

TPS65987D and TPS65988 User Alternate Modes

ABSTRACT

The TPS65987D(DX) and TPS65988(DX) is a fully-integrated USB power delivery (PD) management device providing cable plug and orientation detection for USB Type-C and PD plug or receptacle. Each Type-C port that is controlled by the device is functionally identical and supports the full range of the USB Type-C and PD standards. The device supports multiple alternate modes which include DisplayPort, TBT and User alternate mode and so forth. This document describes the procedure for enabling and configuring a user alternate mode using the software tools and an optional host controller.

Contents

1	Introduction	1
2	Configuration Registers	2
	Basic Configuration	
4	Advanced Configuration	4
	Advanced Configurations with EC	

List of Figures

1	Basic Configuration - User Alternate Mode Configuration	3
2	Basic Configuration - User Altenate Mode Configuration	3
3	Advanced Configuration - User Alternate Mode Configuration	5
4	Advanced Configuration - App Configuration Register	6
5	Advanced Configuration - Configuration Data Sets	6
6	Advanced Configuration - Virtual Device Settings	7
7	Advanced Configuration - Virtual Device Settings	8
8	Advanced Configuration with EC - User Alternate Mode Register	10
9	Advanced Configuration with EC - Interrupt Mask Register	11
10	Advanced Configuration with EC - User Alternate Mode Register	16
11	Advanced Configuration with EC - Interrupt Mask Register	17

List of Tables

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

The user alternate mode allows users to configure a custom SVID with up to four independently configurable mode numbers. When enabled, the device adds this custom SVID to the list of supported SVIDs, and is shared with the port partner in the acknowledgment to the 'Discover SVIDs' command. The DFP can then command the port partner to enter a specified mode of operation, and exchange proprietary messages after entering the custom mode.

The user alternate mode can be used either with or without an external microcontroller. Without an external microcontroller, the capabilities of the user alternate mode are limited to entering the mode, optionally sending a predefined unstructured VDM upon mode entry, and optionally reconfiguring the device registers and executing up to two host interface commands.

Configuration Registers

www.ti.com

The ability to send a predefined unstructured VDM upon mode entry is generally used to advertise an identity. For instance, vendors can define a custom alternate mode used to communicate between supported power supplies and devices. A power supply that does not contain an external microcontroller could configure the device to automatically send an unstructured VDM, advertising information about the power supply such as the model number, revision, serial number, and other information.

The ability to reconfigure the device on mode entry allows modification of any of the configuration registers of the host interface without an external microcontroller. This ability can be used, for instance, to modify the power sourcing and sinking capabilities of the PD port when recognized and supported devices are attached. After reconfiguration of host interface registers, up to two host interface commands can be executed. These commands can be used to drive a GPIO, or force a renegotiation of the power contract, or execute a data/power role swap.

The primary limitation of the user alternate mode, when used without an external microcontroller, is its lack of decision-making capability. The user alternate mode can be configured to send an arbitrary message or to change the capabilities of the device, but this is a static configuration that is based only on mode entry and exit. With the addition of an external microcontroller, the capabilities of the user alternate mode can be greatly extended.

2 Configuration Registers

The user alternate mode is configured using the 'User Alternate Mode (0x4A)' configuration register. If the user is enabling the User Alternate Mode to reconfigure the behavior of the device or to issue host interface commands upon mode entry, then these capabilities are set in the 'App Configuration Register (0x6C)'.

'User VID Status (0x57)' register provides status information of the user alternate mode. This can be used by an external microcontroller for decision making at runtime.

The device stores the last received attention and non-attention VDM in 'Rx User VID Attention VDM (0x60)' and 'Rx User VID Other VDM (0x61)' registers respectively. These two registers are dedicated to the user alternate mode and are not overwritten by other alternate mode messages such as DisplayPort or TBT, which may be running concurrently. These registers may be used by an external microcontroller in order to extend the capabilities of the user alternate mode.

The interrupt registers (0x14 - 0x17) may be configured to generate an interrupt to the external microcontroller, whenever a new attention or non-attention VDM is received on the user SVID channel.

Refer to SLVUBH2 for more details on the register definitions.

3 Basic Configuration

The basic configuration of the user alternate mode is handled in the 'User Alternate Mode (0x4A)' configuration register. The example in this section configures the device to support a structured Custom-VID '0xFEDC' with four alternate modes. All four alternate modes are enabled and their mode values are 0x1F1F1F1F, 0x2F2F2F2F, 0x3F3F3F3F and 0x4F4F4F4F4F. Auto-Entry is enabled for Mode-1 and Mode-4, and Mode-4 is additionally configured to send a predefined unstructured message upon mode entry

Figure 1. Basic Configuration - User Alternate Mode Configuration

Customer Use Interrupt Mask for I2C1 Interrupt Mask for I2C2 Global System Configuration Port Configuration Port Control Transmit Source Capabilities Transmit Sink Capabilities Autonegotiate Sink Alternate Mode Entry Queue PD3 Configuration Register Event Delay Transmit Identity Data Object User Alternate Mode Config Display Port Capabilities Intel VID Config Register MIPI VID Configuration I/O Config Retimer Debug Register App Config Binary Data Indices I2C Master Configuration App configuration Register Sleep Control Register Tx Manufacturer Info SOP Tx Source Capabilities Extende Tx Battery Capabilities Tx Manufacturer Info SOP Prim Raw View

Field	Value
User VID Enabled	
User Alternate Mode VID (Vendor ID)	Oxfedc
User VID Mode 1 Enabled	\checkmark
User VID Mode 2 Enabled	
User VID Mode 3 Enabled	
User VID Mode 4 Enabled	
User Alternate Mode #1 Settings Field	Value
Mode Value	0x1f1f1f1f
User VID Mode Load App Config Data	
User VID Mode Auto Send Unstructed VDM	
User VID Mode Autoentry Enabled	
User Alternate Mode #2 Settings	
Field	Value
Mode Value	0x2f2f2f2f
User VID Mode Load App Config Data	
User VID Mode Load App Config Data User VID Mode Auto Send Unstructed VDM	

Figure 2. Basic Configuration - User Altenate Mode Configuration

nterrupt Mask for I2C1	User Alternate Mode #3 Settings	
nterrupt Mask for I2C2	Field	Value
Global System Configuration	Mode Value	0x3f3f3f3f
Port Configuration Port Control	User VID Mode Load App Config Data	
Transmit Source Capabilitie:	User VID Mode Auto Send Unstructed VDM	
Transmit Sink Capabilities	User VID Mode Autoentry Enabled	
Autonegotiate Sink Alternate Mode Entry Queue		<u>_</u>
PD3 Configuration Register	User Alternate Mode #4 Settings	
Event Delay	Field	Value
Fransmit Identity Data Objec Jser Alternate Mode Config	Mode Value	0x4f4f4f4f
Display Port Capabilities	User VID Mode Load App Config Data	
ntel VID Config Register MIPI VID Configuration	User VID Mode Auto Send Unstructed VDM	
O Config	User VID Mode Autoentry Enabled	
Retimer Debug Register		
App Config Binary Data India 2C Master Configuration	Unstructured VDM Settings	
App configuration Register	Field	Value
Sleep Control Register	User VID Auto Send VDO Data	Oxcfcfcfcfbfbfbfbfafafafaf
Tx Manufacturer Info SOP	User VID Auto Send Vendor Data	0x1234
Tx Source Capabilities Exter	User Mode Auto Send VDO Count	3

When this port is connected to a PD partner that supports all these modes, the port negotiate the alternate mode contract, and the PD message exchange between the ports will be as below:

Advanced Configuration

www.ti.com

1. The port-partner will share the information about all the SVIDs that it supports in the acknowledgment to the device's 'Discover SVIDs' command

•		Msg Type	DR	PR	Obj Cn	Extended	• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	[Duration		Time	
	-D Misg	Vendor Defined	DFP	SRC	1	No	VDW Header	Discover SVIDs	REQ	0	PD SID	62	7.480 us	5.	263 ms	
ľ		Msg Type	DR	PR	Obj Cn	Extended		Cmd	Cmd Type	Obj Pos	Vendor ID	0.45	SVID 1	SVID 0	Pad 1	Pad 0
	-D Msg	Vendor Defined	UFP	SNK	3	No	VDM Header	Discover SVIDs	ACK	0	PD SID	SVIDs	0xFEDC	DisplayPort	0x0000	0x0000

2. The port partner will share the information about all the modes that it supports for custom SVID '0xFEDC' in the acknowledgment to the device's 'Discover Modes' command. The mode numbers returned by the UFP correspond to the 'Mode Value' field of the configuration register.

• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	E)uration	Time		Time Stamp
V Divi Header	Discover Modes	REQ	0	0xFEDC	62	7.858 us	5.271 m	is 4	. 061 729 976
•					_				
VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	Modes	Mode 1	Mode 2	Mode 3	Mode 4
VENTTeader	Discover Modes	ACK	0	0xFEDC	modes	0x1F1F1F1F	0x2F2F2F2F	0x3F3F3F3F3F	0x4F4F4F4F

3. The device automatically enters Mode-1 and Mode-4, and sends a predefined unstructured message on entering Mode-4 as per the above configuration.

	Msg Type Vendor Defined	DR	PR	Obj Cnt	Extended	∙ VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
FD Misy	Vendor Defined	DFP	SRC	1	No	V Divi Header	Enter Mode	REQ	1	0xFEDC
	Msg Type Vendor Defined	DR	PR	Obj Cnt	Extended	• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
FD Wisg	Vendor Defined	UFP	SNK	1	No	V Divi Header	Enter Mode	ACK	1	0xFEDC
PD Msg	Msg Type Vendor Defined	DR	PR	Obj Cnt	Extended	∙ VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
PD Wisg	Vendor Defined	DFP	SRC	1	No	VDM Header	Enter Mode	REQ	4	0xFEDC
	Msg Type	DR	PR	Obj Cnt	Extended	► VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
PD Msg	Vendor Defined	UFP	SNK	1	No	VDW Header	Enter Mode	ACK	4	0xFEDC

VDM Header	Cmd	Cmd Type	Obj Po	os Vendo	or I D	Duration	Tir	ne	
VDW Header	Enter Mode	ACK	4	0xFE	DC	626.346 us	19.57	70 ms	4
VDM Header	Data (15 bits)	Туре	Ve	endor ID	VDO	Object 1	Object 2	Object	3
v Divi Header	0x1234	Unstructu	ured 0	xFEDC	100	0xAFAFAFAF	0xBFBFBFBF	0xCFCFC	FCF

 Mode-2 and Mode-3 were not marked for auto-entry. Hence the device doesn't automatically enter these modes. The host can explicitly command the device to enter these modes using 'AMEn' command

4 Advanced Configuration

In addition to advertising and automatically entering the user alternate modes, the device can be configured to load configuration sets and issue up to two host interface commands on mode entry and exit. The loading of configuration sets is enabled by 'User VID Mode Load App Config Data' flag of the corresponding 'User Alternate Mode #N Settings' in the configuration register 0x4A. In this example, the basic configuration set of the previous section is slightly modified as below to load an application configuration on Mode-2 entry:

Figure 3. Advanced Configuration - User Alternate Mode Configuration

Customer Use Interrupt Mask for I2C1 Interrupt Mask for I2C2	User Alternate Mode Config (0x4a)	
Global System Configuration	General Settings	
Port Configuration	E Carlo	Value
Port Control Transmit Source Capabilities	Field	Value
Transmit Source Capabilities	User VID Enabled	
Autonegotiate Sink	User Alternate Mode VID (Vendor ID)	Oxfedc
Alternate Mode Entry Queue	User VID Mode 1 Enabled	
PD3 Configuration Register	User VID Mode 2 Enabled	V
Event Delay Transmit Identity Data Object	User VID Mode 3 Enabled	
User Alternate Mode Config	User VID Mode 4 Enabled	\square
Display Port Capabilities Intel VID Config Register MIPI VID Configuration	User Alternate Mode #1 Settings	
I/O Config	Field	Value
Retimer Debug Register	Mode Value	0x1f1f1f1f
App Config Binary Data Indices I2C Master Configuration	User VID Mode Load App Config Data	
App configuration Register	User VID Mode Auto Send Unstructed VDM	
Sleep Control Register Tx Manufacturer Info SOP	User VID Mode Autoentry Enabled	
Tx Source Capabilities Extende Tx Battery Capabilities	User Alternate Mode #2 Settings	
Tx Manufacturer Info SOP Prim	Field	Value
Raw View	Mode Value	0x2f2f2f2f
	User VID Mode Load App Config Data	
	User VID Mode Auto Send Unstructed VDM	
	User VID Mode Autoentry Enabled	

The configuration set that is to be loaded and the optional host interface commands to be executed (after the configuration set is loaded) are specified in the App Configuration Register (0x6C). This configuration register has three sections, namely 'App Config GPIO Group 1 Settings', 'App Config GPIO Group 2 Settings' and 'App Config GPIO Group 3 Settings'. These three sections allow the user to add configuration sets (to be loaded on the entry or exit) for the first three user alternate modes respectively. The fourth user alternate mode does not support configuration set loading. Since Mode-2 is configured to load an application configuration in this example, the settings in 'App Config GPIO Group 2 Settings' shall be configured. The example in this section configures the device to load 'Virtual Device 1 (0x1)' settings on mode entry, and 'Virtual Device 2 (0x2)' settings are loaded. 'GPsh' is executed on mode entry only, and 'SSrC' is executed on mode entry and exit.

Figure 4. Advanced Configuration - App Configuration Register

Customer Use Interrupt Mask for I2C1 Interrupt Mask for I2C2	A	<pre>\pp configuration Register (0x6c)</pre>		
Global System Configuration Port Configuration		App Config Group 1 Settings		
Port Control		Field	Value	
Transmit Source Capabilities		App Config Mask, GPIO Low Transition or User AM Exit	None	•
Transmit Sink Capabilities Autonegotiate Sink		App Config Mask, GPIO High Transition or User AM Enter	None	•
Alternate Mode Entry Queue		Command Channel to use for Command (not Task) Slot	CMD1 (0x08)	•
PD3 Configuration Register		Command Channel to use for Command or Task Slot	CMD1 (0x08)	•
Event Delay Transmit Identity Data Object		Alt Mode Entry / GPIO High 4CC Command (not Task)	Unknown (0x0)	•
User Alternate Mode Config		Alt Mode Entry / GPIO High 4CC Command or Task	SSrC	-
Display Port Capabilities		Alt Mode Exit / GPIO Low 4CC Command (not Task)	Unknown (0x0)	•
Intel VID Config Register MIPI VID Configuration		Alt Mode Exit / GPIO Low 4CC Command or Task	SSrC	-
I/O Config Retimer Debug Register		App Config Group 2 Settings		
App Config Binary Data Indice I2C Master Configuration	5	Field	Value	
App configuration Register		App Config Mask, GPIO Low Transition or User AM Exit	Virtual Address 2	•
Sleep Control Register		App Config Mask, GPIO High Transition or User AM Enter	Virtual Address 1	-
Tx Manufacturer Info SOP Tx Source Capabilities Extende		Command Channel to use for Command (not Task) Slot	CMD2 (0x09)	-
Tx Battery Capabilities		Command Channel to use for Command or Task Slot	CMD1 (0x08)	•
Tx Manufacturer Info SOP Prin	r	Alt Mode Entry / GPIO High 4CC Command (not Task)	GPsh	•
Raw View		Alt Mode Entry / GPIO High 4CC Command or Task	SSrC	-
		Alt Mode Exit / GPIO Low 4CC Command (not Task)	Unknown (0x0)	•
		Alt Mode Exit / GPIO Low 4CC Command or Task	SSrC	-

In this configuration example, 'App Config Mask, GPIO Low Transition or User AM Exit' and 'App Config Mask, GPIO High Transition or User AM Enter' is mapped to virtual identifiers 0x2 and 0x1 respectively. These identifiers are determined from the '(Virtual) Pin Strap Setting' field associated with each 'Configuration Data Sets' on the 'General Settings' tab.

Figure 5. Advanced Configuration - Configuration Data Sets

Configuration Data Sets	
Number of Configuration Sets: 2	
Configuration Set	(Virtual) Pin Strap Setting
Mideal Device 4	Virtual Address
Virtual Device 1	1 🔹
Virtual Davies 0	Virtual Address
Virtual Device 2	2 •

Configuration settings tab for 'Virtual Device 1 (0x1)' and 'Virtual Device 2 (0x2)' shows that they specify settings for the CMD2 Data Register and Transmit Source Capabilities Register (0x32). Registers may be added to or removed from this set by selecting the 'Adjust Registers' button that appears above the register list in the left pane.

