

ABSTRACT

This user's guide is intended to define the Worst Case Analysis (WCA) PSpice model for the TPS7H5001-SP. Instructions on setting up the unencrypted model for simulationSIMPLIS[®] are also provided. The first section of the guide outlines the model parameters and development. The second section covers different options for setting the model up to run simulations. Finally, the third section addresses how to run different types of simulations.

Table of Contents

1 TPS7H5001-SP WCA Model Specification	2
1.1 Parameter Variation	2
1.2 Global Variables	
1.3 Editing Model Parameters	
2 Model Setup	
2.1 Running Transient Simulation	
2.2 Running POP Analysis and AC Simulation	
3 Monte Carlo	
3.1 Monte Carlo Simulation	
Revision History	
-	

List of Figures

Figure 1-1. F11 Window in SIMPLIS......7

Trademarks

SIMPLIS[®] is a registered trademark of Cadence Design Systems, Inc.. All trademarks are the property of their respective owners.

1 TPS7H5001-SP WCA Model Specification

The TPS7H5001-SP WCA model takes the TPS7H5001-SP SIMPLIS Model and allows users to edit specific parameters related to the frequency response of a power converter. Monte Carlo analysis can also be performed to observe the distribution of behavior across a specified sample size of devices. The following tests/device characteristics have provided data in order to find worst case conditions for parameters associated with frequency response analysis.

Process Variation	Device-to-device manufacturing differences;				
Characteristics	Data characteristics provided comes from an internal statistical model of variation due to the manufactering process.				
LDR Radiation Test	Data characteristics provided after devices exposed up to the maximum rated Total lonizing Dose (TID) of the device: 100 krad at a does rate of 0.01 rads(Si)/s				
HDR Radiation Test	Data characteristics provided after devices exposed up to the maximum rated Total lonizing Dose (TID) of the device: 100 krad at a does rate of 72.28 rads(Si)/s				
Life Test	Data characteristics provided at 25°C after 1,000 hours of testing at 125°C, and meant to emulate 15 years operating at 65-95°C as defined by Group C specifications in MIL-PRF-38535. Additional data provided at -55°C and 125°C for the same devices.				

In the model, the specific device parameters influenced by the above variation include:

gm _{ea}	Error amplifier transconductance
COMP to CS_ILIM ratio (CCSR)	Power stage transconductance
V _{REF}	Reference voltage

1.1 Parameter Variation

Parameter Variation

Each parameter in the table below had initial data taken on a population of TSP7H5001-SP devices. A population of devices underwent a life test, a separate population of devices went through a HDR radiation test and a different population of devices underwent an LDR test. The information gained from those tests are provided in the tables below.

Test	Temperature	VIN	Min	Mean	Max	Standard Deviation	Population
Process Variation	-55-125°C	4-14 V	N/A	N/A	N/A	7%*	N/A
Pre-Life/Pre- Radiation	-55°C	4	1814	2105	2362	109	87
Pre-Life/Pre- Radiation	-55°C	5	1834	2109	2333	110	87
Pre-Life/Pre- Radiation	-55°C	12	1849	2106	2351	105	87
Pre-Life/Pre- Radiation	-55°C	14	1855	2126	2389	108	87
Pre-Life/Pre- Radiation	25°C	4	1605	1789	1941	71.0	87
Pre-Life/Pre- Radiation	25°C	5	1616	1808	1950	71.1	87

Table 1-1. GM_{EA} Variation Information (A/µV)

	Table 1-1. GM _{EA} Variation Information (A/µV) (continued)							
Pre-Life/Pre- Radiation	25°C	12	1650	1808	1957	67.4	87	
Pre-Life/Pre- Radiation	25°C	14	1647	1807	1954	68.1	87	
Pre-Life/Pre- Radiation	125°C	4	1312	1405	1492	38.0	87	
Pre-Life/Pre- Radiation	125°C	5	1329	1422	1509	39.2	87	
Pre-Life/Pre- Radiation	125°C	12	1334	1425	37.8	1508	87	
Pre-Life/Pre- Radiation	125°C	14	1330	1424	1506	38.8	87	
Post-Life Test	-55°C	4	1817	2084	2318	109	87	
Post-Life Test	-55°C	5	1834	2108	2333	109	87	
Post-Life Test	-55°C	12	1849	2106	2351	105	87	
Post-Life Test	-55°C	14	1855	2126	2389	108	87	
Post-Life Test	25°C	4	1605	1789	1941	71.0	87	
Post-Life Test	25°C	5	1616	1808	1950	71.2	87	
Post-Life Test	25°C	12	1650	1808	1957	67.4	87	
Post-Life Test	25°C	14	1647	1807	1954	68.1	87	
Post-Life Test	125°C	4	1312	1405	1492	38.0	87	
Post-Life Test	125°C	5	1329	1422	1509	39.2	87	
Post-Life Test	125°C	12	1334	1425	1508	37.8	87	
Post-Life Test	125°C	14	1330	1424	1505	38.9	87	
Post LDR Radiation	25°C	4	1667	1787	1925	60.1	80	
Post LDR Radiation	25°C	5	1692	1805	1950	59.2	80	
Post LDR Radiation	25°C	12	1698	1804	1938	59.6	80	
Post LDR Radiation	25°C	14	1681	1801	1950	60.0	80	
Post HDR Radiation	25°C	4	1641	1804	1937	66.6	70	
Post HDR Radiation	25°C	5	1645	1821	1982	71.2	70	
Post HDR Radiation	25°C	12	1646	1821	1992	71.3	70	
Post HDR Radiation	25°C	14	1630	1820	1988	71.2	70	

Table 1-1. GM_{FA} Variation Information (A/µV) (continued)

*Standard deviation value is the largest at a single temperature and VIN operating point when considering all temperatures and VIN values. It is not the standard deviation when the population includes all VIN and temperatures.

Table 1-2. VREF Variation Information (mV)								
Test	Temperature	VIN	Min	Mean	Max	Standard Deviation	Population	
Pre-Life/Pre- Radiation	-55°C	4	607.7	609.2	610.6	0.619	87	
Pre-Life/Pre- Radiation	-55°C	5	607.8	609.1	610.6	0.615	87	
Pre-Life/Pre- Radiation	-55°C	12	607.8	609.3	610.7	0.611	87	
Pre-Life/Pre- Radiation	-55°C	14	607.9	609.3	610.8	0.607	87	
Pre-Life/Pre- Radiation	25°C	4	611.6	613.1	614.0	0.438	87	
Pre-Life/Pre- Radiation	25°C	5	611.7	613.2	614.1	0.435	87	
Pre-Life/Pre- Radiation	25°C	12	611.7	613.2	614.1	0.437	87	
Pre-Life/Pre- Radiation	25°C	14	611.7	613.2	614.1	0.436	87	
Pre-Life/Pre- Radiation	125°C	4	612.6	614.0	615.1	0.511	87	
Pre-Life/Pre- Radiation	125°C	5	612.7	614.3	615.2	0.512	87	
Pre-Life/Pre- Radiation	125°C	12	612.8	614.1	615.2	0.511	87	
Pre-Life/Pre- Radiation	125°C	14	612.8	614.1	615.2	0.505	87	
Post-Life	-55°C	4	607.7	609.0	610.3	0.638	87	
Post-Life	-55°C	5	607.8	609.0	610.4	0.645	87	
Post-Life	-55°C	12	607.8	609.1	610.4	0.640	87	
Post-Life	-55°C	14	607.9	609.1	610.4	0.627	87	
Post-Life	25°C	4	611.5	613.0	613.8	0.435	87	
Post-Life	25°C	5	611.7	613.1	613.8	0.425	87	
Post-Life	25°C	12	611.3	613.0	613.9	0.426	87	
Post-Life	25°C	14	611.6	613.8	613.9	0.425	87	
Post-Life	125°C	4	612.6	614.0	615.1	0.503	87	
Post-Life	125°C	5	612.8	614.1	615.2	0.501	87	
Post-Life	125°C	12	612.8	614.1	615.2	0.506	87	
Post-Life	125°C	14	612.8	614.1	615.2	0.503	87	
Post LDR Radiation	25°C	4	611.1	612.5	613.6	0.555	80	
Post LDR Radiation	25°C	5	611.2	612.5	613.6	0.560	80	
Post LDR Radiation	25°C	12	611.2	612.5	613.6	0.558	80	

	Table 1-2. VREF Variation Information (mV) (continued)							
Post LDR Radiation	25°C	14	611.2	612.5	613.7	0.561	80	
Post HDR Radiation	25°C	4	610.5	612.2	613.6	0.698	70	
Post HDR Radiation	25°C	5	610.5	612.2	613.6	0.704	70	
Post HDR Radiation	25°C	12	610.5	612.2	613.6	0.699	70	
Post HDR Radiation	25°C	14	610.5	612.2	613.6	0.708	70	

*Standard deviation value is the largest at a single temperature and VIN operating point when considering all temperatures and VIN values. It is not the standard deviation when the population includes all VIN and temperatures.

Table 1-3. Co	OMP to CS	_ILIM Ratio	Variation	

Test	Temperature	Min	Mean	Мах	Standard Deviation	Population
Pre-Life/Pre- Radiation	-55°C	2.030	2.048	2.072	0.00956	30
Pre-Life/Pre- Radiation	25°C	2.030	2.047	2.083	0.0121	30
Pre-Life/Pre- Radiation	125°C	2.041	2.055	2.083	0.0116	30
Post-Life	-55°C	2.030	2.048	2.083	0.00992	87
Post-Life	25°C	2.025	2.049	2.089	0.0137	87
Post-Life	125°C	2.036	2.057	2.094	0.0133	87
Post-LDR Radiation	25°C	2.030	2.049	2.089	0.0102	80
Post-HDR Radiation	25°C	2.025	2.053	2.117	0.0162	70

1.2 Global Variables

The following global variables are used within the F11 window of SIMPLIS. Global variables are used by the TPS7H5001-SP WCA device and changing the names in the F11 window, will cause the model not to work. Default values are placed so that the minimum and maximum values are the minimum and maximum values of the data sheet.

Parameter	Description	Default Mean Value	Default Tol- Value
gmea	Model variable for the error amplifier transconductance	1825 µS	37 %
Vr	Model variable for the reference voltage	0.613 V	1 %
Rtt	Internal variable related to the voltage reference. Changing the equation will cause model to work improperly.	N/A	N/A
IDCOMP	Model variable for CCSR parameter	2.06	2.9%

In addition to the listed model parameters, external component selection will also influence device behavior. The external components used in the default schematic take nominal values and, as such, users may see fit to add tolerances to them to model real-world variation.

