TAC541x	TAA541x	TAC531x	
-101	-100	-89	112	112	101	112	112	101	

2.4 Single Ended DC Coupled Configuration

In the DC-Coupled single-ended input configuration, the following device register setting is used and the respective input waveform provided to IN1P for the full-scale swing.

	_				
1	ŧ	***	# R	ecor	d DC-Couple Single-Ended IN1-IN2 path ######
2	ŧ	Ta:	rge'	t Mo	de, TDM, 32-bit
3	ŧ	Pr:	ima	ry A	SI only, multiple of 48KHz Sampling
4	ŧ				
5	w	a0	00	00	# Set page 0
6	w	a0	01	01	# Software Reset
7	w	a0	02	09	# Wake up with AVDD > 2v and all VDDIO level
8	w	a 0	10	50	# Configure DOUT as Primary ASI (PASI) DOUT
9	w	a 0	19	00	# 1 data input and 1 data output for PASI
10	w	a 0	1a	30	# PASI TDM, 32 bit format
11	w	a0	1e	20	# PASI Chl on slot 0
12	w	a0	1f	21	# PASI Ch2 on slot 1
13	w	a0	00	01	# Set page 1
14	w	a0	73	d0	<pre># auto device, set MICBIAS = 9V</pre>
15	w	a 0	00	00	# Set page 0
16	w	a 0	50	44	# Auto device ADC Ch1 SE input, 5KOhm Impedance, dc-coupled, audio band
17	w	a0	55	44	# Auto device ADC Ch2 SE input, 5KOhm Impedance, dc-coupled, audio band
18	w	a0	76	c0	# Enable Input Ch1 and Ch2, disable output channels
19	w	a 0	78	a 0	# Power up ADC and MICBIAS
Fid	n		'n	2	-14 Single Ended DC-Counled Register

Setting

Figure 2-15. Single Ended DC-Coupled Input Swing at -1dBrG (0dBrG = 5Vrms)

A frequency plot of the Dynamic Range with -60dBrG input and SNR with input AC signal shorted to ground are provided here.

Figure 2-16. Single Ended DC Coupling Dynamic Range with -60dBrG Input

Figure 2-17. Single Ended DC Coupling SNR

Table 2-4 summarizes the performances for each of the configuration previously.

Table 2-4. Input Configuration Performance Summaries					
Input Configuration	DR (dB) (-60dBrG)	SNR (dB) (Input AC short to GND)	THD+N (dB) (-1dBrG)		
Differential AC-Coupled	112	112	-96		
Differential DC-Coupled	112	113	-96		
Single-Ended AC-Coupled	106	106	-80		
Single-Ended DC-Coupled	106	107	-83		

Table 2-4. Input Configuration	Performance Summarie
--------------------------------	----------------------

2.5 Analog Input Mux Configuration

Analog mux input allows input selection either from IN1P or IN1M into the ADC path. The device needs to be configured in the respective mux setting in register B0_P0_R80 (0x50) ADC_CH1_INSRC. In this configuration, either IN1P or IN1M be the input to the ADC signal chain, they are independent source. In this example, IN1P is a 1 KHz tone at -1 dBrG and IN1M is a 1250 Hz tone at -1 dBrG; 0 dBrG = 5 Vrms Single-Ended Full-scale.

1 ##### Record AC-Couple Single-Ended Mux INIP path ######	1 ##### Record AC-Couple Single-Ended Mux INIM path ######
2 # Target Mode, TDM, 32-bit	2 # Target Mode, TDM, 32-bit
3 # Primary ASI only, multiple of 48KHz Sampling	3 # Primary ASI only, multiple of 48KHz Sampling
4 #	4 #
5 w a0 00 00 # Set page 0	5 w a0 00 00 # Set page 0
6 w a0 01 01 # Software Reset	6 w a0 01 01 # Software Reset
7 w a0 02 09 # Wake up with AVDD > 2v and all VDDIO level	7 w a0 02 09 # Wake up with AVDD > 2v and all VDDIO level
8 w a0 10 50 # Configure DOUT as Primary ASI (PASI) DOUT	8 w a0 10 50 # Configure DOUT as Primary ASI (PASI) DOUT
9 w a0 19 00 # 1 data input and 1 data output for PASI	9 w a0 19 00 # 1 data input and 1 data output for PASI
10 w a0 1a 30 # PASI TDM, 32 bit format	10 w a0 la 30 # PASI TDM, 32 bit format
11 w a0 1e 20 # PASI Ch1 on slot 0	11 w a0 le 20 # PASI Chl on slot 0
12 w a0 1f 21 # PASI Ch2 on slot 1	12 w a0 1f 21 # PASI Ch2 on slot 1
13 w a0 00 01 # Set page 1	13 w a0 00 01 # Set page 1
14 w a0 73 d0 # auto device, set MICBIAS = 9V	14 w a0 73 d0 # auto device, set MICBIAS = 9V
15 w a0 00 00 # Set page 0	15 w a0 00 00 # Set page 0
16 w a0 50 80 # Auto device ADC Ch1 SE MUX IN1P input, 5KOhm Impedance, ac-coupled, audio band	16 w a0 50 c0 # Auto device ADC Ch1 SE MUX IN1M input, 5KOhm Impedance, ac-coupled, audio ban
17 w a0 55 00 # Auto device ADC Ch2 default Diff input, 5KOhm Impedance, ac-coupled, audio band	17 w a0 55 00 # Auto device ADC Ch2 default Diff input, 5KOhm Impedance, ac-coupled, audio ba
18 w a0 76 c0 # Enable Input Ch1 and Ch2, disable output channels	18 w a0 76 c0 # Enable Input Ch1 and Ch2, disable output channels
19 w a0 78 a0 # Power up ADC and MICBIAS	19 w a0 78 a0 # Power up ADC and MICBIAS
Figure 2.19 IN1D Mux Input Degister Setting	Figure 2.10 IN1M Mux Input Pagistor Sotting
Figure 2-10. IN IF Mux input Register Setting	Figure 2-13. IN THE MUX Input Register Setting

Figure 2-20. IN1P and IN1M Mux Input at -1dBrG (0 dBrG = 5Vrms)

The output of the respective setting shows the desired signal and the suppression of the other input signal.

Figure 2-21. Output with IN1P Mux Input Configured

Figure 2-22. Output with IN1M Mux Input Configured

3 Analog Mixing

When mixing of analog audio signal is desired, this device provides capability of mixing from various input channels with programmable mixer feature and scale factor to generate the final output channels. In this example, an input from single ended IN1P and IN1M with different tone and input swing are mixed as shown in the register setting and the input waveforms. IN1P is a 1 KHz tone at -10 dBrG and IN1M is a 750 Hz tone at -20 dBrG; 0 dBrG = 5 Vrms Full-scale.

1	1 ##### Record Mix AC-Couple SE IN1P and IN1M Input path ######				
2	2 # Target Mode, TDM, 32-bit				
3	3 # Primary ASI only, multiple of 48KHz Sampling				
4	+				
5	w a0 00 00	# Set page 0			
6	w a0 01 01	# Software Reset			
7	w a0 02 09	# Wake up with AVDD > 2v and all VDDIO level			
8	w a0 10 50	+ Configure DOUT as Primary ASI (PASI) DOUT			
9	w a0 19 00	+ 1 data input and 1 data output for PASI			
10	w a0 1a 30	* PAST TDM. 32 bit format			
	w a0 1e 20	* PAST Chi on slot 0			
	w a0 1f 21	PAST Ch2 on slot 1			
13	a0 00 01	Set name 1			
1.4	w a0 73 d0	a puto dovino and MTCRIAS - 9V			
1 5	w a0 75 00	* and device, set medias - 5v			
10	w a0 20 20	F End te ALC HIVEL			
10	w au 00 00	The page of the second se			
	w au 50 40	# Auto device ADC Chi SE input, SKOhm impedance, ac-coupied, audio band			
18	w a0 55 00	# Auto device ADC Ch2 default Diff input, 5KOhm Impedance, ac-coupled, audio band			
19	w a0 76 c0	# Enable Input Ch1 and Ch2, disable output channels			
20	w a0 78 a0	Power up ADC and MICBIAS			
Figure 3-1 Analog Single Ended Mix Register					
		Setting			
		ovung			

Figure 3-2. IN1P and IN1M Input Signal

The corresponding mixed output frequency respond is shown in Figure 3-3.

Figure 3-3. Mixed Analog Input of IN1P and IN1M

4 Summary

The TAx5x1x-Q1 family of devices offers very flexible input configuration with muxing and mixing capability making the devices designed for a wide range of applications.

5 References

- Texas Instruments, TAC5412-Q1 Automotive Low Power Stereo Audio Codec with Integrated Programmable Boost, Micbias and Diagnostics, data sheet.
- Texas Instruments, TAC5411-Q1 Automotive Low Power Mono Audio Codec with Integrated Programmable Boost, Micbias and Diagnostics, data sheet.
- Texas Instruments, TAC5312-Q1 Automotive Low Power Stereo Audio Codec with Integrated Programmable Boost, Micbias and Diagnostics, data sheet.
- Texas Instruments, TAC5311-Q1 Automotive Low Power Mono Audio Codec with Integrated Programmable Boost, Micbias and Diagnostics, data sheet.
- Texas Instruments, TAA5412-Q1 Automotive, 2-Channel, 768-kHz, Audio ADC With Integrated Microphone Bias and Input Fault Diagnostics, data sheet.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated