
1SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

Silicon Errata
SLAZ709–October 2017

MSP432E4 SimpleLink™ Microcontrollers

1 Introduction
This document describes known exceptions to the functional specifications for the SimpleLink™
MSP432E4 microcontrollers. Note that some features are not available on all devices in the series, so not
all errata may apply to your device. See your device-specific data sheet for more details.

For details on Arm® Cortex®-M4F CPU advisories, see the Arm® Cortex®-M4F Errata.

2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP432™ MCU devices and support tools. Each MSP432 MCU commercial family member has one of
two prefixes: MSP or XMS (for example, MSP432E411Y). Each support tools has one of two prefixes:
MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering
prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools
(with MSP for both devices and tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the electrical specifications of the final
device

MSP – Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed TI internal qualification testing.

MSP – Fully-qualified development-support product

XMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production
devices. TI recommends that these devices not be used in any production system because their expected
end-use failure rate still is undefined. Only qualified production devices are to be used.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709
http://www.ti.com/lit/pdf/SPMZ637

Device Markings www.ti.com

2 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

3 Device Markings
The following are examples of the microcontroller package symbolization.

MSP432E411Y, 212-pin ZAD (NFBGA) package
+----------------+
| \TI/ | \TI/ = TI Logo
| MSP432(TM) | (TM) = Trademark Symbol
| E411YT | # = Die Revision
| xxxxxxxxxx | O = Pin 1
| O REV # |
+----------------+

MSP432E401Y, 128-pin PDT (TQFP) package
+----------------+
| \TI/ xxxxxxxxx | \TI/ = TI Logo
| MSP432 | # = Die Revision
| E401YT | O = Pin 1
| REV # |
| O |
+----------------+

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Errata Overview

3SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

4 Errata Overview
Table 1 lists the device errata.

Table 1. Device Errata Table

Name Errata Title
ADC

ADC#13 A glitch can occur on pin PE3 when using any ADC analog input channel to sample
ADC#14 The first two ADC samples may be incorrect

EPI
EPI#01 Data reads can be corrupted when the code address space in the EPI module is used

GPIO
GPIO#09 In some cases, noise injected into GPIO pins PB0 and PB1 can cause high current draw

General-Purpose Timers
GPTM#09 General-purpose timers do not synchronize when configured for RTC mode
GPTM#15 Counter does not immediately clear to 0 when MATCH is reached in edge count up mode

Hibernation
HIB#10 If MEMCLR is set to a nonzero value, a tamper event may not clear all of the bits in the HIBDATA register
HIB#16 Application code may miss new tamper event during clear
HIB#18 Can get two matches per day in calendar mode
HIB#19 The first write to the HIBCTL register may not complete successfully after a Hibernation module reset

Memory
MEM#07 Soft resets should not be asserted during EEPROM operations
MEM#15 Specific flash locations in any sector do not get erased
MEM#16 JTAG unlock issue when BOOTCFG is committed with NW=0

PWM
PWM#04 PWM generator interrupts can only be cleared 1 PWM clock cycle after the interrupt occurs
PWM#05 Generator load with global sync may lead to erroneous pulse width
PWM#06 PWM output may generate a continuous high instead of a low or a continuous low instead of high

QEI

QEI#01 When using the index pulse to reset the counter, a specific initial condition in the QEI module causes the direction
for the first count to be misread

SSI
SSI#03 SSI1 can only be used in legacy mode
SSI#05 Bus contention in bi- and quad-mode of SSI
SSI#06 SSI receive FIFO time-out interrupt may assert sooner than expected in slave mode
SSI#07 SSI transmit interrupt status bit is not latched
SSI#08 SSI slave in bi and quad mode swaps XDAT0 and XDAT1

System Control
SYSCTL#03 The MOSC verification circuit does not detect a loss of clock after the clock has been successfully operating
SYSCTL#18 DIVSCLK outputs a different clock frequency than expected when DIV = 0x0

USB
USB#04 Device sends SE0 in response to a USB bus reset

Watchdog Timers
WDT#08 Reading the WDTVALUE register may return incorrect values when using Watchdog Timer 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Errata Descriptions www.ti.com

4 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

5 Errata Descriptions

ADC#13 A glitch can occur on pin PE3 when using any ADC analog input channel to
sample

Description A glitch may occur on PE3 when using any ADC analog input channel (AINx) to sample.
This glitch can occur when PE3 is configured as an input channel and happens at the
end of the ADC conversion. These glitches do not affect analog measurements on PE3
when configured as AIN0 as long as the specified source resistance is met.

Workaround A 1-kΩ external pullup or pulldown on PE3 helps to minimize the magnitude of the glitch
to 200 mV or less.

ADC#14 The First two ADC Samples may be Incorrect

Description The first two ADC samples taken after the ADC clock is enabled in the xCGCADC
register may be incorrect.

Workaround
1. Reset the ADC peripheral using the SRADC register after the ADC peripheral clock is

enabled and before initializing the ADC and enabling the sample sequencer.
2. If reconfiguration cannot be done by the application, then discard the first two

samples before processing the data.

EPI#01 Data reads can be corrupted when the code address space in the EPI module is
used

Description The external code address space at address 0x1000.0000 is specified for the EPI
module using the ECSZ and ECADR fields in the EPI Address Map (EPIADDRMAP).
However, data reads can be corrupted when using this address space.

Workaround Code cannot be executed from the 0x1000.0000 address space. The EPI address
spaces at 0x6000.0000 and 0x8000.0000 can be used instead.

In addition, when reading from EPI memory mapped to the code address space at
0x1000.0000, replace direct EPI memory reads through pointers with calls to the
EPIWorkaroundWordRead(), EPIWorkaroundHWordRead() or
EPIWorkaroundByteRead() functions depending on the data size for the read operation.
Similarly, when writing to the EPI code address space, replace direct writes with calls to
the EPIWorkaroundWordWrite(), EPIWorkaroundHWordWrite() or
EPIWorkaroundByteWrite() functions. These APIs are new and can be found in
Appendix 2. For Keil, IAR, GCC, and Code Bench, these functions are defined as inline
functions in the epi.h file in the driverlib folder. For CCS, which doesn’t support this
structure, these should be added to a new file placed in the \driverlib directory called
epi_workaround_ccs.s, and this file should be added to the project. Note that the new
DriverLib APIs and the CCS file mentioned in Appendix 2 are included in the SimpleLink
MSP432 SDK.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Errata Descriptions

5SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

GPIO#09 In some cases, noise injected into GPIO pins PB0 and PB1 can cause high current
draw

Description A fast transition on either PB0 or PB1 can switch on a low resistance path between one
or both pins and ground potentially causing a high current draw.

This condition has been observed when the signal at the device pin has a rise time or
fall time (measured from 10% to 90% of VDD) that is faster than 2 ns. The condition is
more likely to occur at high temperatures or in noisy environments. It can occur when the
pin is in input or output mode or with any pin multiplexing options.

If the condition is induced while the pin is configured as an output GPIO, then changing
the pin state to low and then returning it to a high state at a lower temperature will
resolve the condition.

Workaround
1. Do not use PB0 and PB1. Connect both to GND through a 1-kΩ resistor and

configure them as GPIO inputs.
2. If PB0 and PB1 are used as USB0ID and USB0VBUS, see the USB section of

System Design Guidelines for MSP432E4 Microcontrollers and confirm all guidelines
contained in the document are followed.

GPTM#09 General-purpose timers do not synchronize when configured for RTC mode

Description When attempting to synchronize the General-Purpose Timers using the GPTM
Synchronize (GPTMSYNC) register, they do not synchronize if any of the timers are
configured for RTC mode.

Workaround None.

GPTM#15 Counter does not immediately reset to 0 when MATCH is reached in edge count up
mode

Description When configured for input edge count mode and count up mode, after counting to the
match value, the counter uses one additional edge to reset the timer to 0. As a result,
after the first match event, all subsequent match events occur after the programmed
number of edge events plus one.

Workaround In software, account for one additional edge in the programmed edge count after the first
match interrupt is received.

HIB#10 If MEMCLR is set to a nonzero value, a tamper event may not clear all of the bits in
the HIBDATA register

Description If the MEMCLR bit field in the HIB Tamper Control (HIBTPCTL) register is set to a non-
zero value, the Hibernation Data (HIBDATA) register may not clear the specified bits.
The MEMCLR bit field provides the option to clear all, the upper half, lower half, or none
of the Hibernate memory on a tamper event.

Workaround After clearing the tamper event by setting the TPCLR bit, the application should clear the
data in the Hibernate memory in the HIBDATA register (write either the upper half, the
lower half, or all of the bits to all zeros).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709
http://www.ti.com/lit/pdf/SLAA770

Errata Descriptions www.ti.com

6 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

HIB#16 Application code may miss new tamper event during clear

Description During the clear of a tamper event, a new tamper event could be missed or the tamper
log could be corrupted. The clear of a tamper event starts with the Tamper Clear
(TPCLR) bit in the HIB Tamper Control register (HIBTPCTL) being written. The write
takes 3 rising edges of the 32.768-kHz clock to complete the clear.

Workaround To prevent missing a tamper event during these three Hibernate clock cycles and
restoring the tamper log to its reset state, workaround code must be implemented in the
NMI handler as shown in Appendix 1. The new DriverLib APIs mentioned in Appendix 1
are included in the SimpleLink MSP432E4 SDK.

HIB#18 Can get two matches per day in calendar mode

Description When the CAL24 bit in the Hibernation Calendar Control (HIBCALCTL) register is clear,
the RTC counts in 12 hour, AM/PM mode. The AM/PM bit in the Hibernation Calendar
Match 0 (HIBCALM0) specifies whether the match should occur in the AM or the PM.
However, this bit is ignored when determining if a match is occurring. As a result, an
RTC match could occur twice in one day.

Workaround Adjust the match time to 24 hour mode before configuring the HIBCALM0 register and
set the CAL24 bit. Alternatively, when the match occurs, check the AM/PM bit in the
Hibernation Calendar (HICAL0) register to determine if the match is correct.

HIB#19 The first write to the HIBCTL register may not complete successfully after a
Hibernation module reset

Description The initial write to the HIBCTL register may not occur if the Hibernation module is reset.
The WRC bit in the HIBCTL register may not be set.

Workaround After a Hibernation module reset, check to see if the WRC bit is set and perform the
following:
• If the WRC bit is not set within the maximum oscillator startup time, perform a

software reset of the Hibernation module and retry the HIBCTL write. The maximum
oscillator startup time is given by the Hibernation XOSC startup time parameter,
TSTART, in the Hibernation External Oscillator (XOSC) Input Characteristics table in
the Electrical Characteristics chapter of the data sheet.

• If the WRC bit is set but the HIBCTL write was not successful, retry the HIBCTL
write.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Errata Descriptions

7SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

MEM#07 Soft resets should not be asserted during EEPROM operations

Description EEPROM data may be corrupted if any of the following soft resets are asserted during
an EEPROM program or erase operation:
• Software reset (SYSRESREQ)
• Software peripheral reset of the EEPROM module
• Watchdog reset (if configured as a system reset in the RESBEHAVCTL register)
• MOSC failure reset
• BOR reset (if configured as a system reset in the RESBEHAVCTL register)
• External reset (if configured as a system reset in the RESBEHAVCTL register)
• Writes to the HSSR register

Workaround Ensure that any of the above soft resets are not asserted during an EEPROM program
or erase operation. The WORKING bit of the EEDONE register can be checked before
the reset is asserted to see if an EEPROM program or erase operation is occurring. Soft
resets may occur when using a debugger and should be avoided during an EEPROM
operation. A reset such as the Watchdog reset can be mapped to an external reset using
a GPIO or Hibernate can be entered, if time is not a concern.

MEM#15 Specific flash locations in any sector do not get erased

Description If only one or both of the first two words of the last line of a sector in a bank are
programmed, an Erase of entire Sector, Mass Erase of device, or toggle mass erase
does not erase the flash back to all 1's. The diagram below shows the affected words in
Sector 0 and Sector 31 of the lower 512KB of Flash.

Workaround Program any other word in the Sector-Bank to allow Sector Erase to work.

NOTE: Toggle Mass Erase or Mass Erase will still not work.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Errata Descriptions www.ti.com

8 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

MEM#16 JTAG unlock issue when BOOTCFG is committed with NW=0

Description After configuring the BOOTCFG register with NW=0, DBG1=0 and DBG=1, the JTAG
Debugger access is locked and cannot be unlocked by one Unlock Sequence Run.

Workaround The Unlock Sequence has to be run twice for the device to be unlocked.

PWM#04 PWM generator interrupts can only be cleared 1 PWM clock cycle after the
interrupt occurs

Description A write of 1 to the PWMxISC register is expected to clear the corresponding generator
interrupt status on the next system clock. However, the write will clear the generator
interrupt status on the next PWM clock. Any write to the PWMxISC to clear the interrupt
before the next PWM clock will be ignored and the interrupt will be re-asserted.

Workaround After the interrupt is asserted, the CPU must wait for one PWM clock cycle before writing
1 to the PWMxISC to clear the corresponding generator interrupt status. The larger the
PWM clock divider value, the longer the system delay to clear the interrupt.

PWM#05 Generator load with global sync may lead to erroneous pulse width

Description There is a condition where the generator timer may still count with the old value, but the
new comparator value gets loaded causing an erroneous high pulse width.

Workaround The application must use the interrupt status to write the value of the new load and
comparator values. When using the down count mode, clear the raw interrupt status bit
for the respective comparator down count match interrupt status bit, wait for it to be set
again and then update the new value for the load and comparator match.

PWM#06 PWM output may generate a continuous high instead of a low or a continuous low
instead of high

Description When using PWM in UP-DOWN count mode, the PWM generator may generate a
continuous High instead of Low or continuous Low instead of High under the following
condition:
• The PWM generator is used with action for comparator A or B UP and DOWN to

control the PWM cycle.
• The PWM comparator A or B is changed from a count of 2 or more to PWM Load

Count value.
• A continuous High is generated if the invert option is enabled.
• A continuous Low is generated if the invert option is disabled.

Workaround
• Use DOWN count mode of PWM
• When changing from any value (other than 1) to the PWM load count value in the

Comparator Load Register, always go to value of 1 before going to the PWM load
count value.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Errata Descriptions

9SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

QEI#01 When using the index pulse to reset the counter, a specific initial condition in the
QEI module causes the direction for the first count to be misread

Description When using the index pulse to reset the counter with the following configuration in the
QEI Control (QEICTL) register:
• SIGMODE is 0 indicating quadrature mode
• CAPMODE is 1 indicating both PhA and PhB edges are counted

and the following initial conditions:
• Both PhA and PhB are 0
• The next quadrature state is in the counterclockwise direction

the QEI interprets the state change as an update in the clockwise direction, which results
in a position mismatch of 2.

Workaround None.

SSI#03 SSI1 can only be used in legacy mode

Description Bi-, quad-, and advance-modes of operation do not function correctly on the specified
SSI module(s). As a result, any affected module can only be used for legacy operation.

Workaround Use SSI0, SSI2, or SSI3 for bi-, quad-, and advance-mode operation. Use SSI1 for
legacy-mode operation.

SSI#05 Bus contention in bi- and quad-mode of SSI

Description When the SSI is configured in Bi- or Quad-mode, and a read from external memory is
performed after the SSI is configured for Receive Mode, bus contention can occur on the
SSI data pins on that first data read.

Workaround Perform a dummy read from memory before the first valid read operation after
configuring the SSI for Receive Mode (setting the DIR bit in the QSSI Control (SSICR1)
register). For example:

SSIConfigSetExpClk(SSI0_BASE,SysCtlClockFreqSet (),
SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 1000000, 8);
SSIAdvModeSet(SSI0_BASE, SSI_ADV_BI_READ); //Receive Mode set
SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
SSIDataGetNonBlocking(SSI-_BASE, ui32Dummy); //dummy read
SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[0])); //first intentional read
SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[1])); //second intentional read

If the transfer normally requires any dummy operations, such as the intentional dummy
writes shown above, the dummy read should occur before the normal dummy
operations.

Note that if your application is sensitive to the SSIClk, the dummy read outputs a clock
cycle. Reconfigure the SSIClk pin to a GPIO input while performing the dummy read to
prevent this from affecting your clock-sensitive application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Errata Descriptions www.ti.com

10 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

SSI#06 SSI receive FIFO time-out interrupt may assert sooner than expected in slave
mode

Description The SSI receive FIFO time-out interrupt may assert sooner than 32 system clock periods
in slave mode if the CPSDVSR field in the SSI Clock Prescale (SSICPSR) register is set
to a value greater than 0x2. Master mode is not affected by this behavior.

Workaround In some cases, software can use the SCR field in the SSI Control 0 (SSICR0) register in
combination with a CPSDVSR field value of 0x2 to attain the same SSI clock frequency.
For example, if the desired serial clock rate is SysClk/48, then CPSDVSR = 0x2 and
SCR = 0x17 can be used instead of CPSDVSR = 0x18 and SCR = 0x1 to achieve the
same clock rate, using the equation SSInCLK = SysClk / (CPSDVSR * (1 + SCR)). If
there is not a value of SCR that can be used with CPSDVSR = 0x2 to attain the required
serial clock rate, then the receive FIFO time-out feature cannot be used.

SSI#07 SSI transmit interrupt status bit is not latched

Description SSI Transmit Interrupt Status Bit does not work correctly.
• For Master Mode with interrupts when transmit FIFO is half full or less. SSIMIS will

be asserted every time the TXFIFO drops below half FIFO threshold causing the
interrupt to be asserted all the time even if SSIICR register is used to clear the
Interrupt condition

Workaround In the interrupt handler on completion of the transfer from the buffer to SSIDR clear the
SSIIM.TXIM to stop any further interrupts. When the next set of interrupts are required
for transmission then set the SSIIM.TXIM bit.

SSI#08 SSI slave in bi and quad mode swaps XDAT0 and XDAT1

Description The SSI Slave when in Bi or Quad Mode sends the data on XDAT0 to XDAT1 line and
XDAT1 to XDAT0 line.

Workaround When transmitting the data from SSI Slave in Bi and Quad Mode the CPU must swap
the bits when writing to the Data Register SSIDR for the correct bit to be transmitted.
When using uDMA CPU must write the swapped bits in the uDMA’s source buffer.

SYSCTL#03 The MOSC verification circuit does not detect a loss of clock after the clock has
been successfully operating

Description If the MOSC clock source has been powered up and operating correctly and is
subsequently removed or flatlines, the MOSC verification circuit does not indicate an
error condition.

Workaround Use Watchdog module 1, which runs off of PIOSC, to reset the system if the MOSC fails.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Errata Descriptions

11SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

SYSCTL#18 DIVSCLK Outputs a Different Clock Frequency than Expected when DIV = 0x0

Description In the Divisor and Source Clock Configuration (DIVSCLK) register, if the DIV bit field is
0x0 (divided by 1), the clock output to the GPIO is not what is expected:
• If the DIV bit field has not yet been adjusted in code, the clock frequency will be the

clock source defined in the SRC bit field divided by 32. For example, if SRC = 0x1
(PIOSC) and DIV = 0x0, the clock output to the GPIO will have a frequency of 500
kHz, derived from the PIOSC.

• If the DIV bit field has already been adjusted in code, the clock frequency will be the
clock source defined in the SRC bit field divided by the previous DIV bit field value.
For example, if SRC = 0x1 (PIOSC) and DIV was previously 0x1 (divided by 2) then
written to 0x0, the clock output to the GPIO will have a frequency of 8 MHz, derived
from the PIOSC.

Workaround If clock accuracy of the source is not a factor, certain frequencies can be achieved using
a non-zero DIV value and a different SRC value. For example, to achieve a 16 MHz
clock, instead of SRC = 0x1 (PIOSC) and DIV = 0x0, use SRC = 0x0 (System Clock)
and the respective DIV value (DIV = 0x4 (divided by 5) for a system clock of 80 MHz).

USB#04 Device sends SE0 in response to a USB bus reset

Description The USB Device sends an Single Ended Zero (SE0) bus state (USB0DP and USB0DM
driven low) in response to a USB bus reset from the Host. Per USB specification, the
Device should not drive these pins in the event of a USB bus reset. This does not affect
USB certification.

Workaround None.

WDT#08 Reading the WDTVALUE register may return incorrect values when using
Watchdog Timer 1

Description Incorrect values may be read from the Watchdog Value (WDTVALUE) register at the
Watchdog Timer 1 base address when using Watchdog Timer 1.

Workaround None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 1 www.ti.com

12 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

6 Appendix 1
To address the erratum HIB#16, the HibernateTamperEventsClear() API must be replaced with the
following APIs:
HibernateTamperEventsClearNoLock();
HibernateTamperUnLock();
HibernateTamperLock();

The API definitions are as follows:
//***
//
//! Clears the tamper feature events without Unlock and Lock.
//!
//! This function is used to clear all tamper events without unlock/locking
//! the tamper control registers, so API HibernateTamperUnLock() should be
//! called before this function, and API HibernateTamperLock() should be
//! called after to ensure that tamper control registers are locked.
//!
//! This function doesn't block until the write is complete.
//! Therefore, care must be taken to ensure the next immediate write will
//! occure only after the write complete bit is set.
//!
//! This function is used to implement a software workaround in NMI interrupt
//! handler to fix an issue when a new tamper event could be missed during
//! the clear of current tamper event.
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperEventsClearNoLock(void)
{

//
// Wait for write completion.
//
_HibernateWriteComplete();

//
//
// Set the tamper event clear bit.
//
HWREG(HIB_TPCTL) |= HIB_TPCTL_TPCLR;

}

//***
//
//! Unlock temper registers.
//!
//! This function is used to unlock the temper control registers. This
//! function should be only used before calling API
//! HibernateTamperEventsClearNoLock().
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperUnLock(void)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 1

13SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

{
//
// Unlock the tamper registers.
//
HWREG(HIB_LOCK) = HIB_LOCK_HIBLOCK_KEY;
_HibernateWriteComplete();

}
//***
//
//! Lock temper registers.
//!
//! This function is used to lock the temper control registers. This
//! function should be used after calling API
//! HibernateTamperEventsClearNoLock().
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperLock(void)
{

//
// Wait for write completion.
//
_HibernateWriteComplete();

//
// Lock the tamper registers.
//
HWREG(HIB_LOCK) = 0;
_HibernateWriteComplete();

}

The software workaround must be added in the NMI Handler. The code mainly polls the tamper log entries
during the tamper clear synchronization.

An example of an NMI handler with this workaround is shown below.
static uint32_t g_ui32RTCLog[4];
static uint32_t g_ui32EventLog[4];
//***
//
// Handles an NMI interrupt generated by a Tamper event.
//
//***
void
NMITamperEventHandler(void)
{

uint32_t ui32NMIStatus, ui32TamperStatus;
uint32_t pui32Buf[3];
uint8_t ui8Idx, ui8StartIdx;
bool bDetectedEventsDuringClear;

//
// Get the cause of the NMI event.
//
ui32NMIStatus = SysCtlNMIStatus();

//
// We should have got the cause of the NMI event from the above function.
// But in Snowflake RA0 the NMIC register is not set correctly when an
// event occurs. So as a work around check if the NMI event is caused by a
// tamper event and append this to the return value from SysCtlNMIStatus().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 1 www.ti.com

14 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

// This way only this section can be removed once the bug is fixed in next
// silicon rev.
//
ui32TamperStatus = HibernateTamperStatusGet();
if(ui32TamperStatus & (HIBERNATE_TAMPER_STATUS_EVENT |

HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED))
{

ui32NMIStatus |= SYSCTL_NMI_TAMPER;
}

//
// Check if SysCtlNMIStatus() returned a valid value.
//
if(ui32NMIStatus)
{

//
// Check if the NMI Interrupt is due to a Tamper event.
//
if(ui32NMIStatus & SYSCTL_NMI_TAMPER)
{

//
// If the previous NMI event has not been processed by main
// thread, we need to OR the new event along with the old ones.
//
if(g_ui32NMIEvent == 0)
{

//
// Reset variables that used for tamper event.
//
g_ui32TamperEventFlag = 0;
g_ui32TamperRTCLog = 0;

//
// Clean the log data for debugging purpose.
//
memset(g_ui32RTCLog, 0, (sizeof(g_ui32RTCLog))<<2);
memset(g_ui32EventLog, 0, (sizeof(g_ui32EventLog))<<2);

}

//
// Log the tamper event data before clearing tamper events.
//
for(ui8Idx = 0; ui8Idx< 4; ui8Idx++)
{

if(HibernateTamperEventsGet(ui8Idx,
&g_ui32RTCLog[ui8Idx],
&g_ui32EventLog[ui8Idx]))

{
//
// Event in this log entry, store it.
//
g_ui32TamperEventFlag |= g_ui32EventLog[ui8Idx];
g_ui32TamperRTCLog = g_ui32RTCLog[ui8Idx];

}
else
{

//
// No event in this log entry. Done checking the logs.
//
break;

}
}

//

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 1

15SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

// Process external oscillator failed event.
//
if(ui32TamperStatus & HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED)
{

g_ui32TamperXOSCFailEvent++;
g_ui32TamperEventFlag |= HIBERNATE_TAMPER_EVENT_EXT_OSC;
g_ui32TamperRTCLog = HWREG(HIB_TPLOG0);

}

NOTE: This is the beginning of the block of workaround code.

// The following block of code is to workaround hardware defect
// which results in missing new tamper events during tamper clear
// synchronization.
//
// There is a window after the application code writes the tamper
// clear where a new tamper event can be missed if the application
// requires more than one tamper event pins detection.
//
// The tamper Clear is synchronized to the hibernate 32kHz clock
// domain. The clear takes 3 rising edges of the 32KHz clock.
// During this window, new tamper events could be missed.
// A software workaround is to poll the tamper log during the
// tamper event clear synchronization.
//

//
// Clear the flag for the case there are events triggered
// during clear execution.
//
bDetectedEventsDuringClear = false;

//
// Unlock the Tamper Control register. This is required before
// calling HibernateTamperEventsClearNoLock().
//
HibernateTamperUnLock();
do
{

//
// We will start to poll the log registers at index 1 for
// any new events.
//
ui8StartIdx = 1;
//
// Clear the Tamper event.
// Note this API doesn't wait for synchronization, which
// allows us to check the tamper log during
// synchronization.
//
HibernateTamperEventsClearNoLock();

//
// Check new tamper event during tamper event clear
// synchronization.
// This will take about 92us(three clock cycles) at most.
//
while(HibernateTamperStatusGet() & HIBERNATE_TAMPER_STATUS_EVENT)
{

//
// Clear execution isn't done yet , poll for new events.
// If there were any new event, it will be logged in log 1
// registers and so on.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 1 www.ti.com

16 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

//
for(ui8Idx = ui8StartIdx; ui8Idx< 4; ui8Idx++)
{

if(HibernateTamperEventsGet(ui8Idx,
&g_ui32RTCLog[ui8Idx],
&g_ui32EventLog[ui8Idx]))

{
//
// detected new event, store it.
//
g_ui32TamperEventFlag |= g_ui32EventLog[ui8Idx];

//
// check for more event.
//
continue;

}
else
{

//
// no new event in this log, update the log index
// to be checked next, and break out of loop.
//
ui8StartIdx = ui8Idx;
break;

}
}

//
// all last three logs have info. Check if all 4 logs
// have the same info. This is to detect the case that
// events happen during clear execution.
//
if(ui8Idx == 4)
{

//
// If events happens during clear
// execution, all four log registers will be
// logged with the same event, to detect this
// condition, we will compare with all four log data.
//
if(HibernateTamperEventsGet(0, &g_ui32RTCLog[0], &g_ui32EventLog[0]))
{

if((g_ui32RTCLog[0] == g_ui32RTCLog[1]) &&
(g_ui32EventLog[0] == g_ui32EventLog[1]) &&

(g_ui32RTCLog[0] == g_ui32RTCLog[2]) &&
(g_ui32EventLog[0] == g_ui32EventLog[2]) &&
(g_ui32RTCLog[0] == g_ui32RTCLog[3]) &&
(g_ui32EventLog[0] == g_ui32EventLog[3]))

{
//
// Detected events during clear execution.
// Event logging takes priority, the clear
// will not be done in this case. We will need
// to go back to the beginning of the loop and
// clear the events.
//
if(bDetectedEventsDuringClear)
{

//
// This condition has already detected,
// we have cleared the event,
// clear the flag.
//
bDetectedEventsDuringClear = false;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 1

17SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

else
{

// This is the first time it has been
// detected, set the flag.
//
bDetectedEventsDuringClear = true;

}

//
// Break out of while loop so that we can
// clear the events, and start the
// workaround all over again.
//
break;

}
}
else
{

//
// Log 0 didn't detect any events. So this is not
// the case of missing events during clear
// execution.
// Update the log index at which we will poll next.
// It should be the last log entry that OR all the
// new events.
//
ui8StartIdx = 3;

}
}

}
}
while(bDetectedEventsDuringClear);
//
// Lock the Tamper Control register.
//
HibernateTamperLock();

NOTE: This is the end of the block of workaround code.

//
// Save the tamper event and RTC log info in the Hibernate Memory
//
HibernateDataGet(pui32Buf, 3);
pui32Buf[1] = g_ui32TamperEventFlag;
pui32Buf[2] = g_ui32TamperRTCLog;
HibernateDataSet(pui32Buf, 3);

//
// Signal the main loop that an NMI event occurred.
//
g_ui32NMIEvent++;

}

//
// Clear NMI events
//
SysCtlNMIClear(ui32NMIStatus);

}

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 2 www.ti.com

18 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

7 Appendix 2
To address the erratum EPI#01, the following code should be added to the epi.h file.
#ifdef rvmdk
//***
//
// Keil case.
//
//***
inline void
EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
{

uint32_t ui32Scratch;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//
// Perform the write we're actually interested in.
//
STR ui32Value, [pui32Addr]

//
// Read from SRAM to ensure that we don't have an EPI write followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}
}

inline uint32_t
EPIWorkaroundWordRead(uint32_t *pui32Addr)
{

uint32_t ui32Value, ui32Scratch;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//
// Perform the read we're actually interested in.
//
LDR ui32Value, [pui32Addr]

//
// Read from SRAM to ensure that we don't have an EPI read followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}

return(ui32Value);
}

inline void
EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 2

19SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

uint32_t ui32Scratch;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//
// Perform the write we're actually interested in.
//
STRH ui16Value, [pui16Addr]

//
// Read from SRAM to ensure that we don't have an EPI write followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}
}

inline uint16_t
EPIWorkaroundHWordRead(uint16_t *pui16Addr)
{

uint32_t ui32Scratch;
uint16_t ui16Value;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//
// Perform the read we're actually interested in.
//
LDRH ui16Value, [pui16Addr]

//
// Read from SRAM to ensure that we don't have an EPI read followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}

return(ui16Value);
}

inline void
EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
{

uint32_t ui32Scratch;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 2 www.ti.com

20 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

// Perform the write we're actually interested in.
//
STRB ui8Value, [pui8Addr]

//
// Read from SRAM to ensure that we don't have an EPI write followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}
}

inline uint8_t
EPIWorkaroundByteRead(uint8_t *pui8Addr)
{

uint32_t ui32Scratch;
uint8_t ui8Value;

__asm
{

//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
NOP

//
// Perform the read we're actually interested in.
//
LDRB ui8Value, [pui8Addr]

//
// Read from SRAM to ensure that we don't have an EPI read followed by
// a flash read.
//
LDR ui32Scratch, [__current_sp()]

}

return(ui8Value);
}

#else
#ifdef ccs

//***
//
// Code Composer Studio versions of these functions can be found in separate
// source file epi_workaround_ccs.s.
//
//***
extern void EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value);
extern uint32_t EPIWorkaroundWordRead(uint32_t *pui32Addr);
extern void EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value);
extern uint16_t EPIWorkaroundHWordRead(uint16_t *pui16Addr);
extern void EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value);
extern uint8_t EPIWorkaroundByteRead(uint8_t *pui8Addr);

#else
//***
//
// GCC and IAR case.
//
//***
inline void
EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 2

21SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

volatile register uint32_t ui32Scratch;

__asm volatile (
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" STR %[value],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [scratch] "=r" (ui32Scratch)
: [addr] "r" (pui32Addr), [value] "r" (ui32Value)

);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

}

inline uint32_t
EPIWorkaroundWordRead(uint32_t *pui32Addr)
{

volatile register uint32_t ui32Data, ui32Scratch;

//
// ui32Scratch is not used other than to add a padding read following the
// "real" read.
//

__asm volatile(
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" LDR %[ret],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [ret] "=r" (ui32Data),
[scratch] "=r" (ui32Scratch)

: [addr] "r" (pui32Addr)
);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

return(ui32Data);
}

inline void
EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
{

volatile register uint32_t ui32Scratch;

__asm volatile (
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" STRH %[value],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [scratch] "=r" (ui32Scratch)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 2 www.ti.com

22 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

: [addr] "r" (pui16Addr), [value] "r" (ui16Value)
);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

}

inline uint16_t
EPIWorkaroundHWordRead(uint16_t *pui16Addr)
{

register uint16_t ui16Data;
register uint32_t ui32Scratch;

//
// ui32Scratch is not used other than to add a padding read following the
// "real" read.
//

__asm volatile(
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" LDRH %[ret],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [ret] "=r" (ui16Data),
[scratch] "=r" (ui32Scratch)

: [addr] "r" (pui16Addr)
);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

return(ui16Data);
}

inline void
EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
{

volatile register uint32_t ui32Scratch;

__asm volatile (
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" STRB %[value],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [scratch] "=r" (ui32Scratch)
: [addr] "r" (pui8Addr), [value] "r" (ui8Value)

);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

}

inline uint8_t

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 2

23SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

EPIWorkaroundByteRead(uint8_t *pui8Addr)
{

register uint8_t ui8Data;
register uint32_t ui32Scratch;

//
// ui32Scratch is not used other than to add a padding read following the
// "real" read.
//

__asm volatile(
//
// Add a NOP to ensure we don’t have a flash read immediately before
// the EPI read.
//
" NOP\n"
" LDRB %[ret],[%[addr]]\n"
" LDR %[scratch],[sp]\n"

: [ret] "=r" (ui8Data),
[scratch] "=r" (ui32Scratch)

: [addr] "r" (pui8Addr)
);

//
// Keep the compiler from generating a warning.
//
ui32Scratch = ui32Scratch;

return(ui8Data);
}

#endif

In addition, if using CCS, the following code should be saved as a file entitled epi_workaround_ccs.s
driverlib directory and included in the project:
;***
;
; epi_workaround_ccs.s - EPI memory access functions.
;
; Copyright (c) 2013 Texas Instruments Incorporated. All rights reserved.
; TI Information - Selective Disclosure
;
;***

;***
;
; void EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
;
;***

.sect ".text:EPIWorkaroundWordWrite"

.global EPIWorkaroundWordWrite
EPIWorkaroundWordWrite:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Store the word in EPI memory.
;
str r1, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 2 www.ti.com

24 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

;
ldr r1, [sp]

;
; Return to the caller.
;
bx lr

.align 4

;***
;
; uint32_t EPIWorkaroundWordRead(uint32_t *pui32Addr)
;
;***

.sect ".text:EPIWorkaroundWordRead"

.global EPIWorkaroundWordRead
EPIWorkaroundWordRead:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Read the word from EPI memory.
;
ldr r0, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.
;
ldr r1, [r13]

;
; Return to the caller.
;
bx lr

.align 4

;***
;
; void EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
;
;***

.sect ".text:EPIWorkaroundHWordWrite"

.global EPIWorkaroundHWordWrite
EPIWorkaroundHWordWrite:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Store the word in EPI memory.
;
strh r1, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.
;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Appendix 2

25SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

ldr r1, [sp]

;
; Return to the caller.
;
bx lr

.align 4

;***
;
; uint16_t EPIWorkaroundHWordRead(uint16_t *pui16Addr)
;
;***

.sect ".text:EPIWorkaroundHWordRead"

.global EPIWorkaroundHWordRead
EPIWorkaroundHWordRead:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Read the half word from EPI memory.
;
ldrh r0, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.
;
ldr r1, [r13]

;
; Return to the caller.
;
bx lr

.align 4

;***
;
; void EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
;
;***

.sect ".text:EPIWorkaroundByteWrite"

.global EPIWorkaroundByteWrite
EPIWorkaroundByteWrite:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Store the byte in EPI memory.
;
strb r1, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.
;
ldr r1, [sp]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

Appendix 2 www.ti.com

26 SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers

;
; Return to the caller.
;
bx lr

.align 4

;***
;
; uint8_t EPIWorkaroundByteRead(uint8_t *pui8Addr)
;
;***

.sect ".text:EPIWorkaroundByteRead"

.global EPIWorkaroundByteRead
EPIWorkaroundByteRead:

;
; Include a no-op to ensure that we don't have a flash data access
; immediately before the EPI access.
;
nop

;
; Read the byte from EPI memory.
;
ldrb r0, [r0]

;
; Make a dummy read from the stack to ensure that we don't have a flash
; data access immediately after the EPI access.
;
ldr r1, [r13]

;
; Return to the caller.
;
bx lr

.align 4

.end

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

www.ti.com Revision History

27SLAZ709–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Revision History

Trademarks
SimpleLink, MSP432 are trademarks of Texas Instruments.
Arm, Cortex are registered trademarks of Arm Limited.
All other trademarks are the property of their respective owners.

Revision History
Date Revision Comments

October 2017 * Initial release

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAZ709

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	MSP432E4 SimpleLink™ Microcontrollers
	1 Introduction
	2 Device Nomenclature
	3 Device Markings
	4 Errata Overview
	5 Errata Descriptions
	6 Appendix 1
	7 Appendix 2

	Trademarks
	Revision History
	Important Notice