1.3 Editing Model Parameters

The TPS7H5001-SP WCA Model allows for editing internal parameters through the use of the F11 window in SIMPLIS. After opening the schematic file "TPS7H5001_SP_SIMPLIS_Flyback.sxsch" simply pressing F11, or sometimes CTRL + F11 will open up the F11 window.

```
1 .simulator SIMPLIS
2 .ac DEC 25 100m 1Meg
 3.print
 4 + ALL
 5 .options
 6 + PSP_NPT=1001
7 + POP_ITRMAX=20
 8 + POP_USE_TRAN_SNAPSHOT
 9 + POP_OUTPUT_CYCLES=5
10 + POP_SHOWDATA
11 + SNAPSHOT_INTVL=0
12 + SNAPSHOT_NPT=11
13 + NEW_ANALYSIS
14 + MIN_AVG_TOPOLOGY_DUR=1a
15 + AVG_TOPOLOGY_DUR_MEASUREMENT_WINDOW=128
16 . pop
17 + TRIG_GATE={TRIG_GATE}
18 + TRIG_COND=0_T0_1
19 + MAX_PERIOD=2u
20 + CONVERGENCE=10p
21 + CYCLES_BEFORE_LAUNCH=4000
22 + TD_RUN_AFTER_POP_FAILS=-1
23 *.tran 30m 0
22
23
24
25
   *.Do not change the names of these global variables or the model will not work

.GLOBALVAR gmea = 1.825m*WC(0.37)

.GLOBALVAR Vr = 0.613*WC(0.01)

.GLOBALVAR Rtt = (1.23-Vr)*1000/Vr

.GLOBALVAR Rtt = (1.23-Vr)*1000/Vr
26
27
28
29
30
31
    .GLOBALVAR IDComp = 1/(2.06*WC(0.029))
    .simulator DEFAULT
```

Figure 1-1. F11 Window in SIMPLIS

Editing the tolerances can be done in this window by changing the tol parameter for the specific distribution chosen. WC(tol) is used by default, but there are different distributions that can be chosen.

Distribution Name	Definition
WC(tol)	Worst-Case. Returns either 1.0- tol or 1.0+ tol chosen at random.
Unif(tol)	Uniform. Returns a random value in the range 1.0 +/- tol with a uniform distribution.
GaussTrunc(tol)	Truncated Gaussian. As with Gauss() but values greater than (1 + tol) and less than (1 - tol) are rejected, and the program picks another random number inside the Gaussian distribution.
Gauss(tol)	Gaussian. Returns a random number with a mean of 1.0 and a standard deviation of tol /3. Random values have a Gaussian or Normal distribution.

 \times

2 Model Setup

The TPS7H5001-SP WCA model comes with a default schematic file

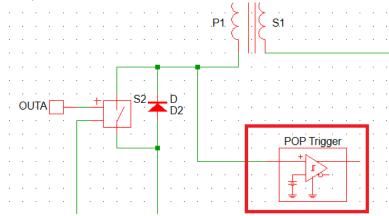
(TPS7H5001_SP_SIMPLIS_Flyback.sxsch) that can be used to run simulations with minimal effort needed to set up the model. Users will need to set up their own Simulation Profiles in order to run simulations. Instructions for doing so are provided in Section 3.

2.1 Running Transient Simulation

- 1. Open TPS7H5001_SP_SIMPLIS_Flyback.sxsch
- 2. Click Simulator \rightarrow Choose Analysis.
- 🖌 Choose SIMPLIS Analysis

Periodic Operating Point AC POP Trigger source Use "POP Trigger" scher (Commonly Used Parts- Custom POP Trigger gate	natic device >POP Trigger)				Select analysis POP AC Transient
Trigger condition Trigger condition Rising edge (logic logic log		-			Save options All Voltages Only Probes Only
Timing Maximum period Cycles before launching PO	2u 4000		× v	5	
	Ok	Run	Cancel	dvanced Help	 No Forced Output Data ✓ Force New Analysis

3. Open the Transient	tab				
🖌 Choose SIMPLIS Analysis					×
Periodic Operating Point	AC Transient				
Analysis parameters				Select analysis	
				РОР	
Stop time	30m	s S		AC	
Start saving data at t =	0	s	✓ Default	✓ Transient	
Plot data output				Save options	
	1k	* *	Default	 All 	
Number of plot points	IK	•		O Voltages Only	
				O Probes Only	
			Advanced	No Forced Output Data	
			Auvanceu	Force New Analysis	
	Ok	Run Ca	ncel Help		
			· · · ·		


- 4. Edit **Stop Time** for desired run length. **Start saving data at t =** will start saving the data at the inputted time. **Number of plot points** is used to change the amount of plot points for the data saved in the simulation.
- 5. In Select Analysis on the right, select Transient and press run at the bottom

 \times

2.2 Running POP Analysis and AC Simulation

- 1. Open TPS7H5001_SP_SIMPLIS_Flyback.sxsch
- 2. POP Trigger in the provided schematic should be connected to the primary side switch node of the converter for single frequency converters. Note that the POP Trigger requires the user to designate a switching node which is the least common multiple of the periodic frequencies present in the circuit. This can be an issue in power converters such as a full-bridge where some of the switch nodes are running at twice the frequency of the outputs of the device.

- 3. Click Simulator \rightarrow Choose Analysis.
- 4. Periodic Operating Point (POP) tab should be open

s	Choose SIMPLIS Analysis
---	-------------------------

Select analysis	
POP Trigger source	
Use "POP Trigger" schematic device (Commonly Used Parts->POP Trigger)	
Custom POP Trigger gate POP Trigger Schematic Device	
Trigger condition Save options	
Rising edge (logic low to logic high) Voltages Only	
Falling edge (logic high to logic low) Probes Only	
Timing	
Maximum period 2u s	
Cycles before launching POP 4000 Cycles	
Advanced	
✓ Force New Analysis	
Ok Run Cancel Help	

 \times

- 5. Default values for the schematic are 2us for the **Maximum Period** and 4000 **Cycles before launching POP**.
- 6. **Maximum Period** should be increased if the frequency of the converter decreases such that the **Maximum Period** is larger than the maximum period of the converter.
- 7. Cycles before launching POP needs to be larger such that the output of the converter reaches steady state by the time POP analysis starts. If this number is not large enough POP analysis will fail. There is a maximum of 8192 cycles. If the maximum amount of cycles is not large enough, the soft start capacitance of the converter may need to be decreased in order to allow the converter to start up faster and have the POP analysis converge. The POP analysis will try and start up the converter faster than normal, so the soft start function is not valid during this test.
- 8. Open the AC tab
- ✓ Choose SIMPLIS Analysis

Periodic Operating Point	AC Transient		Colort analyzic
Sweep parameters		Sweep type	Select analysis
Start frequency	100m 🚔 Ha	z 💿 Decade	AC
Stop frequency	1Meg Ha	z 🔷 Linear	Transient
Points per decade	25		Save options
			() All
			O Voltages Only
			O Probes Only
			No Forced Output Data
			✓ Force New Analysis
	Ok Run	Cancel Help	

- Start frequency is where the data will start to be taken for the frequency response and the stop frequency is where the data will stop being taken. Points per decade will simply effect how much data is taken for the test.
- 10. In Select Analysis on the right, select POP and AC and press run at the bottom

3 Monte Carlo

3.1 Monte Carlo Simulation

1. Click

Monte Carlo→ Setup Monte Carlo

🗲 Define SIMPLIS Monte Carlo Analysis				
Number of Monte Carlo steps Monte Carlo seed 4 0 Image: Carlo steps	e			
Multi-core				
Number of cores 1 Show console for each proces Number of physical cores: 4 Number of cores allowed by license				
Options				
✓ Save state If checked, the simulator state will be saved for each step allowing snapshots and initial conditions to be applied to subsequent multi-step runs				
Run Ok Cancel Help)			

- 2. Number of Monte Carlo steps is the amount of times a Monte Carlo simulation will run. Monte Carlo Seed can be used to to the same seed as a previous Monte Carlo simulation. Number of Cores will be how many cores of your computer is used for processing.
- 3. Click

Monte Carlo→ Run Monte Carlo

4. The Monte Carlo analysis will run whichever analysis is chosen under **Simulator** \rightarrow **Choose Analysis**. If transient Monte Carlo analysis is required, choose Transient on the right. If AC Monte Carlo analysis is required choose **AC** and **POP**.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision * (March 2022) to Revision A (February 2023)	Page
•	Updated TPS7H5001-SP WCA Model Specification section	2

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated