
Application Report
SPRA749B - August 2006

1

Using TMS320C6416 Coprocessors:
Turbo Coprocessor (TCP)

Chad Courtney Digital Signal Processing Solutions

ABSTRACT

The turbo coprocessor (TCP) is a programmable peripheral for decoding IS2000/3GPP turbo
codes, that are integrated into the Texas Instruments (TI) TMS320C6416 digital signal
processor. The TCP is controlled via memory-mapped control registers and data buffers.
Control registers can be accessed directly by the CPU, whereas data buffers are typically
accessed using the EDMA controller. This application report describes the relationship
between the theory of turbo decoding and TCP implementation, outlines TCP programming
procedures, and provides examples that demonstrate how to program TCPs for typical
3GPP/IS2000 parameters.

Contents

1 Introduction 3.

2 Background on Turbo Decoding Algorithm 3.
2.1 Turbo Encoding 3.
2.2 Turbo Decoding 4.

2.2.1 Channel LLR Computation 5.
2.2.2 MAP Decoding 6.
2.2.3 Sliding Window MAP Decoding 8.
2.2.4 Interleaving/Deinterleaving 9.
2.2.5 Stopping Criterion 9.
2.2.6 Hard-Decision Generation 9.

3 Relationship Between Turbo Decoding Theory and TCP Implementation 10.
3.1 Code Parameters 11.

3.1.1 3GPP Codes 11.
3.1.2 IS2000 Codes 11.

3.2 Turbo Decoding Implementation 12.
3.2.1 Channel LLR 12.
3.2.2 MAP Decoding 12.
3.2.3 Sliding Window Processing 12.
3.2.4 Interleaving/Deinterleaving 15.
3.2.5 Stopping Criterion 15.
3.2.6 Hard-Decision Decoding 15.

Trademarks are the property of their respective owners.

SPRA749B

2 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

4 TCP Programming Procedure 15.
4.1 Standalone Processing 15.

4.1.1 Initialize Input Buffers 15.
4.1.2 Allocate Memory for Output Buffers 16.
4.1.3 Prepare Input Configuration 16.
4.1.4 Prepare EDMA Links 16.
4.1.5 Start EDMA and Enable Interrupts 17.
4.1.6 Start TCP 17.
4.1.7 Service EDMA Interrupt from TCP Channel at the End of Decoding 17.

4.2 Shared Processing 17.
4.2.1 Initialize Input Buffers 18.
4.2.2 Allocate Memory for Output Buffers 18.
4.2.3 Prepare TCP Input Configuration Word 18.
4.2.4 Prepare EDMA Links 18.
4.2.5 Start EDMA and Enable Interrupts 19.
4.2.6 Start TCP 19.
4.2.7 Service EDMA Interrupt from TCP Channel at the End of Decoding 19.

5 Programming Examples 19.
5.1 Standalone Mode Examples 20.

5.1.1 IS2000, 378-Bit Frame, Rate 1/4 20.
5.1.2 3GPP, 3840-Bit Frame, Rate 1/3 21.
5.1.3 3GPP, 5114 Frame, Rate 1/2 23.

5.2 Shared Processing Examples 24.
5.2.1 IS2000, 6138-Bit Frame, Rate 1/2 24.

6 Multichannel Operation Considerations 27.
6.1 Method 1: paRAM-Efficient 28.
6.2 Method 2: Continuous Decoding 29.
6.3 Method 3: Lowest CPU Interrupt Rate 31.

References 33.

List of Figures

Figure 1. Turbo Code With Recursive 8-State Encoders (15/13, 17/13) 4.
Figure 2. Turbo Decoder 5.
Figure 3. Branch Notation 7.
Figure 4. Sliding Window MAP Processing 9.
Figure 5. Sliding Window Processing in Shared-Processing Mode 14.
Figure 6. Method 1: paRAM Entries for Standalone 28.
Figure 7. Method 1: paRAM Entries for Shared Processing (With Previous Context) 29.
Figure 8. Method 2: paRAM Entries for Standalone 30.
Figure 9. Method 2: paRAM Entries for Shared Processing (With Previous Context) 31.
Figure 10. Method 3: paRAM Entries for Shared-Processing Mode 32.

SPRA749B

3 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

List of Tables

Table 1. Programmable TCP Parameters 10.
Table 2. Sliding Window Grouping in Sub-blocks 13.
Table 3. EDMA Links for Standalone Processing 17.
Table 4. EDMA Links for Shared Processing (per MAP) 19.
Table 5. TCP/EDMA Configuration for 378-Bit Frame, Rate 1/4 (IS2000) 21.
Table 6. TCP/EDMA Configuration for 3840-Bit Frame, Rate 1/3 (3GPP) 22.
Table 7. TCP/EDMA Configuration for 5114-Bit Frame, Rate 1/2 (3GPP) 24.
Table 8. TCP/EDMA Configuration for 6138-Bit Frame, Rate 1/2 (IS2000) – MAP 1 (first iteration) 26. .
Table 9. TCP/EDMA Configuration for 6138-Bit Frame, Rate 1/2 (IS2000) – MAP 2 27.

1 Introduction

The turbo coprocessor (TCP) is a programmable peripheral for decoding of IS2000/3GPP turbo
codes, integrated into TI’s TMS320C6416 DSP device. The coprocessor operates either as a
complete turbo decoder including the iterative structure (standalone processing mode), or it can
operate as a single maximum A posterior (MAP) decoder (shared processing mode). In the
standalone processing mode, the inputs into the TCP are channel-soft decisions for systematic
and parity bits; the outputs are hard decisions. In the shared processing mode, the inputs are
channel-soft decisions for systematic and parity bits and apriori information for systematic bits,
and the outputs are extrinsic information for systematic bits.

The TCP programmable parameters are:

• Code rate (1/2, 1/3 or 1/4)

• Frame length

• Maximum number of iterations

• Threshold for early stopping criterion

2 Background on Turbo Decoding Algorithm

2.1 Turbo Encoding

Turbo code is a parallel or serial concatenated convolutional code constructed from
low-complexity recursive convolutional (constituent) codes. We are only concerned with parallel
concatenated convolutional codes (PCCC), which were introduced in [1]. An example of such a
code is shown in Figure 1. The basic convolutional codes which are concatenated in this
scheme are usually two identical recursive codes, with a relatively small number of states (i.e.,
8-states for the example in Figure 1). The input to the top encoder, labeled “Encoder 1,” is
information sequence U, and the output are parity sequences C0 andC1. The input to the bottom
encoder, labeled “Encoder 2,” is block-interleaved version of the original information sequence,
denoted U’, and the output are parity sequences C0’ and C1’. The output of the overall encoder
is obtained through puncturing and multiplexing of systematic sequences U and U’ and coded
sequences C0,C1,C0’ and C1’. It usually consists of the systematic component U, and two
parity components C and C’, where C is obtained by puncturing and multiplexing C0 and C1,
and C’ is obtained by puncturing and multiplexing C0’ and C1’.

SPRA749B

4 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

As an example, rate 1/3 turbo code is obtained when the overall output consists of multiplexed
sequences U, C0 and C0’.

Interleaver

P
U
N
C
T
U
R
E

&

M
U
X

U

U’

C0

C1

C0’

C1’

Encoder 1

D D D
U

Encoder 2

U

C

C’

D D D

Figure 1. Turbo Code With Recursive 8-State Encoders (15/13, 17/13)

Turbo encoding is performed on blocks of information bits of length N. To facilitate the decoding
process, the encoders are in state 0 at the beginning of the frame, and they are also brought to
state 0 at the end of the frame. This is achieved by appending tail bits after the information bits.
Since the encoder is recursive, the bit sequence which brings the encoder into state zero is not
necessarily a zero sequence. Instead, it depends on the state of the encoder after the
information bits have been encoded.

2.2 Turbo Decoding

The decoding of turbo codes is based on an iterative structure constructed from two MAP
decoders, one for each constituent encoder. A high-level block diagram of a turbo decoder is
shown in Figure 2.

SPRA749B

5 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

MAP1 MAP2I
(last iteration)

I

L(U)

LC(C’)

LC(C)

(first iteration) 0

LC(U)

La1(U)
I−1

Le1(U) La2(U) Le2(U)

U
^

Figure 2. Turbo Decoder

The decoder operates in the log-likelihood ratio domain, i.e., instead of operating on a priori, a
posteriori probabilities and channel likelihoods, it operates on the log-likelihood ratio (LLR) of
these quantities, defined as:

L(u) � log
Pr(u � 1)
Pr(u � 0)

Each MAP decoder has three inputs: a prior LLR for systematic bits La(U), channel LLR for
systematic bits Lc(U) and channel LLR for parity bits Lc(C). The computation of channel LLRs is
discussed in section 2.2.1.

The output of each MAP decoder is called “extrinsic LLR” and is denoted Le(U). This quantity
will be described in section 2.2.2.

Initially, the a priori input into MAP1, La1(U), is zero. The output of MAP1, Le1(U), is interleaved
and sent to MAP2 as a prior input La2(U). The output of MAP2, Le2(U), is deinterleaved and sent
back to MAP1 as a prior input La1(U). This “loop” is performed a certain number of iterations.
The desired effect is that the extrinsic LLRs increase in absolute value after each iteration. This
effectively improves reliability of the decoding, and decreases bit error rate (BER).

It has been showed by exhaustive simulations that, after certain number of iterations, further
decoding does not yield any additional BER improvement. In order to reduce processing delay of
the decoding process, it is of interest to stop the decoding as soon as this point has been
reached. This can be performed by applying a stopping further discussed in section 2.2.5.

After the iterative process has been terminated, the final LLR L(U) is computed as a sum of
extrinsic information at the output of each MAP decoder, Le1(U) and Le2(U), and channel LLR for
systematic bits Lc(U). The final LLR is sent to a threshold device which generates binary (hard)
decisions

U
^
 based on the sign of the LLR, as shown in section 2.2.6.

2.2.1 Channel LLR Computation

Binary outputs of the turbo encoder, denoted U, C and C’ in Figure 1, are modulated and send
over a noisy channel. Prior to modulation, signal point mapping is performed as follows:

SPRA749B

6 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

U, C, C� � 0 � XU,C,C�

� � 1

U, C, C� � 1 � XU,C,C�

� � 1

If the channel is considered to be fading channel with additive white Gaussian noise, channel
outputs corresponding to the systematic bits are:

yU(t) � aU(t)XU(t) � nU(t)

where aU(t) is the fading channel coefficient, and nU(t) is the noise sample with zero mean and
variance No/2. Similarly, the channel outputs corresponding to the parity bits are:

yC(t) � aC(t)XC(t) � nC(t)

yC�

(t) � aC�

(t)XC�

(t) � nC�

(t)

If the channel can be assumed to be non-fading, the fading coefficient is
aU(t) � aC(t) � aC�

(t) � 1. Alternatively, the fading coefficient, along with noise variance No can
be approximately determined using channel estimation algorithms.

The channel likelihood for systematic bits XU(t) is the probability that value yU(t) has been
received, given that XU(t) has been transmitted, and given that aU(t) is known. This is computed
based on the assumption that yU(t) � aU(t)XU(t) is a Gaussian variable with zero mean and
variance No/2. The channel likelihood is then computed as follows:

LC(U(t))� log
p(yU(t)� X(t) � � 1, aU(t))

p(yU(t)� X(t) � � 1, aU(t))

� log e�(yU(t)�aU(t))2
�No

e�(yU(t)�aU(t))2
�No

� �

4aU(t)yU(t)
No

� � L
C

U (t)yU(t)

Similarly, channel likelihoods for parity bits are computed as:

LC(C(t)) � � L
C
C (t)yC(t), LC(C�(t)) � L

C

C� (t)yC�

(t)

2.2.2 MAP Decoding

The algorithm which is used as a basis for MAP decoding is the Bahl Cocke Jelinek Raviv
(BCJR) algorithm first presented in [2], which exploits the trellis structure of a convolutional
code. Previous to the discovery of turbo codes, this algorithm has not been used for decoding of
convolutional codes due to the availability of a lower complexity Viterbi algorithm (for
maximum-likelihood decoding of convolutional codes). The Viterbi algorithm, however, delivers
only hard decisions, and not probability distributions (or LLR’s) and can therefore not directly be
used in turbo decoding.

The notation for trellis branches used in the subsequent sections is shown in Figure 3. Branch
start state is m’, and the end state is m. The symbol U(b) is the input label, i.e., it represents the
input into the encoder. The symbol C(b) is the output label, or the corresponding output of the
encoder which was in state m’ and received input U(b).

SPRA749B

7 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

m’

m

b

U(b),C(b)

Figure 3. Branch Notation

The BCJR algorithm for MAP decoding of convolutional codes consists of the following steps:

• Compute branch metric �

This quantity is similar to the local metrics used in Viterbi decoding. The branch metrics
represents the logarithm of the probability of branch b at time t, computed only based on the
knowledge of the channel and a priori LLRs of input and output symbols associated with the
branch (i.e., not path history through the trellis). For a branch b which connects state m’ at
time (t−1) and state m at time t, labeled with input/output pair (U(b),C(b)), the branch metric
is computed as:

log �t(b) � LC(U(t))U(b) � LC(C(t))C(b) � La(U(t))

where Lc(U(t))and Lc(C(t)) are systematic and parity channel LLRs, respectively, and La(U(t))
is a priori LLR.

• Compute forward state metric �

This quantity is similar to accumulated state metrics in Viterbi decoding, and represents
log-probability of state m at time t, given probabilities of states at previous time instances
(i.e., knowledge of trellis history). For state m at time t, the forward state metric is computed
as:

log�t(m) � log �

m�,	(m��m)

elog�t�1(m�)�log �t(b)

where the summation is performed over all states m’ at time t−1 which are connected
through a trellis branch to state m at time t.

• Compute backward state metrics �

This quantity represents the accumulated state metrics, when the trellis is traversed starting
from the last stage. It is the log-probability of state m at time t, given probabilities of states at
future time instances (i.e., knowledge of trellis “future”). For state m at time t, the backward
state metric is computed as:

log �t(m) � log �

m�,	(m�m�)

elog �tk�1(m�)�log �t�1(b)

where the summation is performed over all states m’ at time t+1 which are connected
through a trellis branch to state m at time t.

• Compute extrinsic LLR

The final output of MAP decoder is obtained by computing the total LLR of bit U(t), given
forward and backward state metrics as well as branch metrics for time t, and subtracting the
systematic channel LLR for bit U(t), LC(U(t)), and apriori LLR for bit U(t), La(U(t)), both given
at the input to the MAP decoder. The output therefore represents only the “refinement” term,
or extrinsic LLR:

SPRA749B

8 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Le(U(t)) � log

�

U(b)�1

elog�t�1(m�)�log �t(m)�log �t(b)

�

U(b)�0

elog�t�1(m�)�log �t(m)�log �t(b)
� LC(U(t)) � La(U(t))

where the summations in the numerator and denominator are performed over all branches
which are labeled with input labels 1 and 0, respectively.

It can be observed that the most computations involved in MAP decoding are based on the
logarithm of a sum of exponentials. Such an expression can be exactly computed, two terms at
a time, using the Jacobian logarithm [3]:

log(eL1
� eL2) � max(L1, L2) � log(1 � e

�L1�L2
�

)

i.e., as the maximum exponent and a correction term which is a function of the absolute
difference between exponents.

If the correction term is omitted and only max term is used to compute α, β and extrinsic LLR,
we obtain the so-called max-log-MAP approximation.

If the correction term is approximated using a small lookup table, we obtain the max*-log-MAP
approximation. This approximation yields significant BER improvements and is usually preferred
over the max-log-MAP solution, in spite of slightly increased computational complexity.

2.2.3 Sliding Window MAP Decoding

One of the drawbacks of the MAP decoding algorithm is its large storage requirements. Forward
state metrics α and backward metrics β need to be computed and stored for all states and all
stages in the trellis, since they are required for the last step in the algorithm, extrinsic LLR
computation. It is possible to combine α or β accumulation with extrinsic information, such that
only β or α needs to be stored. This represents (N+K−1)*2(K−1) values which need to be stored,
for frame of N information bits and code constraint length K.

In order to reduce memory requirements, large frames can be split into sliding windows, and
MAP decoding can be performed on each sliding window independently.

For non-sliding window MAP implementation, α and β are initialized in such a manner that
probability 1 is given to α0(0) and βN+K−1(0), since it is known that the initial and the final states
of the encoder are zero.

When the frame is split into independent sliding windows, the initial and final states for each
window are not known. Therefore, equal probability is given to all α’s at the first stage in the
window, and all β’s at the last stage of the window. In order to achieve reliable decoding, the first
segment of α’s as well as the last segment of β’s should not be used in the final computation of
extrinsic information. We call these initial and final segments of the window “header prolog” and
“tail prolog”, respectively, and denote them P. The extrinsic LLR is only computed over the
middle segment of the sliding window, also called “reliability length” and denoted R.

In order to obtain extrinsic LLRs for all bits in the frame, the sliding windows should be organized in
such a manner that reliability segments of neighbouring windows do not overlap nor form a gap. The
header prolog should be overlapped with reliability length of the previous sliding window, and the tail
prolog should be overlapped with reliability length of the following sliding window, as shown in
Figure 4. Note also that the first window does not require header prolog, since the initial state is
known, and for the last window the K−1 tail bits are used instead of the prolog to initialize β’s.

SPRA749B

9 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

With sufficiently large values for P and R, this approach does not result in any BER degradation. A
rule of thumb is to use P equal to 3 to 5 times the number of states 2K−1.

K−1
R R R R

’

P

�

�

P

Figure 4. Sliding Window MAP Processing

2.2.4 Interleaving/Deinterleaving

It is necessary to interleave or deinterleave extrinsic LLRs before they can be used as apriori
LLRs of the “other” MAP decoder. This function is typically performed using a look-up table. If
entry at location “i” in the lookup table has value “ii”, i.e., lut[i]=ii, location “i” in the original frame
will be copied to location “ii” in the interleaved frame. Deinterleaving is performed using the
lookup table in the reverse direction, i.e., location “ii” in the original frame will be copied to
location “i” in the deinterleaved frame.

If frames are very long, it may not be feasible to store the interleaver lookup table, in which case
the table would need to be generated on the fly.

2.2.5 Stopping Criterion

Research results have confirmed that after a certain number of iterations, there is no benefit in
terms of BER of performing additional iterations. The most frequently used number is 6−8
iterations, although the number of useful iterations is proportional to the frame size. A safe
approach would be to run the turbo decoder for a fixed (large) number of iterations. This,
however, increases processing delay and could waste power.

Recently, algorithms have been devised which can determine automatically if more iterations
would yield additional error corrections or not. Such algorithms are called “stopping criteria” and
are typically based on some statistics of the extrinsic LLR.

The algorithm used in the TCP implementation is based on the computation of the SNR of
extrinsic information, and comparing it against a user-defined threshold.

2.2.6 Hard-Decision Generation

After the last iteration, the final LLR L(U) is computed as a sum of systematic channel LLR
LC(U), extrinsic LLR of first MAP, Le1(U) and deinterleaved extrinsic LLR of second MAP, Le2(U).

The hard (binary) decision at the output of the turbo decoder is computed based on the sign of
the final LLR as follows:

SPRA749B

10 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

U
^
(t) � sgn(L(U(t)))

3 Relationship Between Turbo Decoding Theory and TCP
Implementation

In this section, we establish the relationship between the theory of turbo decoding and the TCP
implementation, describing the significance of programmable TCP parameters which affect the
TCP algorithm. Those parameters are described in Table 1.

Table 1. Programmable TCP Parameters

Parameter Name Parameter Description
Applicable
modes Register

Size of
parameter (bits)

OPMOD Operational Mode:
− standalone
− shared, MAP1 (first iteration)
− shared, MAP1
− shared, MAP2

Standalone
Shared

TCPIC0 1

RATE Rate (1/2, 1/3 and 1/4) Standalone
Shared

TCPIC0 2

FL Frame length Standalone
Shared

TCPIC0 16

R Reliability Length Standalone
Shared

TCPIC1 7

P Prolog Length Standalone
Shared

TCPIC2 6

SFL Sub Frame Length Shared TCPIC1 16

NSB Number of sub-blocks StandaloneSh
ared

TCPIC2 4

LASTR Last Sub-Frame Reliability Length Shared TCPIC1 7

LASTNSB Number of sub-blocks for the last sub-frame Shared TCPIC2 4

MAXIT Maximum Number of Iterations Standalone TCPIC2 5

SNR SNR Threshold for the stopping Criterion Standalone TCPIC2 8

OUTF Output Parameters Load Flag Standalone
Shared

TCPIC0 1

INTER Interleaver Write Flag Standalone TCPIC0 1

NWORDSP Words/XEVT for Systematic/Parities Standalone
Shared

TCPIC3 16

NWORDINTER Words/XEVT for Interleaver Standalone TCPIC3 16

NWORDAP Words/XEVT for Apriori Write Shared TCPIC4 16

SPRA749B

11 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 1. Programmable TCP Parameters (Continued)

Parameter Name
Size of

parameter (bits)Register
Applicable
modesParameter Description

NWORDEXT Words/REVT for Extrinsic Read Shared TCPIC4 16

NWORDHD Words/REVT for Hard Decision Read Standalone TCPIC5 16

NOTE: The parameters shown in gray in Table 1 are related to the EDMA operation and do not affect turbo decoding algorithm functionality.

3.1 Code Parameters

TCP supports turbo encoders specified in 3GPP and IS2000 standards. In both cases, 8-state
constituent encoders are used. The differences are in code rate, puncturing scheme and
handling of tail bits.

The turbo interleaver in the TCP implementation is fully programmable. Depending on the size of
the turbo interleaver, the look-up table is either programmed in the TCP interleaver memory, or
the interleaving/deinterleaving is performed on the DSP CPU rather than the TCP. The
maximum size of the turbo interleaver table which can be input into TCP memory is 5114.

3.1.1 3GPP Codes

For 3GPP, as described in [6], the only turbo code required is a rate 1/3 code with one
systematic component U, and two coded components, C and C’, each generated by a recursive
constituent encoder with polynomial 15/13. These coded components correspond to C0 and C0’
in Figure 1, respectively.

For each frame of data, three tail bits are appended for each top and bottom encoder in order to
terminate the trellis in state 0. The tail bits are transmitted along with their coded version, thus
resulting in a total of 12 appended bits, in the following order:

U(t)C(t)U(t � 1)C(t � 1)U(t � 2)C(t � 2)U�(t)C�(t)U�(t � 1)C�(t � 1)U�(t � 2)C�(t � 2)

where U(t) are tail bits at the input of the top encoder, and C(t) are coded tail bits at the output of
the top encoder, and, similarly, U’(t) and C’(t) are tail bits at the input and output of the bottom
encoder in Figure 1.

3.1.2 IS2000 Codes

For IS2000, as described in [7], supported codes are rate 1/2, 1/3 and 1/4, all obtained by
applying different puncturing scheme to the rate 1/5 turbo encoder shown in Figure 1.

Rate 1/2 turbo code is obtained by using the systematic component U, puncturing out all C1 and
C1’ outputs, corresponding to 17/13 polynomials, and puncturing C0 or C0’, such that the
output sequence is {U(t),C0(t), U(t+1),C0’(t+1), U(t+2),C0(t+2),...}. The tail bits are transmitted
as follows:

U(t)C0(t)U(t � 1)C0(t � 1)U(t � 2)C0(t � 2)
U�(t)C0�(t)U�(t � 1)C0�(t � 1)U�(t � 2)C0�(t � 2)

Rate 1/3 turbo code is obtained by using the systematic component U, puncturing out all C1 and C1’
outputs, and always transmitting systematic component U and C0 and C0’, such that the output se-
quence is {U(t),C0(t) ,C0(t) ,U(t+1),C0(t+1), C0’(t+1), U(t+2),C0(t+2), C0’(t+2),...}. The tail bits are
transmitted as follows:

SPRA749B

12 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

U(t)U(t)C0(t)U(t � 1)U(t � 1)C0(t � 1)U(t � 2)U(t � 2)C0(t � 2)
U�(t)U�(t)C0�(t)U�(t � 1)U�(t � 1)C0�(t � 1)U�(t � 2)U�(t � 2)C0�(t � 2)

Rate 1/4 encoder is obtained by always transmitting systematic information U, the first output of
top encoder C0 and the second output of bottom encoder C1’. The remaining two outputs, C0’
and C1 are punctured, such that the output sequence is {U(t), C0(t), C0’(t), C1(t), U(t+1),
C0(t+1), C1’(t+1), C1(t+1), U(t+2), C0(t+2), C0’(t+2), C1(t+2),...}. Tail bits are transmitted as
follows:

U(t)U(t)C0(t)C1(t)U(t � 1)U(t � 1)C0(t � 1)C1(t � 1)U(t � 2)U(t � 2)C0(t � 2)C1(t � 2)
U�(t)U�(t)C0�(t)C1�(t)U�(t � 1)U�(t � 1)C0�(t � 1)C1�(t � 1)U�(t � 2)U�(t � 2)C0�(t � 2)C1�(t � 2)

3.2 Turbo Decoding Implementation

The role of the TCP in the overall turbo decoder shown in depends on frame size N:

• N ≤ 5114: TCP performs overall turbo decoding. This is called standalone processing mode.

• N > 5114: TCP becomes a single MAP decoder. All other operations are performed on DSP
CPU. This is called shared processing mode.

Frames smaller than 5114 bits can also be decoded in shared processing mode.

3.2.1 Channel LLR

Systematic and parity channel LLRs, LC(U) and LC(C), expected at the input to the TCP are 8-bit
signed quantities in (5,3) or 5Q3 fixed point representation. This means that there is a sign bit
plus four integer bits, followed by a binary point, followed by three fractional bits (SIIIIFFF),
resulting in dynamic range [–32.000, +31.875].. Note that the TCP assumes that the mapping
from unsigned to signed binary is 1→ −1 and 0 → +1, and therefore the channel LLR should be
computed as shown in section 2.2.1.

3.2.2 MAP Decoding

The MAP decoder implements max*-log-MAP algorithm with a small lookup table.

The computation starts with β computation, with β’s for all states and all stages stored to the
TCP internal RAM, followed by computation of α and extrinsic LLR. The α values are not stored
in memory but are rather used immediately for computation of extrinsic LLR.

β computation is performed traversing the trellis from the end. For the last stage βN+K−1(0)=0.0,
and βN+K−1(m)= –16.000 for m≠0. For each state, βt(m) is computed by combining LC(X), LC(Y),
La(X) and previous beta value βt+1(m). Normalization is performed at each stage.

The α computation is performed in the identical manner, traversing the trellis from stage 0.

Finally, extrinsic information is obtained combining α, β and apriori inputs. The extrinsic output is
a (5,2) fixed point quantity.

3.2.3 Sliding Window Processing

The TCP performs MAP decoding using the sliding window approach described in section 2.2.3.
The reliability length R and the prolog length P are programmed for each frame.

SPRA749B

13 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

The Prolog length P ranges from 24 to 48. For shared processing mode, P must be a multiple of
16. For non-punctured codes, the rule of thumb is to set P to 3 to 5 times the number of states.
With 8 states, this number ranges from P=24 to P=40. For punctured codes (i.e., rate 1/2 and
1/4), P should be set to the maximum, i.e., P=48.

Reliability length ranges from 40 to 128, inclusively. The optimal choice for R will be such that
the number of sliding windows is minimized, while maximizing parallel processing of sliding
windows.

Depending on the frame length, the number of sliding windows which could be processed in
parallel is shown in Table 2. A group of sliding windows which are processed in parallel is called
a “sub-block”, and is comprised of 1, 2, or 4 sliding windows, as per Table 2.

Table 2. Sliding Window Grouping in Sub-blocks

Frame Length
Number of Sliding Windows per

Sub-block, N_SW_SB

40−128 1

129−256 2

257−5114 4

In standalone processing mode, the TCP requires the user to program, for each frame, the
prolog length P, the reliability length R, and the number of sub-blocks NSB. Additional value
which is not programmed but which is useful in intermediate calculations is the total number of
sliding windows per frame, N_SW. The values of R and NSB are calculated from following
equations:

1. N_SW ≥ ceil(FL/128) Maximum R is 128

2. N_SW % N_SW_SB = 0 There is an integer multiple of sub-blocks as per
Table 2

3. FL = (N_SW – 1)*R + R’ Last sliding window is of length R’, equal or different than
R

4. 40 ≤ R’ ≤ 128, R’ > P. R’ is such that P for window #(N_SW−1) falls within the
frame FL.

5. NSB = N_SW / N_SW_SB

In shared processing mode, the frame of length FL is split into N_SF sub-frames such that data
for one sub-frame fits into the input and output buffers. This requires the length of the sub-frame,
SFL, to be less than or equal to 5114.

The meaning of the parameter SFL required at the input to the TCP is shown in Figure 5.

SPRA749B

14 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

K−1
SF
R

L_SF
R

P

SF
R

SF
R

P

SFL

RR R

LASTR LASTR LASTR

F+K−1

Figure 5. Sliding Window Processing in Shared-Processing Mode

Inside each sub-frame, the processing is still split into sliding windows of size R defined earlier,
and Table 2 still applies for each sub-frame. It can be seen that the value SFL actually includes
the header prolog of the first sliding window inside the sub-frame, and the tail prolog of the last
sliding window inside the sub-frame.

It is useful to define a quantity SFR = SFL – 2*P which defines the length over which the
extrinsic information is computed. Then, SFL is computed from the following conditions:

6. N_SF = ceil(FL/5114) Data must fit in TCP input buffers

7. SFR = SFL – 2*P Portion over which extrinsic information is computed

8. FL = (N_SF –1)*SFR + L_SFR

9. r=1/2,1.3: SFR % 8, P%8 = 0 Due to EDMA indexing

10. r=1/4: SFR % 16, P%16 = 0 Due to EDMA indexing

Values of NSB and R are computed as for the standalone mode, using SFR instead of FL in line
(3) above.

The length of the last sub-frame, L_SFR, could be smaller than the remaining subframes. The
value of L_SFR is not input into the TCP. However, parameters of sliding window processing
within the last sub-frame may be redefined as a consequence of a different sub-frame length.
These parameters are input into the TCP as LASTR and LASTNSB , for the last sub-frame
reliability and the number of sub-blocks, respectively. LASTR and LASTNSB are computed in
the same manner as R and NSB for standalone mode, using L_SFR instead of FL in equation
(3) above.

SPRA749B

15 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

3.2.4 Interleaving/Deinterleaving

Interleaving or deinterleaving is performed in the TCP in the standalone processing mode only,
for frames up to 5114 bits. The look up table is generated by the DSP CPU and transferred to
the TCP interleaver memory as a part of the TCP initialization process, as 16-bits per table
entry.

This transfer is optional and determined by the TCP from the value of INTER (interleaver write
flag). If the frame to be decoded uses the same turbo interleaver as the frame previously
decoded, the transfer of interleaver is table can be omitted.

In shared processing mode, the interleaving and deinterleaving is done by the CPU.

3.2.5 Stopping Criterion

The stopping criterion implemented in the TCP is used in standalone processing only. It is based
on measurement of extrinsic SNR, comparison against a user-defined threshold, and stopping
the iterative processing if the threshold has been reached or exceeded. The SNR of extrinsic
information is computed over the entire frame. The user defined threshold which the computed
SNR value has to exceed in order for the iterations to stop, is input into the TCP for each frame
and can range from 1 to 100.

Setting SNR to zero disables the stopping criterion, so that the maximum number of iterations
MAXIT specified for that particular frame will always be executed.

3.2.6 Hard-Decision Decoding

Hard decision decoding is performed as described in section 2.2.6.

For standalone processing, the hard decision decoding is performed in the TCP. For shared
processing, it is part of DSP CPU processing.

4 TCP Programming Procedure

This section outlines steps required to decode a single frame of data using the TCP. For pos-
sible approaches to decoding of multiple frames of the same or different user channels, see
section 6.

4.1 Standalone Processing

In standalone processing, the TCP implements functionality of the entire turbo decoder. The
programming procedure for decoding one frame of data is described in this section.

4.1.1 Initialize Input Buffers

Input buffers consist of normalized systematic and parity LLR’s, computed from channel soft
decisions, as well as the interleaver look-up table. The organization of the systematic and
parities expected at the input of TCP is given in []. For a frame with FL information bits, the total
size of systematic and parity LLR array is FL*RATE. Each LLR is an 8-bit signed value. The
number of entries in the interleaver look-up table is equal to the frame length FL, each entry
being a 16-bit unsigned value. The DSP memory addresses of the beginning of the systematic
and parities, and interleaver buffers will be referred to as &s_p[0] and &int[0], respectively. All
data is aligned on a doubleword (64-bit) boundary.

SPRA749B

16 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

4.1.2 Allocate Memory for Output Buffers

The output buffer is allocated for hard decisions, which are packed into 64-bit words. For a
frame length FL, the size of allocated buffer should be ceil(FL/64)*8 bytes, aligned on a 64-bit
boundary. In addition, if the output parameter read flag is set (OUTF=1), one 64-bit word should
be allocated for it. The DSP memory addresses of the beginning of the allocated buffers for TCP
decisions and output parameters will be referred to as &hd[0] and &out_p[0], respectively.

4.1.3 Prepare Input Configuration

The input configuration consists of three sections: (1) TCP Configuration (2) EDMA Interface
Configuration and (3) Tail bits, and is programmed through registers TCPIC0−TCPIC11. The
input configuration is first prepared in the DSP memory (internal or external). It is transferred to
the TCP via EDMA once the TCP is started. The DSP memory address of the beginning of the
prepared configuration is denoted &inconf[0].

4.1.4 Prepare EDMA Links

The TCP generates a series of receive events (TCPREVT) when it is ready to send data to the
EDMA, and a series of transmit events (TCPXEVT) when it is ready to receive data from the
EDMA. Each event has an EDMA channel associated with it, and for each event certain number
of EDMA links is required.

For standalone processing, the TCP requires input configuration, systematic and parities, and,
optionally, interleaver. The TCP generates hard decisions and, optionally, output parameters.
REVTs and XEVTs are generated for each of the above data sets, and therefore EDMA linking is
used. EDMA links are summarized in Table 3. For each EDMA transfer, programmable
parameters are: (1) transfer options, (2) source address, (3) destination address, (4) frame and
element count, (5) frame and element index, (6) reload count and link address. These
parameters are described in detail in [5].

The third row of the table represents the address in the paRAM. Link 0 of each TCPXEVT and
TCPREVT have to be programmed at fixed locations in the paRAM, denoted as
ADDR_TCPXEVT and ADDR_TCPREVT, respectively. Other linkes could be programmed
anywhere in the paRAM. There additional locations in the paRAM are denoted RELOAD1,
RELOAD2 and RELOAD3.

The LINK entry in each parameter set represents the paRAM address of the next linked transfer.
LINK=NULL indicates that the next transfer is the NULL transfer used for termination. Element
count ELECNT and frame count FRMCNT are also computed.

SPRA749B

17 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 3. EDMA Links for Standalone Processing

TCPXEVT Links TCPREVT Links

Link 0 Link 1 Link 2 (optional) Link 0 Link 1 (optional)

paRAM address
= ADDR_TCPXEVT

paRAM address
= RELOAD1

paRAM address
= RELOAD2

paRAM address
= ADDR_TCPREVT

paRAM address
= RELOAD3

OPT:
SUM=DUM=INC

OPT:
SUM=INC,

DUM=FIXED

OPT:
SUM=INC,

DUM=FIXED

OPT:
SUM=FIXED,

DUM=INC

OPT:
SUM=DUM=INC

TCINT=1,
TCC = TCPREVT

SRC= &inconf[0] SRC= &s_p[0] SRC= &int[0] SRC= TCPHD SRC= TCPOUT

FRMCNT = 0 ELECNT = 12 FRMCNT ELECNT FRMCNT ELECNT FRMCNT ELECNT FRMCNT = 0 ELECNT = 2

DST= TCPIC0 DST= TCPSP DST= TCPINTER DST= &hd[0] DST= &out_p[0]

FRMIDX
= N/A

ELEIDX
= N/A

FRMIDX
= N/A

ELEIDX
= N/A

FRMIDX
= N/A

ELEIDX
= N/A

FRMIDX
= N/A

ELEIDX
= N/A

FRMIDX
= N/A

ELEIDX
= N/A

ELERLD
= N/A

LINK
= RELOAD1

ELERLD
= N/A

LINK =
RELOAD2
(INTER=1)

= NULL
(INTER=0)

ELERLD
= N/A

LINK=
 NULL

ELERLD
= N/A

LINK =
RELOAD3
(OUTF=1)
= NULL

(OUTF=0)

ELERLD
= N/A

LINK
= NULL

4.1.5 Start EDMA and Enable Interrupts

The EDMA channels corresponding to TCP’s TCPREVT and TCPXEVT are enabled in EDMA
Event Enable Register (EER), and these channels are also allowed to generate CPU interrupts
by setting appropriate bits in Channel Interrupt Enable Register (CIER). The EDMA control
registers are described in detail in [5].

4.1.6 Start TCP

The CPU writes a START command into the TCP’s execution word register (TCPEXE). This
causes the TCP to generate the first TCPXEVT expecting input configuration. This in turn will
trigger the EDMA transfer which is programmed into the Event paRAM location corresponding to
TCPXEVT.

4.1.7 Service EDMA Interrupt from TCP Channel at the End of Decoding

The EDMA link associated with the last TCPREVT should be configured as to generate a CPU
interrupt. In the CPU interrupt service routine, the output decision buffer for the completed frame
can be processed. For example, the ISR could compute the cyclic-redundancy check (CRC) or
schedule further processing , and initiate decoding of the next frame.

4.2 Shared Processing

In shared processing mode, the TCP implements functionality of a single MAP decoder, i.e.,
MAP1 or MAP2 from . The DSP is responsible for interleaving/deinterleaving of extrinsic
information, the stopping criterion, and the computation of hard decisions.

In this section, we describe the TCP setup procedure for MAP1 or MAP2.

SPRA749B

18 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

4.2.1 Initialize Input Buffers

Input buffers consist of normalized systematic and parity LLR’s, computed from channel soft
decisions, as well as apriori LLRs. The organization of systematic and parities expected at the
input of the TCP is described in []. For a frame with FL information bits, the total size of
systematic and parity LLR array for rate 1/2 and 1/3 is 2*FL, and for rate 1/4 is ceil(2.5*FL). The
number of apriori LLR is FL. Each LLR is an 8-bit signed value, computed as shown in
section 2.2.1 The DSP memory addresses of the beginning of the systematic and buffer will be
referred to as &s_p[0]. All data is aligned on a doubleword (64-bit) boundary.

4.2.2 Allocate Memory for Output Buffers

The output buffer is for extrinsic LLR, which is used as the apriori input for the next MAP
decoder. For a frame length FL, the allocated buffer for extrinsic LLR should be FL bytes,
aligned on a 64-bit boundary. The size of the allocated buffer should be 8*ceil(FL/8). The DSP
memory addresses of the beginning of the allocated buffer extrinsic outputs will be referred to as
&ext[0].

4.2.3 Prepare TCP Input Configuration Word

The input configuration consists of three sections: (1) TCP Configuration (2) EDMA Interface
Configuration and (3) Tail bits, and is programmed through registers TCPIC0−TCPIC11. The
input configuration is first prepared in the DSP memory (internal or external). It is transferred to
the TCP via EDMA once the TCP is started. The DSP memory address of the beginning of the
prepared configuration is denoted &inconf[0].

4.2.4 Prepare EDMA Links

In general, the interface between the TCP and EDMA is identical to the interface described for
the standalone mode at the beginning of section 4.1.4 and the description of the common setup
for the EDMA will not be discussed here separately.

An EDMA feature used in shared processing mode is the channel chaining capability. It is used
instead of channel linking in order to transfer apriori LLRs into the TCP. Another feature used in
shared processing mode is indexed address update mode. It is used for transfer of apriori LLRs
and systematic and parity LLRs.

A summary of EDMA transfer parameters for shared processing mode is shown in Table 4, and
details are given in [4].

SPRA749B

19 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 4. EDMA Links for Shared Processing (per MAP)

TCPXEVT Links TCPREVT Links

Link 0 Link 1 (CHAIN on CH_AP) Link 0

paRAM address =
ADDR_TCPXEVT

paRAM address = RELOAD1 paRAM address = RELOAD2 paRAM address =
ADDR_TCPREVT

OPT:
SUM=DUM=INC

OPT
SUM=INDX,

DUM=FIXED,
ATCC=CH_AP

OPT:
SUM= INDX, DUM=FIXEDT

OPT:
SUM=FIXED, DUM=INC

TCINT=1,
TCC = TCPREVT

SRC= &inconf[0] SRC= &s_p[0] SRC= &ap[0] SRC=TCPEXT

FRMCNT = 0 ELECNT = 12 FRMCNT ELECNT FRMCNT ELECNT FRMCNT ELECNT

DST=TCPIC0 DST=TCPSP DST=TCPAP DST= &ext[0]

FRMIDX = N/A ELEIDX = N/A FRMIDX ELEIDX = 4 FRMIDX ELEIDX = 4 FRMIDX = N/A ELEIDX = N/A

ELERLD = N/A LINK =
RELOAD1

ELERLD =
N/A

LINK = NULL ELERLD =
N/A

LINK = NULL ELERLD = N/A LINK = NULL

4.2.5 Start EDMA and Enable Interrupts

This setup is performed in the same manner as for the standalone mode described in
section 4.1.5. One additional operation required is to enable transfer chaining for CH_AP by
setting the appropriate bit in the Channel Chain Enable Register (CCER).

4.2.6 Start TCP

This setup is the same as for standalone mode, described in section 4.1.6.

4.2.7 Service EDMA Interrupt from TCP Channel at the End of Decoding

The EDMA link associated with the last TCPREVT should be configured as to generate a CPU
interrupt. In the CPU interrupt service routine, the output decision buffer for the completed frame
can be processed. For example, the ISR could perform or schedule interleaving/deinterleaving
of the apriori buffer, decide if additional iterations are required, and initiate next MAP decoding,
or compute hard decisions.

5 Programming Examples

In this section we show how to program the TCP input configuration parameters as well as
EDMA links, for a single frame of data with typical 3G wireless decoding parameters.

For each example, we will discuss how to determine the TCP/EDMA configuration parameters.
The EDMA link configuration for TCPXEVT Link 0 (write to TCP input configuration) and
TCPREVT Link 1 (read from TCP output parameters) for standalone mode are as shown in
Table 3 and for shared processing in Table 4. They will not be repeated in the examples, but it is
understood that they need to be programmed.

SPRA749B

20 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

5.1 Standalone Mode Examples

5.1.1 IS2000, 378-Bit Frame, Rate 1/4

This example is for an IS2000 378 bit-frame, encoded using rate 1/4 code. The TCP can be
used in standalone mode.

The Prolog length is set to the maximum, i.e., P=48, since the code is punctured. Stopping
criterion will be enabled with threshold SNR=50, and up to MAXIT=8 iterations will be executed.
Since the stopping criterion is enabled, we may be interested in the number of iterations
executed so the output parameters will be read, i.e., OUTF=1.

Reliability length R and number of sub-blocks NSB are computed as shown in section 3.2.3:

1. N_SW ≥ ceil(378/128) = 3

2. N_SW % 4 = 0

3. FL = (N_SW – 1)*R + R’

4. 40 ≤ R’ ≤ 128, R’ > P.

5. NSB = N_SW / 4

From (1) and (2), N_SW=4. Equation (3) is then satisfied with R=95 (R’=93). From (5), NSB=1.

Assuming all transfers are performed as a single EDMA frame, the EDMA interface is configured
as follows:

• NWORDINTER = ceil(378/2)=189

• NWORDSP = ceil((378*4)/4)=378

• NWORDHD = ceil(378/32)=12

For systematic and parity transfer ELECNT=2*ceil(NWORDSP/2)=378 and FRMCNT=0, for
interleaver transfer ELECNT=2*ceil(NWORDINTER/2)=190 and for hard decision transfer
ELECNT=2*ceil(NWORDHD/2)=12 and FRMCNT=0. Link 0 for TCPREVT is linked to Link 1
since output parameters are transferred.

These parameters are summarized in Table 5.

SPRA749B

21 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 5. TCP/EDMA Configuration for 378-Bit Frame, Rate 1/4 (IS2000)

TCP Configuration

OPMOD = standalone (000b) RATE = 1/4

FL = 378 R = 95 P = 48

NSB = 1 MAXIT= 8 SNR = 50

SFL = N/A LASTR = N/A LASTNSB = N/A

EDMA Interface Configuration

OUTF= 1 INTER = 1

NWORDSP= 378

NWORDINTER = 189 NWORDHD = 12

NWORDHD = N/A NWORDEXT = N/A

Tail Bits

X(t) X(t+1) X(t+2) Y0(t) Y0(t+1) Y0(t+2)

Y1(t) Y1(t+1) Y1(t+2) X’(t) X’(t+1) X’(t+2)

Y0’(t) Y0’(t+1) Y0’(t+2) Y1’(t) Y1’(t+1) Y1’(t+2)

TCPXEVT Links TCPREVT links

Link 1 Link 2 Link 0

OPT = see Table 3 OPT= see Table 3 OPT= see Table 3

SRC= &s_p[0] SRC= &int[0] SRC= TCPHD

FRMCNT= 0 ELECNT= 378 FRMCNT= 0 ELECNT= 189 FRMCNT= 0 ELECNT= 12

DST= TCPSP DST= TCPINTER DST= &hd[0]

FRMIDX= N/A ELEIDX = N/A FRMIDX= N/A ELEIDX = N/A FRMIDX = N/A ELEIDX = N/A

ELERLD= N/A LINK= 2 ELERLD= N/A LINK= NULL ELERLD= N/A LINK= 1

5.1.2 3GPP, 3840-Bit Frame, Rate 1/3

This example is for a 3GPP 3480 bit-frame, encoded using rate 1/3 code. The TCP can be used
in standalone mode.

The prolog length can be set to a minimum, i.e., P=24, since the code is not punctured. Stopping
criterion will be enabled with threshold SNR=50, and up to MAXIT=16 iterations will be
executed. Since the stopping criterion is enabled, we may be interested in the number of
iterations executed so the output parameters will be read, i.e., OUTF=1.

Reliability length R and number of sub-blocks NSB are computed as shown in section 3.2.3:

1. N_SW ≥ ceil(3840/128) = 30

2. N_SW % 4 = 0

3. FL = (N_SW – 1)*R + R’

4. 40 ≤ R’ ≤ 128, R’ > P.

5. NSB = N_SW / 4

From (1) and (2), N_SW=32. Equation (3) is then satisfied with R=120 (R’=120). From (5),
NSB=8.

SPRA749B

22 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Assuming all transfers are performed as a single EDMA frame, the EDMA interface is configured
as follows:

• NWORDINTER = ceil(3840/2)=1920

• NWORDSP = ceil(ceil((3840*3)/4)=2880

• NWORDHD = ceil(3840/32)=120

For systematic and parity transfer, ELECNT=2*ceil(NWORDSP/2)=2880 and FRMCNT=0, for
interleaver transfer, ELECNT=2*ceil(NWORDINTER/2)=1920 and for hard decision transfer
ELECNT=2*ceil(NWORDHD/2)=120 and FRMCNT=0. Link 0 for TCPREVT is linked to Link 1
since output parameters are transferred.

These parameters are summarized in Table 6.

Table 6. TCP/EDMA Configuration for 3840-Bit Frame, Rate 1/3 (3GPP)

TCP Configuration

OPMOD = standalone (000b) RATE = 1/3

FL = 3840 R = 120 P = 24

NSB = 8 MAXIT = 16 SNR = 50

SFL = N/A LASTR = N/A LASTNSB = N/A

EDMA Interface Configuration

OUTF= 1 INTER = 1

NWORDSP= 2880

NWORDINTER = 1920 NWORDHD = 120

NWORDHD = N/A NWORDEXT = N/A

Tail Bits

X(t) X(t+1) X(t+2) 0 Y0(t) Y0(t+1) Y0(t+2) 0

0 0 0 0 X’(t) X’(t+1) X’(t+2) 0

Y0’(t) Y0’(t+1) Y0’(t+2) 0 0 0 0 0

TCPXEVT Links TCPREVT links

Link 1 Link 2 Link 0

OPT = see Table 3 OPT= see Table 3 OPT= see Table 3

SRC= &s_p[0] SRC= &int[0] SRC= TCPHD

FRMCNT= 0 ELECNT=
2880

FRMCNT= 0 ELECNT =
1920

FRMCNT = 0 ELECNT = 120

DST= TCPSP DST= TCPINTER DST= &hd[0]

FRMIDX= N/A ELEIDX = N/A FRMIDX= N/A ELEIDX = N/A FRMIDX = N/A ELEIDX = N/A

ELERLD= N/A LINK= 2 ELERLD = N/A LINK = NULL ELERLD = N/A LINK = 1

SPRA749B

23 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

5.1.3 3GPP, 5114 Frame, Rate 1/2

This example is for a 3GPP 5114 bit-frame, encoded using rate 1/2 code. This is the largest
frame supported in the standalone mode.

The prolog length is set to a maximum, i.e., P=48, since the code is punctured. Stopping
criterion will be enabled with threshold SNR=50, and up to MAXIT=16 iterations will be
executed. Since the stopping criterion is enabled, we may be interested in the number of
iterations executed so the output parameters will be read, i.e., OUTF=1.

Reliability length R and number of sub-blocks NSB are computed as shown in section 3.2.3:

1. N_SW ≥ ceil(5114/128) = 40

2. N_SW % 4 = 0

3. FL = (N_SW – 1)*R + R’

4. 40 ≤ R’ ≤ 128, R’ > P.

5. NSB = N_SW / 4

From (1) and (2), N_SW=40. Equation (3) is then satisfied with R=128 (R’=122). From (5),
NSB=10.

Assuming all transfers are performed as a single EDMA frame, the EDMA interface is configured
as follows:

• NWORDINTER = ceil(5114/2)=2557

• NWORDSP = ceil((5114*2)/4)=2557

• NWORDHD = ceil(5114/32)=160

For systematic and parity transfer, ELECNT=2*ceil(NWORDSP/2)=2558 and FRMCNT=0, for
interleaver transfer, ELECNT=2*ceil(NWORDINTER/2)=2558 and for hard decision transfer
ELECNT=2*ceil(NWORDHD/2)=160 and FRMCNT=0. Link 0 for TCPREVT is linked to Link 1
since output parameters are transferred.

These parameters are summarized in Table 7.

SPRA749B

24 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 7. TCP/EDMA Configuration for 5114-Bit Frame, Rate 1/2 (3GPP)

TCP Configuration

OPMOD = standalone (000b) RATE = 1/2

FL = 5114 R = 128 P = 48

NSB = 10 MAXIT = 16 SNR = 50

SFL = N/A LASTR = N/A LASTNSB = N/A

EDMA Interface Configuration

OUTF= 1 INTER = 1

NWORDSP= 2557

NWORDINTER = 2557 NWORDHD = 160

NWORDHD = N/A NWORDEXT = N/A

Tail Bits

X(t) X(t+1) X(t+2) 0 Y0(t) Y0(t+1) Y0(t+2) 0

0 0 0 0 X’(t) X’(t+1) X’(t+2) 0

Y0’(t) Y0’(t+1) Y0’(t+2) 0 0 0 0 0

TCPXEVT Links TCPREVT links

Link 1 Link 2 Link 0

OPT = see Table 3 OPT= see Table 3 OPT= see Table 3

SRC= &s_p[0] SRC= &int[0] SRC= TCPHD

FRMCNT= 0 ELECNT= 2558 FRMCNT = 0 ELECNT = 2558 FRMCNT = 0 ELECNT = 160

DST= TCPSP DST= TCPINTER DST= &hd[0]

FRMIDX= N/A ELEIDX = N/A FRMIDX = N/A ELEIDX = N/A FRMIDX = N/A ELEIDX = N/A

ELERLD= N/A LINK= 2 ELERLD = N/A LINK = NULL ELERLD = N/A LINK = 1

5.2 Shared Processing Examples

5.2.1 IS2000, 6138-Bit Frame, Rate 1/2

This example is for an IS2000 6138 bit-frame, encoded using rate 1/2 code. Since FL > 5114,
shared processing mode must be used. The TCP programming parameters will be shown for the
first MAP1 and the first MAP2 (i.e., first iteration).

The prolog length is set to a maximum, i.e., P=48, since the code is punctured.

SFL is computed as shown in equations 6−9 in section 3.2.3:

6. N_SF = ceil(6138/5114) Data must fit in TCP input buffers

7. SFR = SFL – 2*48 Portion over which extrinsic information is computed

8. FL = (N_SF –1)*SFR + L_SFR

9. SFR % 4 = 0 Due to EDMA indexing features

From (6) , N_SF=2. Then, (8) and (9) are satisfied with SFR=3072, L_SFR=3066. From (7),
SFL=3168.

SPRA749B

25 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Reliability length R and number of sub-blocks NSB are computed as shown in section 3.2.3
using SFR=3072 instead of FL:

1. N_SW ≥ ceil(3072/128) = 24

2. N_SW % 4 = 0

3. SFR = (N_SW – 1)*R + R’

4. 40 ≤ R’ ≤ 128, R’ > P.

5. NSB = N_SW / 4

From (1) and (2), N_SW=24. Equation (3) is then satisfied with R=128 (R’=128). From (5),
NSB=6.

For the last subframe, Reliability length LASTR and number of sub-blocks LASTNSB are
computed as shown in section 3.2.3 using L_SFR=3066 instead of FL:

1. N_SW ≥ ceil(3066/128) = 24

2. N_SW % 4 = 0

3. L_SFR = (N_SW – 1)*LASTR + R’

4. 40 ≤ R’ ≤ 128, R’ > P.

5. LASTNSB = N_SW / 4

From (1) and (2), N_SW=24. Equation (3) is then satisfied with LASTR=128 (R’=128). From (5),
LASTNSB =6.

The EDMA interface is configured as follows:

• NWORDSP = (SFL*2)/4 = (3168*2)/4 = 1584

• NWORDAP =SFL/4 =3186/4 = 792

• NWORDEXT = SFR/4 = 3072/4 = 768

The EDMA transfer for systematic and parity LLRs is configured with ELECNT =
2*ceil(NWORDSP/2) = 1584, FRMCNT = N_SF−1=1 and FRMIDX=SFR*2=6144.

The EDMA transfer for apriori LLR (used in all modes except MAP 1 for first iteration) is
configured with ELECNT = 2*ceil(NWORDAP/2) = 792, FRMCNT = N_SF−1=1 and
FRMIDX=SFR=3072.

The EDMA transfer for extrinsic LLR is configured with with ELECNT = 2*ceil(NWORDEXT/2) =
768 and FRMCNT = N_SF−1=1 .

The parameters for MAP 1 (first iteration) and MAP 2 (any iteration) are summarized in Table 8
and Table 9.

SPRA749B

26 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 8. TCP/EDMA Configuration for 6138-Bit Frame, Rate 1/2 (IS2000) – MAP 1 (first iteration)

TCP Configuration

OPMOD = shared, MAP 1 (no context) RATE= 1/2

FL = 6138 R = 128 P = 48

NSB = 6 MAXIT = N/A SNR = N/A

SFL = 3168 LASTR = 128 LASTNSB = 6

EDMA Interface Configuration

OUTF= 0 INTER = 0

NWORDSP= 1584

NWORDINTER = N/A NWORDHD = N/A

NWORDHD = N/A NWORDEXT = 768

Tail Bits

X(t) X(t+1) X(t+2) 0 Y0(t) Y0(t+1) Y0(t+2) 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

TCPXEVT Links TCPREVT links

Link 1 Link 2 − Not Used Link 0

OPT: see Table 4 OPT: see Table 4

SRC= &s_p1[0 – 2*48] SRC= TCPEXT

FRMCNT= 1 ELECNT= 1584 FRMCNT = 1 ELECNT = 768

DST= TCPSP DST= &ext[0]

FRMIDX= 6144 ELEIDX = 4 FRMIDX = N/A ELEIDX = N/A

ELERLD= N/A LINK= NULL ELERLD = N/A LINK = NULL

SPRA749B

27 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Table 9. TCP/EDMA Configuration for 6138-Bit Frame, Rate 1/2 (IS2000) – MAP 2

TCP Configuration

OPMOD = shared, MAP 2 RATE = 1/2

F = 6138 R = 128 P = 48

NSB = 6 MAXIT = N/A SNR = N/A

SFL = 3168 LASTR = 128 LASTNSB = 6

EDMA Interface Configuration

OUTF= 0 INTER = 0

NWORDSP= 1584

NWORDINTER = N/A NWORDHD = N/A

NWORDHD = 792 NWORDEXT = 768

Tail Bits

X’(t) X’(t+1) X’(t+2) 0 Y0’(t) Y0’(t+1) Y0’(t+2) 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

TCPXEVT Links TCPREVT links

Link 1 Link 2 − Not Used Link 0

OPT: see Table 4 OPT: see Table 4 OPT: see Table 4

SRC= &s_p2[0 – 2*48] SRC= &ap [0 − 48] SRC= TCPEXT

FRMCNT= 2−1 ELECNT= 1584 FRMCNT = 2−1 ELECNT = 792 FRMCNT = 1 ELECNT = 768

DST= TCPSP DST= TCPAP DST= &ext[0]

FRMIDX= 6144 ELEIDX = 4 FRMIDX = 3072 ELEIDX = 4 FRMIDX = N/A ELEIDX = N/A

ELERLD= N/A LINK= 2 ELERLD = LINK = NULL ELERLD = N/A LINK = NULL

6 Multichannel Operation Considerations

The coprocessor will typically be used in an operating environment where a series of frames is
to be decoded in a most efficient manner. The efficiency could be with respect to one or more of
the following parameters:

• EDMA paRAM space: Each frame of data requires a certain number of links in the paRAM,
and due to the limited size of the paRAM, it may not be feasible to pre-program EDMA links
for all frames to be decoded.

• CPU interrupt rate: The CPU intervention may be required to initialize input buffers for new
frames to be decoded, process decoded frames, and program new EDMA links.

• Percentage of coprocessor capabilities required: If the processing power of the
coprocessor is pushed to the maximum, then frame decoding should be scheduled in such a
manner as to keep the coprocessor constantly active, i.e., not let it wait for new input data to
be transferred in, or decoded data to be transferred out.

In this section, we discuss several approaches to scheduling decoding of a series of frames.
Each method optimizes one of the above mentioned parameters.

SPRA749B

28 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

6.1 Method 1: paRAM-Efficient

This method is the most simple to program and requires the least number of links in the EDMA
paRAM.

The paRAM usage and EDMA linking is shown in Figure 6 and Figure 7 for standalone and
shared processing mode, respectively.

Assuming that the coprocessor is initially idle (i.e., in “RESET” state), the suggested procedure
is as follows:

1. CPU programs Link 0 for TCPREVT and Link 1 for TCPXEVT into the appropriate Event
location in paRAM. The remaining links are programmed anywhere in the paRAM space.
Note that , in shared processing mode, EDMA link responsible for Apriori links (TCPXEVT
Link 2) should be in the first 64 links in the paRAM (due to chaining requirement). The
programmed EDMA transfers are inline with those outlined in examples in the previous
section, i.e.,:

− The last link for TCPXEVT is linked to a NULL transfer, and does not generate a CPU
interrupt.

− The last link for TCPREVT is also linked to a NULL transfer, and it generates a CPU
interrupt with TCC which correspond to TCPREVT.

2. The CPU configures EDMA interrupt generation such that TCPREVT is enabled, and
EDMA interrupts are enabled.

3. The CPU sends “START” command to the TCP and continues any non-interfering
processing.

4. When CPU receives EDMA interrupt, with TCC=TCPREVT, the CPU performs necessary
input/output buffer management and repeats steps (1)−(3) for the next frame.

Parameters for Event 0

Parameters for Event TCPREVT
Parameters for Event TCPXEVT

Reload parameters for TCPXEVT

Reload parameters for TCPXEVT

Reload parameters

Reload parameters for TCPREVT

Input config

Systematic and parities

Interleaver (optional)

NULL

Hard decisions

NULL

Output params (optional)

TCPXEVT Links TCPREVT Links

Figure 6. Method 1: paRAM Entries for Standalone

SPRA749B

29 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Parameters for Event 0

Parameters for Event TCPREVT
Parameters for Event TCPXEVT

Reload parameters for TCPXEVT

Reload parameters for Event N

Reload parameters

Input config

Systematic and parities

Apriori write

NULL

Apriori read

NULL

TCPXEVT Links TCPREVT Links

Figure 7. Method 1: paRAM Entries for Shared Processing (With Previous Context)

6.2 Method 2: Continuous Decoding

The main problem with the approach outlined in section 6.1 is that the coprocessor is kept
waiting for input data, i.e., decoding of a new frame does not start as soon as the coprocessor is
ready for it.

This problem could be remedied by keeping EDMA links for two frames in the paRAM. The CPU
is interrupted once frame #n has been decoded, in order to program links for frame #(n+2).
Meanwhile, the coprocessor is processing frame #(n+1). This assumes that the TCP processing
delay for frame #(n+1) is sufficiently large such that the CPU has enough time to respond to
interrupt and write links for frame #(n+2) into the paRAM.

This concept is illustrated in Figure 8 and Figure 9 for standalone and shared processing,
respectively.

The procedure is as follows:

1. The CPU programs all links for the first two frames. Note that the first TCPREVT and first
TCPXEVT link for frame #1 is written into Event parameters, and not Reload parameters.

2. The CPU configures EDMA interrupt generation such that TCPREVT is enabled, and
EDMA interrupts are enabled.

3. The CPU sends “START” command to the TCP and continues any non-interfering
processing

4. Once the transfer associated with link called “Output Params (optional) # 1, 3, 5,...” is
completed, the CPU interrupt is generated. The CPU overwrites links associated with
channel #1 with those associated with channel #3. Note that that the first TCPREVT and
first TCPXEVT link for frame #3 are written into Reload parameters, since the Event
parameter space is used by the link currently in progress.

5. Once the transfer associated with link called “Output Params (optional) # 2, 4, 6,...” is
completed, the CPU interrupt is generated. The CPU overwrites links associated with
channel #2 with those associated with channel #4.

SPRA749B

30 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

6. Steps (4) and (5) are repeated as long as there are frames to be processed. If the CPU
gets interrupted and there are no additional frames to be processed, the last previously
programmed link for both TCPREVT and TCPXEVT should be relinked to the NULL
parameter set to terminate the transfer.

Parameters for Event 0

Parameters for Event TCPREVT
Parameters for Event TCPXEVT

Reload parameters for TCPXEVT

Input config #1

Systematic and parities #1,3,5,...

Reload parameters for TCPXEVTInterleaver (optional) #1,3,5,...

Reload parametersNULL

Reload parameters for TCPREVT

Input config #2,4,6,...
Systematic and parities #2,4,6,...

Interleaver (optional) #2,4,6,...

Reload parameters for TCPXEVT
Reload parameters for TCPXEVT
Reload parameters for TCPXEVT

Reload parameters for TCPREVT
Reload parameters for TCPREVT

Reload parameters for TCPREVT

Hard decisions #1

NULL

Output params (opt.) #1,3,5,...

Hard decisions #2,4,6,...
Output params (opt.) #2,4,6,...

Hard decisions #3,5,...

TCPXEVT Links TCPREVT Links

Figure 8. Method 2: paRAM Entries for Standalone

SPRA749B

31 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Parameters for Event 0

Parameters for Event TCPREVT
Parameters for Event TCPXEVT

Reload parameters for TCPXEVT

Input config #1

Systematic and parities #1,3,5,...

Parameters for Event NApriori write #1,3,5,...

Reload parametersNULL

Input config #2,4,6,...
Systematic and parities #2,4,6,...

Apriori write #2,4,6,...

Input config #3,5,...

Reload parameters for TCPXEVT
Reload parameters for TCPXEVT

Parameters for Event M

Reload parameters for TCPXEVT

Reload parameters for TCPREVT

Reload parameters for TCPREVT

Apriori read #1

NULL

Apriori read #2,4,6,...

Apriori read #3,5,...

TCPXEVT Links TCPREVT Links

Figure 9. Method 2: paRAM Entries for Shared Processing (With Previous Context)

The method could be expanded to more than two preprogrammed frames, provided there is
space for additional links.

6.3 Method 3: Lowest CPU Interrupt Rate

In this method, we build on the idea of keeping the coprocessor continuously running. In addition
to that, the process of EDMA link programming into paRAM is automated: instead of CPU
pre-programming a small number of frames into paRAM, the CPU could program a large
number of links and temporarily store them in L2 memory. The EDMA is then responsible for
transferring preprogrammed links into paRAM.

For this scenario, two additional links in the paRAM are required: one which copies links for
even frames from L2 memory to paRAM, and another one which copies odd frames from L2
memory to paRAM. Note that the copy transfer copies not only the links required for the
coprocessor, but also the copy link itself, since the source address of prepared links will be
different than the previous source address. In order to prevent the copy link from overwriting
itself, it can not be stored at the location of Event parameters for the chained channel. Instead,
the Event parameters will contain a dummy link which only triggers the actual copy link, stored in
Reload parameters.

The scenario is illustrated in Figure 10.

SPRA749B

32 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

Parameters for Event 0

Parameters for Event TCPREVT
Parameters for Event TCPXEVT

Reload parameters for TCPXEVT
Parameters for Event N

Reload parameters

Reload parameters for TCPXEVT
Reload parameters for TCPXEVT

Parameters for Event M

Reload parameters for TCPXEVT

Reload parameters for TCPREVT

Reload parameters for TCPREVT

Reload Parameters for Event K1

Parameters for Event K2

Apriori read #1

NULL

Apriori read #2,4,6,...

Apriori read #3,5,...

Copy #4,6 (L2),. to paRAM

Copy #3,5,... (L2),. to paRAM

Input config #1

Systematic and parities #1,3,5,...
Apriori write #1,3,5,...

NULL

Input config #2,4,6,...
Systematic and parities #2,4,6,...

Apriori write #2,4,6,...

Input config #3,5,...

TCPXEVT Links TCPREVT Links

(dummy; link to copy)

Reload Parameters for Event K2

(dummy; link to copy)Parameters for Event K1

Figure 10. Method 3: paRAM Entries for Shared-Processing Mode

SPRA749B

33 Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP)

References
1. C. Berrou, A. Glavieux, “Near Optimum Error Correcting Coding and Decoding: Turbo-Codes,”

IEEE Transactions on Communications, Vol. 44, No, 10, October 1996, p.1261−1271.

2. L.R.Bahl et al., “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate”, IEEE
Transactions on Information Theory, March 1974, p. 284−287.

3. P. Robertson, P. Hoeher, E. Villebrun, “Optimal and sub-optimal maximum a posteriori
algorithms suitable for turbo decoding,” European Trans. on Telecommunications, vol. 8,
pp.119−125, Mar./Apr. 1997.

4. Turbo Decoder Coprocessor User’s Guide − Literature number SPRU534

5. TMS320C6000 Peripherals User’s Guide − Literature number SPRU190D

6. 3G TS 25 212 V3.1.0 (1999−12), Multiplexing and channel coding (FDD)

7. “Physical Layer Standard for cdma2000 Spread Spectrum Systems,” TIA/EIA/IS-2000-2,
prepared by TR45.5.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