Figure 6. Advanced Configuration - Virtual Device Settings

General Settings Common Settings Virtual Device 1 (0x1) Virtual Device 2 (0x2)

Configuration Mode

AdvancedConfig_1.pjt TPS65987DDH (Advanced), version 4.01

gister for CMD2 t Source Capabilities	Tx Source PDO Config										
W	Field		Value								
	Active PDO Bank		Use Bank 0								
	Active PDO Bank Follows EP										
	Bank 0 Settings										
	Number of Bank 0 Source PDOs										
	2	2									
	Source PDO 1										
	Field		Value								
	Switch Source		PP2 sources this PDO	-							
	Maximum Current		3 A								
	Voltage		5 V 100% 2 2 2								
	Peak Current										
	Unchunked Extended Msg Supported										
	USB Capable										
	USB Suspend Supported										
	Supply Type		Fixed Source								
	Source PDO 2										
	Field		Value								
	Advertised Mask	Always Adver	tise	-							
	Switch Source	PP2 sources	PP2 sources this PDO 3 A								
	Maximum Current	3 A									
	Minimum Voltage	5 V		•							
	Maximum Voltage	00.14	20 V								

Figure 7. Advanced Configuration - Virtual Device Settings

General Settings Common Settings Virtual Device 1 (0x1) Virtual Device 2 (0x2)

-	_		
Co	nfiai	iration	Mode

AdvancedConfig_1.pjt TPS65987DDH (Advanced), version 4.01

Adjust Registers	Transmit Source Capabilities (0x32)		
Transmit Source Capabilities			
Raw View	Tx Source PDO Config		
	TX Source PDO Connig		
	Field	Value	
	Active PDO Bank	Use Bank 0	<u> </u>
	Active PDO Bank Follows EP		
	Bank 0 Settings		
	Number of Bank 0 Source PDOs		
	1		-
	Source PDO 1		
	Field	Value	
	Switch Source	PP2 sources this PDO	-
	Maximum Current	3 A	
	Voltage	5 V	
	Peak Current	100%	
		100% ☑	<u> </u>
	Peak Current		<u> </u>
	Peak Current Unchunked Extended Msg Supported	, I	<u> </u>

Comparison of the Transmit Source Capabilities registers as specified in 'Virtual Device 1' and 'Virtual Device 2' shows that upon entry into the user alternate Mode-2, the Transmit Source Capabilities register will be populated with two source PDOs (fixed 5 V and variable 5 V — 20), and upon exit, the Transmit Source Capabilities register will be populated with one source PDO (fixed 5 V). It can also be verified that the initialization parameters for this register, specified in the 'Common Settings' tab match those of 'Virtual Device 2' since the system is always initialized in a state where no alternate modes have been entered.

When this port is connected to a PD partner that supports all these modes, the ports negotiate the alternate mode contract, and the PD message exchange between the ports will be as below:

1. The port-partner will share the information about all the SVIDs that it supports in the acknowledgment to the device's 'Discover SVIDs' command

	Mag	Msg Type	DR	PR	Obj Cnt	Extended	• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	C	Ouration	٦	Time	
FUI	visg	Vendor Defined	DFP	SRC	1	No	VDM Header	Discover SVIDs	REQ	0	PD SID	62	7.480 us	5.1	263 ms	
۲		Msg Type	DR	PR	Obi Cnt	Extended	•	Cmd	Cmd Type	Obi Pos	Vendor ID		SVID 1	SVID 0	Pad 1	Pad 0
PD N	Msg	Vendor Defined	UFP	SNK	3	No	VDM Header	Discover SVIDs		0	PD SID	SVIDs	0xFEDC	DisplayPort		

 The port partner will share the information about all the modes that it supports for this custom SVID '0xFEDC' in the acknowledgment to the device's 'Discover Modes' command. The mode numbers returned by the UFP correspond to the 'Mode Value' field of the configuration register.

ľ	VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	D	uration	Time		Time Stamp		
	VDIVI Header	Discover Modes	REQ	0	0xFEDC	62	7.858 us	5.271 m	is 4	. 061 729 976		
Þ		Canal	Card Trans		VeederID		Mada 4	Mode 2	Mada 2	Mode 4		
	VDM Header	Cmd	Cmd Type	Obj Pos	vendor ID		Mode 1		Mode 3			
	v Divi Header	Discover Modes	ACK	0	0xFEDC	modes	0x1F1F1F1F	0x2F2F2F2F	0x3F3F3F3F	0x4F4F4F4F		

3. The device automatically enters Mode-1, Mode-2 and Mode-4. The device sends the 'Source Capabilities' on entering Mode-2 (thereby renegotiate the PD contract) and sends a predefined unstructured message on entering Mode-4 as per the above configuration.

Msg Type DR PR Msg ID Obj Cnt Extended Vendor Defined DFP SRC 1 1 No		Cmd Cmd Type Enter Mode REQ	Obj Pos Vendor ID 1 0xFEDC	Duration 627.858 us	Time 5.283 ms	
Msg Type DR PR Msg ID Obj Cnt Exten Vendor Defined UFP SNK 5 1 No	- VDM Header	Cmd Cmd Type Enter Mode ACK	Obj PosVendor ID10xFEDC	Duration 626.346 us	Time 20.004 ms	4
Msg Type DR PR Msg ID Obj Cnt Exten Vendor Defined DFP SRC 2 1 No		Cmd Cmd Type Enter Mode REQ	Obj Pos Vendor ID 2 0xFEDC	Duration 627.858 us	Time 5.281 ms	4
Msg Type DR PR Msg ID Obj Cnt Exten Vendor Defined UFP SNK 6 1 No		Cmd Cmd Type Enter Mode ACK	Obj PosVendor ID20xFEDC	Duration 626.346 us	Time 20.875 ms	4
Msg Type DR PR Msg ID Obj Cnt Extended Source Cap DFP SRC 3 2 No		oltage Dual Role 5.00 V 1 Var	iable Max Cur Min Vo 3.00 A 5.00 V		Duration 60.967 us	Time 5.399 m
Msg Type DR PR Msg ID Obj Cnt Extended Request UFP SNK 7 1 No	Request Max Opr 0 3.00A	Cur Opr Cur Cap Mism 3.00A 1		Duration 26.346 us	Time 5.300 ms	Time \$ 4 . 970 (
Msg Type DR PR Msg ID Obj Cnt Extended Accept DFP SRC 4 0 No	Duration 495.127 us	Time 36.783 ms	Time Stamp 4 . 975 353 136			
Msg Type DR PR Msg ID Obj Cnt Extended PS Ready DFP SRC 5 0 No	Duration 494.978 us	Time 19.795 ms	Time Stamp 5 . 012 135 672			
Msg Type DR PR Msg ID Obj Cnt Extended Vendor Defined DFP SRC 6 1 No		Cmd Cmd Type Enter Mode REQ	Obj Pos Vendor ID 4 0xFEDC	Duration 627.858 us	Time 5.269 ms	E
Msg Type DR PR Msg ID Obj Cnt Exten Vendor Defined UFP SNK 0 1 No		Cmd Cmd Type Enter Mode ACK	Obj PosVendor ID40xFEDC	Duration 625.968 us	Time 19.565 ms	5
Msg Type DR PR Msg ID Obj Cnt Exten Vendor Defined DFP SRC 7 4 No	ed VDM Header	Data (15 bits) Type 0x1234 Unstruct		Object 1	Object 2 Ob BFBFBFBF 0xCF	oject 3

4. The device does not automatically enter Mode-3 as this mode was not marked for auto-entry. The host application can explicitly command the device to enter this mode using 'AMEn' command.

The preceding section explains the method for reconfiguring the host interface register settings automatically upon entry into or exit from user alternate modes. In the example presented, the Transmit Source Capabilities register was modified upon entry into and exit from user alternate Mode-2. Overwriting the Transmit Source Capabilities register does not, however, force a retransmission of source capabilities. This is accomplished by issuing the host interface command 'SSrC'. As many as one Host Interface Command and one Host Interface Task may be executed upon user alternate mode entry and exit. These may be individually specified for entry and exit. For instance, a mode could issue the 'SWSr' (SWap to Source) task upon entering a given mode but issue the 'SWSk' (SWap to Sink) task upon exiting the same mode.

5 Advanced Configurations with EC

The user alternate mode capabilities and example configurations presented in the previous sections of this document are static configurations based on mode entry and/or exit. The capabilities of the user alternate mode can be greatly expanded with the addition of an external microcontroller, and the subsequent sections present few simple use-cases that can be implemented using the user alternate modes.

5.1 Example 1

This example defines a Custom-VID '0x0055' which supports two alternate modes with their mode values as 0x1 and 0x2 respectively. The port partner is assumed to support this custom VID and its modes.

- Using Mode-1, Port-A commands Port-B to drive a GPIO(s) on receiving an external trigger. The example uses unstructured VDM for exchanging messages between the port partners, and the message construct can be entirely defined by the vendors. This simple use-case is particularly applicable to applications such as laptop docking stations, where a push button event can be used to send status information from one device to another.
- 2. Using Mode-2, Port-A queries the status information of Port-B. This simple example demonstrates the ability of the user alternate modes to exchange proprietary information and build complex use-cases around it, for instance, to modify the power sinking capabilities of a laptop depending on its battery charging properties when connected to a recognized and supported PD adapter.

Both these mode examples use an unstructured VDM to exchange proprietary information with their port partner. Per PD specification, Bit-14:0 of an 'Unstructured VDM Header' is available for vendor's use, and the content of this field can be defined by the vendors.

This example defines Bit-14:0 of the unstructured VDM header as below:

Advanced Configurations with EC

```
/*!
 * \brief UVDM Header Structure
 */
typedef struct __attribute__((packed))
{
    uint32_t cmdtype : 2;
    uint32_t mode : 3;
    uint32_t reserved : 3;
    uint32_t command : 4;
    uint32_t totalvdos : 3;
    uint32_t vdmtype : 1;
    uint32_t svid : 16;
```

}s_TPS_uvdmHeader;

The example in this section configures the device to support a Custom-VID '0x55' with two alternate modes. The two alternate modes are enabled and their mode values are 0x1 and 0x2. Auto-Entry is enabled for both the modes.

Customer Use Interrupt Mask for I2C1 Interrupt Mask for I2C2	User Alternate Mode Config (0x4a)	
Global System Configuration Port Configuration	General Settings	
Port Control	Field	Value
Transmit Source Capabilities	User VID Enabled	
Transmit Sink Capabilities Autonegotiate Sink	User Alternate Mode VID (Vendor ID)	0x55
Alternate Mode Entry Queue	User VID Mode 1 Enabled	
PD3 Configuration Register	User VID Mode 2 Enabled	
Event Delay Transmit Identity Data Object	User VID Mode 3 Enabled	
User Alternate Mode Config	User VID Mode 4 Enabled	
Display Port Capabilities ntel VID Config Register VIPI VID Configuration	User Alternate Mode #1 Settings	
I/O Config	Field	Value
Retimer Debug Register	Mode Value	0x1
App Config Binary Data Indices I2C Master Configuration	User VID Mode Load App Config Data	
App configuration Register	User VID Mode Auto Send Unstructed VDM	
Sleep Control Register	User VID Mode Autoentry Enabled	\checkmark
Tx Manufacturer Info SOP Tx Source Capabilities Extende Tx Battery Capabilities	User Alternate Mode #2 Settings	
Tx Manufacturer Info SOP Prim	Field	Value
Raw View	Mode Value	0x2
	User VID Mode Load App Config Data	
	User VID Mode Auto Send Unstructed VDM	
	User VID Mode Autoentry Enabled	

Figure 8. Advanced Configuration with EC - User Alternate Mode Register

The device is also configured to generate below events and notify the host on mode entry/exit and the reception of the vendor defined message. The host application shall read and process the content of 'Rx User VID Attention VDM (0x60)' and 'Rx User VID Other VDM (0x61)' registers depending on the generated event.

Customer Use		
Interrupt Mask for I2C1	AM Entry Failure	
Interrupt Mask for I2C2	AM Entered	
Global System Configuration	Vendor Defined Message Sent	
Port Configuration Port Control	Discover Mode Complete	
Transmit Source Capabilities	Exit Mode Complete	
Transmit Olate Operate littles		
Transmit Sink Capabilities	User SVID Mode Entered	
Autonegotiate Sink	User SVID Mode Entered User SVID Mode Exited	
Autonegotiate Sink Alternate Mode Entry Queue PD3 Configuration Register Event Delay	User SVID Mode Exited	
Autonegotiate Sink Alternate Mode Entry Queue PD3 Configuration Register	User SVID Mode Exited User SVID Attention VDM Received	

Figure 9. Advanced Configuration with EC - Interrupt Mask Register

When this port is connected to a PD partner that supports all these modes, the ports negotiate the alternate mode contract, and the PD message exchange between the ports will be as below:

1. The port-partner will share the information about all the SVIDs that it supports in the acknowledgment to the device's 'Discover SVIDs' command.

Msg Type	DR	PR	Obj Cnt	Extended	► VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	0	Duration		Time	
Vendor Defined	DFP	SRC	1	No	VDW Header	Discover SVIDs	REQ	0	PD SID	62	7.858 us	; 5	5. <mark>275 ms</mark>	
					•									
Msg Type	DR	PR	Obj Cnt	Extended	VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	SVIDe	SVID 1	SVID 0	Pad 1	Pad 0
Vendor Defined	UFP	SNK	3	No	VDW Header	Discover SVIDs	ACK	0	PD SID	3105	0x0055	DisplayPort	0x0000	0x0000

2. The port partner will share the information about all the modes that it supports for this custom SVID '0x0055' in the acknowledgment to the device's 'Discover Modes' command, and the device automatically enters Mode-1 and Mode-2. The mode numbers returned by the UFP correspond to the 'Mode Value' field of the configuration register.

Msg Type	DR	PR	Obj Cnt	Extended	∙ VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	D	uration	Time
Vendor Defined	DFP	SRC	1	No	VDM Header	Discover Modes	REQ	0	0x0055	62	7.858 us	5.272 n
Msg Type	DR	PR	Obi Cnt	Extended	•	Cmd	Cmd Type	Obi Pos	Vendor ID		Mode 1	Mode 2
Vendor Defined			,	No	VDM Header	Discover Modes	Cmd Type ACK	0	0x0055	Modes	0x00000001	0x00000002

Msg Type	DR	PR	Obi Cnt	Extended	Þ	Cmd	Cmd Type	Obi Pos	Vendor ID
Vendor Defined			1	No	VDM Header	Enter Mode	REQ	1	0x0055
Msg Type	DR	PR	Obj Cnt	Extended	► VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
Vendor Defined	UFP	SNK	1	No	VDW Header	Enter Mode	ACK	1	0x0055
Msg Type	DR	PR	Obj Cnt	Extended	, VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
Vendor Defined	DFP	SRC	1	No	VDM Header	Enter Mode	REQ	2	0x0055
Msg Type	DR	PR	Obj Cnt	Extended	• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID
Vendor Defined	UFP	SNK	1	No	VDM Header	Enter Mode	ACK	2	0x0055

The device generates an interrupt on mode entry/exit and on receiving user defined attention/nonattention message - The host application shall read 'User VID Status (0x57)', 'Rx User VID Attention VDM (0x60)' and 'Rx User VID Other VDM (0x61)' registers depending on the generated events and process the content.

The below example code demonstrates how the events shall be used for the host application:

```
/*
* I2Cx_IRQ Handler
*/
static int32_t ProcessEvent()
{
    s_TPS_intevent *pSetEvent
                                     = NULL;
    s_TPS_intevent *pClrEvent
                                     = NULL;
                outdata[MAX_BUF_BSIZE] = {0};
    uint8 t
```



```
www.ti.com
```

```
Advanced Configurations with EC
```

```
indata[MAX_BUF_BSIZE] = {0};
    uint8_t
    int32_t
                retVal = -1;
    retVal = ReadReg(REG_ADDR_INTEVENT1, REG_LEN_INTEVENT1, &outdata[0]);
    ASSERT_ON_ERROR(retVal);
    pSetEvent = (s_TPS_intevent*)((uint8_t*)&outdata[1]);
    pClrEvent = (s_TPS_intevent *)&indata[0];
    if(0 != pSetEvent->uservidaltmodeentered)
    {
        SignalEvent(APP_EVENT_USER_AM_ENTERED);
        pClrEvent->uservidaltmodeentered = 1;
    }
    if(0 != pSetEvent->uservidaltmodeothervdm)
    {
        SignalEvent(APP_EVENT_UVDM_RCVD);
        pClrEvent->uservidaltmodeothervdm = 1;
    }
    if(0 != pSetEvent->uservidaltmodeattnvdm)
    {
        SignalEvent(APP_EVENT_ATTN_RCVD);
        pClrEvent->uservidaltmodeattnvdm = 1;
    }
    if(0 != pSetEvent->uservidaltmodeexited)
    {
        SignalEvent(APP_EVENT_USER_AM_EXITED);
        pClrEvent->uservidaltmodeexited = 1;
    }
    retVal = WriteReg(REG_ADDR_INTCLEAR1, REG_LEN_INTCLEAR1, &indata[0]);
    RETURN_ON_ERROR(retVal);
    return retVal;
}
/*
\ast Called by application on receiving 'uservidaltmode
entered' event
* from the device
*/
static int32_t UserAMEntry()
{
    s_TPS_uservidstatus *p_uservidstatus
                                             = NULL;
    uint8_t outdata[MAX_BUF_BSIZE] = {0};
    int32_t retVal = -1;
    retVal = ReadReg(REG_ADDR_USERVIDSTATUS, REG_LEN_USERVIDSTATUS,&outdata[0]);
    RETURN_ON_ERROR(retVal);
    p_uservidstatus = (s_TPS_uservidstatus *)&outdata[1];
    /*!
     * Configure application according to the entered mode
     */
    if(ACTIVE == p_uservidstatus->usermodelstatus)
    {
         * Application specific configuration #1
         * /
    }
    if(ACTIVE == p_uservidstatus->usermode2status)
    {
```

```
TEXAS
INSTRUMENTS
```

```
/*
         * Application specific configuration #2
         * /
    }
   return 0;
}
/*
* Called by application on receiving 'uservidaltmodeattnvdm' event
* from the device
*/
static int32_t ProcessRxVDMAttnEvents()
{
    s_TPS_uservidstatus
                           *p_uservidstatus = NULL;
                          *p_uvdmheader = NULL;
*p_rxattention = NULL;
    s_TPS_uvdmHeader
                          *p_uvdmheader
    s_TPS_rxattention
              outdata[MAX_BUF_BSIZE] = \{0\};
    uint8_t
   uint32_t rxattentiondo1 = 0;
uint32_t rxattentiondo2 = 0;
    int32_t retVal = -1;
    /*
     * Read the contents of received VDM packet
     */
    retVal = ReadReg(REG_ADDR_RXUSERVIDATTENTIONVDM, \
                     REG_LEN_RXUSERVIDATTENTIONVDM, &outdata[0]);
    RETURN_ON_ERROR(retVal);
    /* outdata[0] has size */
    p_rxattention = (s_TPS_rxattention *)(&outdata[1]);
    rxattentiondo1 = p_rxattention->rxattentiondo1;
    rxattentiondo2 = p_rxattention->rxattentiondo2;
    /*
    \ast User defined UVDM Header - See Table 6-24 of the PD specification
     */
    p_uvdmheader = (s_TPS_uvdmHeader *)rxattentiondol;
    /*
       Application specific implementation
   return retVal;
}
/*
\star Called by application on receiving <code>'uservidaltmodeothervdm'</code> event
* from the device
*/
static int32_t ProcessRxVDMEvents()
{
    s_TPS_uservidstatus
                            *p_uservidstatus = NULL;
    s_TPS_uvdmHeader
                            *p_uvdmheader
                                                = NULL;
    s_TPS_rxvdm
                            *p_rxvdm
                                                 = NULL;
              outdata[MAX_BUF_BSIZE] = \{0\};
    uint8_t
    uint32 t rxvdmdol = 0;
    uint32_t rxvdmdo2 = 0;
    int32_t retVal = -1;
    /*!
     * Read the contents of received VDM packet
     */
```

TEXAS INSTRUMENTS

www.ti.com

```
Advanced Configurations with EC
```

```
retVal = ReadReg(REG_ADDR_RXUSERVIDOTHERVDM, \
                    REG LEN RXUSERVIDOTHERVDM, &outdata[0]);
   RETURN_ON_ERROR(retVal);
    /* outdata[0] has size */
   p_rxvdm = (s_TPS_rxvdm *)(&outdata[1]);
   rxvdmdo1 = p_rxvdm->rxvdmdo1;
   rxvdmdo2 = p_rxvdm->rxvdmdo2;
    /*
    \ast User defined UVDM Header - See Table 6-24 of the PD specification
    */
   p_uvdmheader = (s_TPS_uvdmHeader *)rxvdmdol;
    /*
     * Application specific implementation
     * /
   return retVal;
}
/*
\ast Example code showning how the device could be commanded (using VDMs)
* to send a unstructured message to the far-end.
* Application Specific Example - Switch-1 triggers Port-A to send
\ast unstructured VDM command to Port-B for toggling LED1
*/
static int32_t Switch1Event(void)
{
   s_TPS_uvdmHeader
                       *p_uvdmheader = NULL;
   s_TPS_vdms vdmsInData = {0};
             outdata[MAX_BUF_BSIZE] = {0} ;
   uint8 t
   uint32_t uvdmheader = 0;
   int32_t
             retVal = -1;
   UART_PRINT(" SW1 - Command the far-end to drive a GPIOnr";
    uvdmheader = vdmsInData.vdmheader;
   p_uvdmheader = (s_TPS_uvdmHeader *)&uvdmheader;
   p_uvdmheader->cmdtype = REQ;
   p_uvdmheader->mode
                         = Mode_1;
   p_uvdmheader->command = TOGGLE_LED;
   p_uvdmheader->totalvdos = 1;
   p_uvdmheader->vdmtype = UNSTRUCTURED_VDM;
   p_uvdmheader->svid = USER_SVID;
   vdmsInData.numdos
                         = 2;
                                    /* (userheader.totalvdos) + 1 */
   vdmsInData.soptarget = SOP;
   vdmsInData.vdmheader = uvdmheader;
    vdmsInData.vdo2
                           = LED1;
    retVal = ExecCmd(VDMs, sizeof(s_TPS_vdms), (int8_t *)&vdmsInData,\
                    TASK_RETURN_STATUS_LEN, &outdata[0]);
   RETURN_ON_ERROR(retVal);
   if(0 != outdata[1])
    {
       UART_PRINT("[%d]: Operation Failed.!\n", outdata[1]);
       return -1;
    }
   return 0;
}
/*
```

```
Advanced Configurations with EC
```

```
* Example code showning how Port-B shall process the received
* unstructured VDM
* Application Specific Example - Port-B received the 'Toggle-LED' command
 * from Port-A, and below snippet processes it
*/
static int32_t ModelEvents() /* Like 'ProcessRxVDMEvents' above */
{
   s_TPS_status
                       *p_status_reg = NULL;
   s_TPS_rxvdm
                       *p_rxvdm_reg
                                      = NULL;
                       *p_uvdmheader = NULL;
   s_TPS_uvdmHeader
   s_TPS_vdms
                       vdmsInData
                                       = {0};
               outdata[MAX_BUF_BSIZE] = {0} ;
    uint8_t
   uint32_t uvdmheader = 0;
                          = -1;
   int32 t
               retVal
    int32_t
               dataRole
                         = -1;
   UART_PRINT("Received UDVM Mode-1 Event - Process it\n\r");
   retVal = ReadReg(REG_ADDR_STATUS, REG_LEN_STATUS, &outdata[0]);
   p_status_reg = (s_TPS_status *)(&outdata[1]);
    dataRole = p_status_reg->datarole ;
    /* DFP sent the command, and UFP is processing it here in this example */
   if(UFP_DATA_ROLE == dataRole)
    {
       retVal = ReadReg(REG_ADDR_RXVDM, REG_LEN_RXVDM, &outdata[0]);
       p_rxvdm_reg = (s_TPS_rxvdm *)(&outdata[1]);
       /*
        * 'rxvdmdo2' was populated w/ LED1 in function 'SwitchlEvent' above
        * 'rxvdmdol' contains VDM header - Application can interpret as
        * type 's_TPS_uvdmHeader' and ensure the received command is
        * TOGGLE_LED'
        */
       if(LED1 == p_rxvdm_reg->rxvdmdo2)
        {
           GPIO_IF_LedToggle(LED1);
        }
        * ACK the incoming message.!
        */
       p_uvdmheader
                      = (s_TPS_uvdmHeader *)&uvdmheader;
       p_uvdmheader->cmdtype = ACK;
       p_uvdmheader->mode
                             = Mode_1;
       p_uvdmheader->command = TOGGLE_LED;
       p_uvdmheader->totalvdos = 1;
       p_uvdmheader->vdmtype = UNSTRUCTURED_VDM;
       p_uvdmheader->svid = USER_SVID;
       vdmsInData.numdos
                              = 1;
       vdmsInData.soptarget
                              = SOP;
                             = (int32_t)uvdmheader;
       vdmsInData.vdmheader
       retVal = ExecCmd(VDMs, sizeof(s_TPS_vdms), (int8_t *)&vdmsInData,\
                        TASK_RETURN_STATUS_LEN, &outdata[0]);
       RETURN_ON_ERROR(retVal);
    }
   return 0;
```

}

Texas

www.ti.com

TRUMENTS

The PD message exchanges between Port-A and Port-B when the above example code is executed on the host application(s) is as below:

1. Port-A sends 'TOGGLE_LED' command to Port-B with 'Object 1' as 'LED1', and Port-B acknowledges the request

Advanced Configurations with EC

PO I	400	Msg Type	DR	PR	Msg ID	Obj Cn	Extended	VDM Header	Data (15 bits)	Type	Vendor ID	unne	Object 1	Duration	Idie	Time S
-0.	199	Vendor Defined	DFP	SNK	6	2	No	Vom Header	0x1004	Unstructured	0x0055	1005	0x00000001	758.219 us	46.845 us	3.7199
		Msg Type DR	PR	Msg	ID Obj	Cnt	Duration	- P	die	Time Stamp						
PON	190	GoodCRC UFP	SRC	6	0		493.190 us	4.3	23 ms	3.7207975	44					

 Msg Type
 DR
 PR
 Msg ID
 Obj Cnt
 Extended
 VDM
 Header
 Data (15 bits)
 Type
 Vendor ID
 Object 1
 Duration
 Idle
 Time 3

 Vendor Defined DFP SNK
 6
 2
 No
 VDM
 Header
 0x1004
 Unstructured
 0x00055
 VDOs
 Object 1
 Duration
 Idle
 Time 3

 PD Msg
 Msg ID_OFE
 0.0
 0.0
 Time 3
 0x00055
 VDOs
 0x00000001
 758.219 us
 468.845 us
 3.719 9

 PD Msg
 Msg ID_OFE
 Direction
 Idle
 Time 5 Stamp
 720.707.544
 720.707.544
 544.54
 545.219 us
 468.845 us
 57.219 us
 468.845 us
 5

2. Port-A sends 'READ_REG' command to Port-B with 'Object 1' as 'REGISTER-NUMBER', and Port-B responds with its PD firmware version '0xF7070001

PD Msg Msg Type DR PR Msg ID Obj Crit Extended Vendor Defined DFP SNK 0 2 No	VDM Header 0x1008	Unstructured 0x0055	VDOs Object 1 0x0000040F	Duration 757.990 us	Idle 54.290 us	Time Stamp 4 . 565 994 840
PD Msg Msg Type DR PR Msg ID Obj Cnt Duratio GoodCRC UFP SRC 0 0 493.190		Time Stamp 4 . 566 807 120				
PD Msg Msg Type DR PR Msg ID Obj Cnt Extended Vendor Defined UFP SRC 2 2 No	VDM Header Data (15 bit	Type Vendor ID Unstructured 0x0055	VDOs Object 1 0x#7071001	Duration 757.303 us	1dio 47.041 us	Time Stamp 4 . 724 698 720
PO Msg Msg Type DR PR Msg ID Obj Cnt. Duration GoodCRC DFP SNK 2 0 493.637		Time Stamp 4 . 725 503 064				

5.2 Example 2

The previous generation PD controllers from TI (TPS65981, TPS65982 and so forth) had support for PDIO Alternate Mode which allows users to transmit or receive up to four unique digital signals between two systems connected through USB Type-C. The support for this alternate mode is removed from this variant of the device as vendors have an option to implement PDIO-like functionality using user alternate mode as detailed in this section.

The device will however need to support TI's PDIO mode to inter-operate with the earlier generation devices supporting this feature. This example lists the steps for implementing this feature using user alternate modes. This mode uses both structured and unstructured VDM to exchange proprietary information with their port partner.

The example in this section configures the device to support TI SVID '0x0451' with one alternate modes. The alternate modes is enabled and its mode values is 0x1/TI-PDIO. Auto-Entry is enabled for this mode.

Figure 10. Advanced Configuration with EC - User Alternate Mode Register

Customer Use Interrupt Mask for I2C1 Interrupt Mask for I2C2	User Alternate Mode Config (0x4a)	^						
Global System Configuration Port Configuration	General Settings							
Port Control	Field	Value						
Transmit Source Capabilities	User VID Enabled							
Transmit Sink Capabilities Autonegotiate Sink	User Alternate Mode VID (Vendor ID)	0x451						
Alternate Mode Entry Queue	User VID Mode 1 Enabled							
PD3 Configuration Register	User VID Mode 2 Enabled							
Event Delay Transmit Identity Data Object	User VID Mode 3 Enabled							
User Alternate Mode Config	User VID Mode 4 Enabled							
Display Port Capabilities Intel VID Config Register MIPI VID Configuration	User Alternate Mode #1 Settings							
I/O Config	Field	Value						
Retimer Debug Register	Mode Value	0x1						
App Config Binary Data Indices	User VID Mode Load App Config Data							
HW control Register	User VID Mode Auto Send Unstructed VDM							
App configuration Register	User VID Mode Autoentry Enabled							
Sleep Control Register								

The device is also configured to generate below events and notify the host on mode entry/exit and the reception of the vendor defined message. The host application shall read and process the content of 'Rx User VID Attention VDM (0x60)' and 'Rx User VID Other VDM (0x61)' registers depending on the generated event.

	Error. Dio Emicologie ignored		
Customer Use			
Interrupt Mask for I2C1	AM Entry Failure		
Interrupt Mask for I2C2	AM Entered		
Global System Configuration	Vendor Defined Message Sent		
Port Configuration Port Control	Discover Mode Complete		
Transmit Source Capabilities	Exit Mode Complete		
ransmit Sink Capabilities			
	User SVID Mode Entered	\checkmark	
Autonegotiate Sink	User SVID Mode Entered User SVID Mode Exited		
Autonegotiate Sink Alternate Mode Entry Queue	User SVID Mode Exited		
Autonegotiate Sink	User SVID Mode Exited User SVID Attention VDM Received		
Autonegotiate Sink Alternate Mode Entry Queue PD3 Configuration Register	User SVID Mode Exited User SVID Attention VDM Received User SVID Other VDM Received		
Autonegotiate Sink Alternate Mode Entry Queue PD3 Configuration Register Event Delay	User SVID Mode Exited User SVID Attention VDM Received		

Figure 11. Advanced Configuration with EC - Interrupt Mask Register

When this port is connected to a PD partner that supports legacy TI-PDIO mode, the ports negotiate the alternate mode contract, and the PD message exchange between the ports will be as below:

1. The port-partner will share the information about all the SVIDs that it supports in the acknowledgment to the device's 'Discover SVIDs' command

ľ	PD Msa	Msg Type	DR	PR	Obj Cnt	VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	Duration	Time
	-D Msg	Vendor Defined	DFP	SRC	1	VDW Header	Discover SVIDs	REQ	0	0xFF00	627.669 us	5.299 ms
						•						
	PD Msa	Msg Type	DR	PR	Obj Cnt	VDM Hoador	Cmd	Cmd Type	Obj Pos	Vendor ID	SVIDs SVID 1 SV	ID 0 SVID 2 Pad 0
	-D Misy	Vendor Defined	UFP	SNK	3	V Divi Header	Discover SVIDs	ACK	0	0xFF00	0xFF01 0x8	3087 0x0451 0x0000

2. The port partner will share the information about all the modes that it supports TI-SVID '0x0451' in the acknowledgment to the device's 'Discover Modes' command, and the device automatically enters TI-PDIO mode if its supported by the port partner

Wendor Defined DFP SRC 2 VDM Header Discover Modes REQ 0 0x0451 PD Msg Msg Type DR PR Obj Cnt VDM Header Cmd Cmd Type Obj Pos Vendor ID Modes Mode 1 VDM Header VDM Header Cmd Cmd Cmd Type Obj Pos Vendor ID Modes Mode 1 0x00000001	PD Msq	Msg Type	DR	PR	Obj Cnt	▶ VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	Undefined	Data 1
PU Msd Modes	FD Misg	Vendor Defined	DFP	SRC	2	VDIM Header	Discover Modes	REQ	0	0x0451	Undenned	0x00FF0451
PU Msd Modes	-											
Vendor Defined UFP SNK 2 Volume reader Discover Modes ACK 0 0x0451 Wodes 0x00000001												
	PD Mag	Msg Type	DR	PR	Obj Cnt	VDM Hondor	Cmd	Cmd Type	Obj Pos	Vendor ID	Madaa	Mode 1

PD Msg	Msg Type	DR	PR	Obj Cnt	• VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	Undefined	Data 1	
FD Msg	Vendor Defined	DFP	SRC	2	VDW Header	Enter Mode	REQ	1	0x0451	Undenned	0x000104	151
					•							
PD Msg	Msg Type	DR	PR	Obj Cnt	VDM Header	Cmd	Cmd Type	Obj Pos	Vendor ID	Durati	on	
FD Misg	Vendor Defined	UFP	SNK	1	VDM Header	Enter Mode	ACK	1	0x0451	625.590) us	

The device generates an interrupt on mode entry/exit and on receiving user defined attention/non-attention message – The host application shall read 'User VID Status (0x57)', 'Rx User VID Attention VDM (0x60)' and 'Rx User VID Other VDM (0x61)' registers depending on the generated events and process the content.

The below example code demonstrates how the events shall be used for the host application:

```
/*
* I2Cx_IRQ Handler
*/
static int32_t ProcessEvent()
{
   s_TPS_intevent *pSetEvent
                                 = NULL;
   s_TPS_intevent *pClrEvent
                                 = NULL;
   uint8_t outdata[MAX_BUF_BSIZE] = {0};
   uint8_t indata[MAX_BUF_BSIZE] = {0};
   int32_t
            retVal = -1;
   retVal = ReadReg(REG_ADDR_INTEVENT1, REG_LEN_INTEVENT1, &outdata[0]);
   ASSERT_ON_ERROR(retVal);
   pSetEvent = (s_TPS_intevent*)((uint8_t*)&outdata[1]);
   pClrEvent = (s_TPS_intevent *)&indata[0];
```

Advanced Configurations with EC

www.ti.com

```
if(0 != pSetEvent->uservidaltmodeentered)
    {
        SignalEvent(APP_EVENT_USER_AM_ENTERED);
        pClrEvent->uservidaltmodeentered = 1;
    }
    if(0 != pSetEvent->uservidaltmodeothervdm)
    {
        SignalEvent(APP_EVENT_UVDM_RCVD);
        pClrEvent->uservidaltmodeothervdm = 1;
    }
    if(0 != pSetEvent->uservidaltmodeattnvdm)
    ł
        SignalEvent(APP_EVENT_ATTN_RCVD);
        pClrEvent->uservidaltmodeattnvdm = 1;
    }
    if(0 != pSetEvent->uservidaltmodeexited)
    {
        SignalEvent(APP_EVENT_USER_AM_EXITED);
        pClrEvent->uservidaltmodeexited = 1;
    }
    retVal = WriteReg(REG_ADDR_INTCLEAR1, REG_LEN_INTCLEAR1, &indata[0]);
    RETURN_ON_ERROR(retVal);
    return retVal;
}
/*
* Called by application on receiving 'uservidaltmodeentered' event
* from the device
*/
static int32_t UserAMEntry()
{
    s_TPS_uservidstatus *p_uservidstatus
                                             = NULL;
    uint8_t outdata[MAX_BUF_BSIZE] = {0};
    int32_t retVal = -1;
    retVal = ReadReg(REG_ADDR_USERVIDSTATUS, REG_LEN_USERVIDSTATUS, &outdata[0]);
    RETURN_ON_ERROR(retVal);
    p_uservidstatus = (s_TPS_uservidstatus *)&outdata[1];
    /*!
    * Check if User Alternate Mode 1 is entered.
     * Send PDIO Status to far-end on entering the mode
     * if the port's data-role is DFP - Not shown here.!
     */
    if(ACTIVE == p_uservidstatus->usermodelstatus)
    {
        UART_PRINT("User Alternate Mode - Mode 1 entered.\n\r");
       retVal = SendPDIOStatus();
       RETURN_ON_ERROR(retVal);
    }
    return 0;
}
/*
* Sends PDIO status to the far-end/UFP on entering the mode
*/
static int32_t SendPDIOStatus()
```

```
TEXAS
INSTRUMENTS
```

```
www.ti.com
```

```
s_TPS_vdmheadersstruct *p_vdmheader
                                            = NULL;
   s TPS vdms
                            vdmsInData
                                           = \{0\};
   uint8_t
              outdata[MAX_BUF_BSIZE] = {0};
   uint32_t vdmheader
                          = 0;
   int32_t
              retVal = -1;
   UART_PRINT("Send PDIO Status\n\r");
   vdmheader = vdmsInData.vdmheader;
   p_vdmheader = (s_TPS_vdmheadersstruct *)&vdmheader;
   p_vdmheader->command = SVDM_SendPDIO_Status;
                                                    //0x14
   p_vdmheader->commandtype = CMD_TYPE_REQ;
                                                    //0x0
   p_vdmheader->objpos = 0x1;
   p_vdmheader->structuredvdmversion = 0x1;
   p_vdmheader->vdmtype = 0x1;
   p_vdmheader->svid = TI_SVID;
                                   //0x0451
   vdmsInData.numdos
                           = 2;
    vdmsInData.vdmheader
                           = vdmheader;
    /*
     * PDIO_IN<x> is 1 for enable, and 0 for disable
     * #define PDIO_IN_EVENTS ((PDIO_IN3 << 3) | (PDIO_IN2 << 2) |
     *
                               (PDIO_IN1 << 1) (PDIO_IN0 << 0))
     */
    vdmsInData.vdo2
                            = ((PDIO_IN_EVENTS) << 16);
   retVal = ExecCmd(VDMs, sizeof(s_TPS_vdms), (int8_t *)&vdmsInData,\
                    TASK_RETURN_STATUS_LEN, (int8_t *)&outdata[0]);
    RETURN_ON_ERROR(retVal);
   return retVal;
}
/*
*
  SwitchEvtHandler, ProcessPDIOInEvents and SendTxPDIOStatus demonstrate
* how PDIO_IN<x> status shall be sent to the far-end as DFP
*/
static int32_t SwitchEvtHandler(void)
{
    s_AppContext *const pCtx = &gAppCtx;
    e_BoardSwitch switchstate = 0;
   switchstate = GPIO_IF_SwitchStatus();
   pCtx->switchstate = switchstate;
   GPIO_IF_SwitchIntDisable();
   ProcessPDIOInEvents();
   GPIO_IF_SwitchIntEnable();
   return 0;
}
/**/
static int32_t ProcessPDIOInEvents()
{
    s_AppContext *const pCtx = &gAppCtx;
   int32_t retVal = -1;
   if(SWITCH1 == (pCtx->switchstate & SWITCH1))
    {
       retVal = SendTxPDIOStatus(0x1);
       RETURN_ON_ERROR(retVal);
    }
```



```
Advanced Configurations with EC
```

```
if(SWITCH2 == (pCtx->switchstate & SWITCH2))
    {
       retVal = SendTxPDIOStatus(0x2);
       RETURN_ON_ERROR(retVal);
   }
   return retVal;
}
/**/
static int32_t SendTxPDIOStatus(uint8_t switchstate)
{
   s_TPS_vdmheadersstruct *p_vdmheader
                                           = NULL;
                           vdmsInData
                                         = {0};
   s TPS vdms
   uint8_t outdata[MAX_BUF_BSIZE] = {0};
   uint32_t vdmheader = 0;
             retVal = -1;
    int32_t
   UART_PRINT("Send TxPDIO Status\n\r");
   vdmheader = vdmsInData.vdmheader;
   p_vdmheader = (s_TPS_vdmheadersstruct *)&vdmheader;
   p_vdmheader->command = SVDM_SendPDIO_Status;
                                                  //0x14
   p_vdmheader->commandtype = CMD_TYPE_REQ;
                                                   //0x0
   p_vdmheader->objpos = 0x1;
   p_vdmheader->structuredvdmversion = 0x1;
   p_vdmheader->vdmtype = 0x1;
   p_vdmheader->svid = TI_SVID;
                                 //0x0451
   vdmsInData.numdos
                          = 2;
   vdmsInData.vdmheader = vdmheader;
    /*
    * Send the PDIO_IN status to far-end.
     * SW1 is PDIO_IN0/Bit0, SW2 is PDIO_IN1/Bit1 of vdo2
     */
                           = (((PDIO_IN_EVENTS) << 16) | switchstate);
    vdmsInData.vdo2
   retVal = ExecCmd(VDMs, sizeof(s_TPS_vdms), (int8_t *)&vdmsInData,\
                    TASK_RETURN_STATUS_LEN, (int8_t *)&outdata[0]);
    RETURN_ON_ERROR(retVal);
   return retVal;
}
/*
* Called by application on receiving 'uservidaltmodeattnvdm' event
* from the device.
* This fucntion processes the PDIO message sent by far-end/UFP
*/
static int32_t ProcessAttnEvents()
{
   s_TPS_uservidstatus
                           *p_uservidstatus = NULL;
   s_TPS_vdmheadersstruct *p_vdmheader = NULL;
s_TPS_rxattention *p_rxattention = NULL;
   uint8 t
             outdata[MAX_BUF_BSIZE] = {0} ;
   uint32_t rxattentiondo1 = 0;
   uint32_t rxattentiondo2 = 0;
   int32_t
             retVal = -1;
    /*!
     * Read the contents of received VDM packet
```

EXAS

RUMENTS

```
*/
   retVal = ReadReg(REG ADDR RXUSERVIDATTENTIONVDM,
                     REG_LEN_RXUSERVIDATTENTIONVDM, &outdata[0]);
   RETURN_ON_ERROR(retVal);
    /* outdata[0] has length */
   p_rxattention = (s_TPS_rxattention *)(&outdata[1]);
   rxattentiondol = p_rxattention->rxattentiondol;
   rxattentiondo2 = p_rxattention->rxattentiondo2;
    /*!
       Check whether the VDM Rx is for SVID of User Alternate Mode
     *
       In this case, TI_SVID is used for User Alternate Mode
       Note : The SVID of User Alternate Mode may differ
     * /
   p_vdmheader = (s_TPS_vdmheadersstruct *)&rxattentiondol;
   if( (TI_SVID != p_vdmheader->svid) ||
        (1 == p_rxattention->rxattentionnumvalid) )
    {
       UART_PRINT("\n\nProcess Attn - Error1.");
       return 0 ;
    }
    /*!
     * Check for which Mode is VDM Rx, depending on that,
       Call the function that will execute the events.
     */
   retVal = ReadReg(REG_ADDR_USERVIDSTATUS, REG_LEN_USERVIDSTATUS, &outdata[0]);
   RETURN_ON_ERROR(retVal);
   p_uservidstatus = (s_TPS_uservidstatus *)&outdata[1];
   if(ACTIVE == p_uservidstatus->usermodelstatus)
    {
        /*
        * Toggling LED here, but application shall interpret rxattentiondo2,
         * and take action per their requirement - Not shown here .!
         * Bit-3:0 indicate which PDIO_IN was set by the far-end
         * /
        GPIO_IF_LedToggle(PDIO_OUT0);
        SendRxPDIOStatus();
   }
   UNUSED(rxattentiondo2);
    return retVal;
/* Send ACK to UFP's TI-SVID-Attention */
static int32_t SendRxPDIOStatus()
{
    s_TPS_vdmheadersstruct *p_vdmheader
                                            = NULL;
   s_TPS_vdms
                            vdmsInData
                                            = \{0\};
   uint8_t
              outdata[MAX_BUF_BSIZE] = {0};
    uint32_t
               vdmheader
                             = 0;
   int32 t
               retVal = -1;
   UART_PRINT("Send RxPDIO Status\n\r");
    vdmheader = vdmsInData.vdmheader;
   p_vdmheader = (s_TPS_vdmheadersstruct *)&vdmheader;
   p_vdmheader->command = SVDM_RxPDI0_Status;
                                                  //0x15
   p_vdmheader->commandtype = CMD_TYPE_ACK;
                                                  //0x1
   p_vdmheader->objpos = 0x1;
   p_vdmheader->structuredvdmversion = 0x1;
   p_vdmheader->vdmtype = 0x1;
   p_vdmheader->svid = TI_SVID;
                                    //0x0451
```

}

}

The PD message exchanges between Port-A and Port-B when the above example code is executed on the host application(s) is shown below. The logs snippets show the ports exchanging status messages after entering TI-PDIO mode indicating which PDIO_IN are enabled on either sides. Port-A/DFP then sends two 'REQ' with 'Object 1' as 0x30001/PDIO_IN0 and 0x30002/PDIO_IN1 to Port-B/UFP, and Port-B acknowledges these message. Then, Port-B/UFP sends 'Attention' with 'Object 1' as 0x70001/PDIO_IN0, and Port-A acknowledges this message.

The example code and log snippets presented in this section assume that the port enters a PD contract as a DFP. If the port is UFP, the host application shall take care of sending 'Attention'/0x06 message (and not 'SVID Specific Cmd'/0x14) to indicate the port-partner about its PDIO_IN status.

PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 2 2	Cmd Cmd Type Obj Pos Vendor ID Undefined Data 1 Dur VDM Header Enter Mode REQ 1 Texas Instruments 0x00010451 760.5
Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 7 1	VDM Header Cmd Cmd Type Obj Pos Vendor ID Duration Time Enter Mode ACK 1 Texas Instruments 625.590 us 27.252 m
Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 3 2	VDM Header Cmd Cmd Type Obj Pos Vendor ID Object 1 SVID Specific Cmd (0x14) REQ 1 Texas Instruments 0x00030000
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 0 2	Cmd Cmd Type Obj Pos Vendor ID Object 1 VDM Header SVID Specific Cmd (0x14) ACK 1 Texas Instruments 0x00070000
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 4 2	Cmd Cmd Type Obj Pos Vendor ID Object 1 VDM Header SVID Specific Cmd (0x14) REQ 1 Texas Instruments 0x00030001
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 1 2	Cmd Cmd Type Obj Pos Vendor ID Object 1 VDM Header SVID Specific Cmd (0x14) ACK 1 Texas Instruments 0x00070000
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 5 2	Cmd Cmd Type Obj Pos Vendor ID Object 1 VDM Header SVID Specific Cmd (0x14) REQ 1 Texas Instruments 0x00030002
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 2 2	Cmd Cmd Type Obj Pos Vendor ID Object 1 VDM Header SVID Specific Cmd (0x14) ACK 1 Texas Instruments 0x00070000
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 3 2	VDM Header Cmd Cmd Type Obj Pos Vendor ID VDOs Object 1 Duration Attention REQ 1 Texas Instruments 0x00070001 758.219 us
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 6 1	Cmd Cmd Type Obj Pos Vendor ID Duration VDM Header SVID Specific Cmd (0x15) ACK 1 Texas Instruments 627.669 us
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 4 2	VDM Header Cmd Cmd Type Obj Pos Vendor ID VDOs Object 1 Duration Attention REQ 1 Texas Instruments 0x00070000 758.448 us
Msg Type DR PR Msg ID Obj Cnt Vendor Defined UFP SNK 5 2	VDM Header Cmd Cmd Type Obj Pos Vendor ID VDOs Object 1 Duration Attention REQ 1 Texas Instruments VDOs 0x00070000 757.990 us
PD Msg Msg Type DR PR Msg ID Obj Cnt Vendor Defined DFP SRC 7 1	Cmd Cmd Type Obj Pos Vendor ID Duration VDM Header SVID Specific Cmd (0x15) ACK 1 Texas Instruments 627.669 us

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated