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ABSTRACT

The enhanced DMA (EDMA) is a highly efficient and parallel data transfer engine. To make
the best use of its resources, it is necessary to understand the architecture and schedule
transfers intelligently. This document details how to summarize, analyze, and schedule
system traffic to produce efficient designs. An example audio/video system is presented and
analyzed in full. Finally, EDMA performance is discussed in terms of the bandwidth of the
EDMA and of the various peripherals.
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1 Introduction

To design a highly efficient, bandwidth-maximizing system using the TMS320C6000 devices, it
is important to schedule system traffic in an intelligent manner. This document will walk you
through the process of proper IO scheduling and provide some examples.

1.1 EDMA Architecture

Prior to setting up the data movement of a system, it is important to have a working knowledge
of the architecture of the enhanced DMA (EDMA) transfer engine. The EDMA architecture
controls how multiple transfers (from multiple transfer requestors) interact with one another,
impacting the overall system performance. For details about the EDMA architecture of the
TMS320C64x DSP, see TMS320C64x EDMA Architecture (SPRA994). For details about the
EDMA architecture of the C621x/C671x DSP, see TMS320C621x/TMS320C671x EDMA
Architecture (SPRA996).

This document assumes that you have read the aforementioned EDMA architecture document
pertaining to your device, as architectural features will be referenced without extensive
explanation.

http://www-s.ti.com/sc/techlit/spra994
http://www-s.ti.com/sc/techlit/spra996
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2 Proper IO Scheduling

Proper IO scheduling within a system involves setting up data transfers in an efficient way, on
defined priority levels, and at certain times or intervals. The goal is to maximize bandwidth
utilization, minimize transfer blocking, and to create a system that effectively utilizes the highly
parallel and powerful architecture of the TMS320C6000 DSPs.

It is typical to consider the worst-case scenario when performing IO scheduling. From a system
traffic perspective, the worst-case scenario is when the most sensitive transfers experience the
longest delays due to interference from other transfer requests (TRs). The amount of
interference can be affected by scheduling the priority and order of the interfering TRs. To
ensure that the real-time deadlines of a system are met, it is necessary to predict the
interference caused by the other transfers in different scheduling scenarios.

The TMS320C6000 DSP has many programmable features to alter transfer scheduling:

• Cache transfers to EMIF and have programmable priority (varies by device).

• Master peripheral (HPI, PCI, EMAC) accesses have programmable priority (varies by
device).

• EDMA channels are extremely flexible. They are able to transfer data on user defined
schedules, priorities, and in various ways.

• Quick DMA (QDMA, which is used for direct CPU DMA requests) transfers have
programmable priority, and transfer size flexibility.

All transfer traffic is handled by the EDMA transfer controller. Inside the transfer controller there
are several interaction points for transfers. Understanding how the transfers interact at these
points, and ways to alter the interaction, assist proper transfer scheduling. While the EDMA is a
very efficient transfer engine, improper use of its resources can unnecessarily inhibit
performance.

There are four basic steps in proper IO scheduling: defining, summarizing, analyzing, and
scheduling system traffic. Each of these steps is examined in the following sections.

2.1 Defining System Traffic

Data transfers are implemented in the DSP in the following way:

• System events cause transfer requestors to submit one or more TRs to the EDMA priority
queues.

• TRs await processing in the queues, and become active when they enter the EDMA queue
register sets.

• An active TR submits read commands (to the source peripheral port) and write commands
(to the destination peripheral port) for small bursts of data to be transferred.

From the perspective of the EDMA transfer controller, system traffic is comprised of TRs. TRs
are generated by system-level requests (cache and host/master servicing), user-programmed
requests (QDMA, EDMA), and cache update requests.

For the purposes of scheduling system traffic, each TR can be defined by its source port,
destination port, transfer size, periodicity, deadline, ideal transfer latency, ideal transfer duration,
and the stage(s) of operation in which it occurs.
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2.1.1 TR Generation

To define system traffic, it is important to know when and how TRs are generated in the DSP.
There are several transfer requestors that submit TRs to the EDMA:

• The L2 controller submits TRs for all cache, CPU, and QDMA transfers.

• The master peripheral submits TRs based on its internal activity (such as host driven
accesses for PCI and HPI, or data packet arrival for EMAC).

• The EDMA channel controller submits TRs based on internal and external events and the
programming of the EDMA registers and parameter RAM.

Full details on TR submission (including when they are submitted and how many elements are
transferred per TR) can be found in the appropriate EDMA architecture document for each
device.

2.1.2 Stages of Operation

In any system there may be different stages of operation, such as boot-up, stand-by,
power-down, and any number of stages in between. A data transfer (and its corresponding TR)
is generally confined to one or more stage(s) in which it occurs. The purpose of these stages is
to realize that some transfers will not interfere with each other because they do not occur in the
same stage.

The worst-case scenario may have to be considered in each stage. It is common to first
schedule transfers that occur in the stages with the most traffic, then to schedule the other
stages based on any overlapping transfers from the busiest stage.

If a recurring transfer exists in multiple stages of operation some properties, such as priority, can
be changed from one stage to the next. It is possible to change a recurring transfer’s priority
between different stages through the following:

• For EDMA/QDMA, priority can be modified on the fly via the priority bits in the options
parameter.

• The priority of master peripheral transfers can be modified (C64x only) by changing the
TRCTL register value. Special care must be taken when changing the value of this register,
however, see the reference guide for the peripheral for details.

• For cache/CPU accesses, priority can be changed between stages of operation (when all
cache operations have flushed) via the CCFG register (C64x only).

The TR priority level cannot be changed mid-transfer. The changes above will only place
subsequent TRs on the new priority level. Changing priority in these ways makes it is possible to
schedule transfers differently among the stages of operation.
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2.1.3 Source and Destination Ports

As of this writing, there are up to seven peripheral ports that handle data transfers directed by
the EDMA’s transfer controller: the L2 memory controller, McBSP/McASP peripherals, UTOPIA
peripheral, master peripheral, video peripheral, EMIF A, and EMIF B (peripheral availability
varies by device family). The memory-mapped peripheral architecture of the TMS320C6000
DSP translates different memory addresses to ports inside the EDMA. Data transfers are
defined by their source and destination address, which correspond to different
source/destination ports within the DSP. The ports interface with the EDMA and contain internal
buffers to isolate transfer data on the peripheral side. The port architecture allows the EDMA to
service multiple transfers at the fast clock rate of the EDMA, while the ports buffer data transfers
to the peripherals, which generally operate at some lower clock rate. The appropriate EDMA
architecture document explains peripheral ports in detail for each device.

If a peripheral does not have a port (such as the I2C peripheral), it is because it is not
considered to be a high-speed peripheral. Transfers to these peripherals are routed through the
L2 controller to the peripheral configuration bus.

2.1.4 Transfer Duration and Latency

Actual transfer duration and latency cannot be calculated exactly prior to IO scheduling. This is
because transfers interact with each other in a variety of ways, changing duration and latency.
Transfer duration and latency can vary depending on other traffic in the EDMA transfer
controller. For scheduling purposes, the ideal, uninterrupted values are used in interference
calculations to determine the actual transfer duration and latency; later these values are verified
in the system.

Figure 1 details the important time intervals associated with EDMA transfers, including the
transfer latency and duration. TL is transfer latency, defined as the time from event to the
beginning of transfer at the source peripheral. SD is source duration, or the interval of time
during which the source peripheral reads data. DD is destination duration, or the interval of time
during which the destination peripheral writes data. TD is transfer duration, defined as the time
from the first read at the source to the last write at the destination. OFF is the source/destination
offset.
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Figure 1. Important Transfer Time Intervals

2.1.4.1 Transfer Duration: Greater Source Bandwidth

When transferring from a source with greater bandwidth, transfer duration is equal to the
destination duration plus the offset. In this case, the destination duration is equal to the transfer
size divided by the destination bandwidth (the limiting bandwidth factor). The offset is equal to
the initial burst size divided by the source bandwidth, where the initial burst size has an upper
limit of the source read command buffer size.

For example, suppose a 600-MHz C64x DSP is transferring 64 bytes from the L2 to a 64-bit,
100-MHz SBSRAM on EMIF-A. The SBSRAM has a bandwidth of 800 MB/sec while the L2 has
a faster bandwidth of 2.4 GB/sec. The initial burst size is 2 words (L2 read command buffer
size), so the offset is 3.33 nS. The destination duration is 80 nS. Thus, the transfer duration is
83.33 nS in the ideal case.
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NOTE:

Bandwidth is calculated by: 64 bits
cycle

�
1 Byte
8 bits

� 100
Mcycles

sec �
800 MBytes

sec , other bandwidth

calculations are done in a similar manor.

Offset time calculation: 2 Words �
4 Bytes
Word

� sec
2.4 GBytes

� 3.33 nsec, other time calculations are

done in a similar manor.

Destination duration is calculated by 
64 Bytes

800 MBytes�sec
� 80 nsec, other duration calculations

are done in a similar manor.

2.1.4.2 Transfer Duration: Greater Destination Bandwidth

When transferring to a destination with greater bandwidth, transfer duration is equal to the
source duration plus the offset. In this case, the source duration is equal to the transfer size
divided by the source bandwidth (the limiting bandwidth factor). The offset is equal to the size of
the final burst of data to the destination port divided by the destination bandwidth. The final burst
size has an upper limit of the destination port write command buffer size.

For example, suppose a 600-MHz C64x DSP is transferring 64 bytes from a 32-bit, 133-MHz
SBSRAM on EMIF-A to the L2 memory. The SBSRAM has a bandwidth of 533 MB/sec while the
L2 has a faster bandwidth of 2.4 GB/sec. The final burst size is 2 words (L2 write common buffer
size), so the offset is 3.33 nS. The source duration is 120 nS. Thus, the transfer duration is
123.33 nS in the ideal case.

2.1.4.3 Bandwidth Consideration

The transfer bandwidth is equal to the bandwidth of the slower of the source or destination
resource.

From an overall bandwidth perspective, these transfer duration estimates assume that the
EDMA is able to maintain the transfer bandwidth, and that the only limiting factor is the speed of
the resources involved. The EDMA performance measurements below compare ideal to actual
bandwidth under various conditions.

2.1.4.4 Transfer Latency

Transfer latency is the delay from an event to the start of the transfer. In the ideal case (no TRs
currently queued on the same priority level) transfer latency is based on the propagation delay
from the event to the start of data movement at the source peripheral. This can be affected by
the readiness of the source, destination, and the transfer requestor, as well as the status of the
priority queue.

This propagation delay varies by device. See TMS320C64x EDMA Performance Data
(SPRAA02) or TMS320C621x/TMS320C671x Performance Data (SPRAA03) for information on
propagation delay.

http://www-s.ti.com/sc/techlit/spraa02
http://www-s.ti.com/sc/techlit/spraa03
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2.1.5 Deadlines and Periodicity

The deadline is the time by which the TR must be complete. TR deadlines can be defined by a
number of system-specific performance requirements and deadlines defined by external
hardware or transfer standards. It is important to meet standards or hardware requirements for
the DSP to interface with other devices in a system. Transfers with specific hardware
requirements are those that service data flow in and out of the chip, such as serial port servicing.
If a transfer doesn’t have an associated hardware restriction, other factors such as desired
system performance may define a deadline.

Deadlines are often dictated by periodicity. On average, if an event must be serviced every N
CPU cycles, then the average deadline is also N CPU cycles. Buffers allow short-term deadlines
to exceed average deadlines, as the example below demonstrates. When considering the
worst-case scenario, it is often permissible to consider the short-term deadline if it can be shown
that there is always sufficient recovery time before the following worst-case scenario. (Keep in
mind that, during this recovery period, the transfer will have to slightly outperform the average
deadline.)

For example, assume the video port requires 720 bytes of data every 35 uS. The average
deadline for this transfer is 35 uS. However, the video port has an internal, self-maintained
buffer. Assume a transfer is triggered whenever the buffer level drops below 4096 bytes. While
an average deadline of 35 uS must be maintained, any single TR has a short-term deadline of
about 199 uS (35 uS x 4096/720), because 4096 bytes are in the buffer.

The deadline will be the measure of proper IO scheduling. Once traffic is scheduled, if deadlines
are not met, traffic is re-evaluated.

If a TR has no defined periodicity, its periodicity is said to be random. However, when estimating
the worst cases, it can be useful to consider that a TR of random periodicity may have a
minimum recurrence interval.

For example, the L2 controller will submit cache TRs for only one cache action (allocate, evict)
at a time. The minimum recurrence interval is the time it takes the cache TR to complete
(transfer latency plus transfer duration). For a single L1 cache line (64 bytes) allocation on a
600-MHz C64x CPU from a 133-MHz, 64-bit SBSRAM, this is about 150.8 nS.

2.2 Summarizing System Traffic

Summarizing system traffic into tables helps analysis of the transfers and scheduling traffic.
Example tables are shown below in the example section.

To summarize system traffic, list each TR and its properties in a table. Include columns that
define the transfer’s description, stage of operation, TR requestor, source port, destination port,
transfer size, and periodicity. This is the system traffic summary (see Table 1 in the example
section).

Also, create a table of system transfers that shows which transfers utilize which source and
destination ports. Create one row for each port in use, and one column for each TR. Under each
TR, place ‘read’ in the row of the port from which the TR reads, and ‘write’ in the row of the port
to which the TR writes. This is the port usage summary (see Table 2 in the example section).
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Finally, create a table that compares transfer size, transfer bandwidth, ideal transfer latency and
duration, deadlines (both short-term and average), and delay tolerance. Delay tolerance is equal
to the short-term deadline minus the sum of ideal transfer latency and duration. This is a table of
temporal TR characteristics (see Table 3 in the example section), and it is helpful in determining
which transfers are most sensitive to interference.

When examining Table 3 in the example section, note that transfer bandwidth for non-EMIF
peripheral ports is higher than expected for the peripherals. This is because transfers from most
peripheral ports consist of short bursts from an internal buffer with long delays while the buffer is
refilling. So from an internal perspective, the transfer bandwidth is the high internal rate (at
EDMA speed).

2.3 Analyzing System Traffic

System traffic should be analyzed from a number of perspectives. Keep in mind that the overall
goal is to meet deadlines by minimizing TR interference, which will increase system
performance.

Note the three places transfers are arbitrated in the EDMA: at the transfer request nodes, in the
priority queues, and in the queue register sets. The EDMA architecture documents explain the
arbitration process at these places in detail.

2.3.1 Transfer Duration and Interference

Transfers with relatively long durations have a greater possibility of interfering with other
transfers. Care should be taken to insure delay sensitive TRs are not submitted behind long
transfers on a given priority queue. To avoid this, delay sensitive TRs should not be assigned to
the same priority level as long transfers. If a large transfer is considered high priority, it may be
best to split it into multiple, shorter transfers. For an example of this, see the TMS320C6000
DSP EDMA Controller Reference Guide (SPRU234).

An Active TRs using the same ports as a long transfer may be delayed by the long transfer. This
concept of port blocking is explained in the EDMA architecture documents. If an active TR is of
lower priority, it may be delayed for the entire duration of the long transfer. If an active TR is of
higher priority, it may be delayed for a short time waiting for command buffers to flush.
Regardless of priority, transfers may share port bandwidth as described below, or as dictated by
read/write parallelism (see the EDMA architecture documents for details).

2.3.2 Sharing Peripheral Port Bandwidth

2.3.2.1 TRs Issuing the Same Command Type

Sometimes active TRs on different priority levels can share the bandwidth of a peripheral port.
This occurs when a transfer is not taking up the full bandwidth of a port. If this is the case, the
excess bandwidth of the port may be used by a lower priority transfer in between bursts for the
higher priority transfer. The port buffers are designed to insure that delays are not experienced
by the higher priority transfer and increase EDMA bandwidth available to other transfers.

For example consider a traffic situation on a TMS320C6416 DSP. If an urgent priority (Q0)
transfer is reading from L2 and writing to EMIF-B, the L2 bandwidth is not fully utilized. The L2
port is busy for only a fraction of the duration of the transfer. A lower priority transfer from L2 to
EMIF-A could be interleaved with the above transfer, taking up any remaining L2 bandwidth.

http://www-s.ti.com/sc/techlit/spru234


SPRAA00

10 TMS320C6000 EDMA IO Scheduling and Performance

If the sum of the ideal individual bandwidths of the concurrent transfers approaches or exceeds
the total bandwidth of a shared port, the transfer of lowest priority is throttled back to maintain
the higher priority transfer(s). See the EDMA performance documents for more information.

2.3.2.2 TRs Issuing Different Command Types

Sharing port bandwidth can also occur in the case of read/write parallelism (see the EDMA
architecture documents for details). If a port is receiving read commands and write commands
concurrently, that port will service the commands in the order of their arrival. The bandwidth of
the port will be split between the reading TR and writing TR. This is primarily a concern for EMIF
memories because of their relatively slow bandwidths and high usage in a typical system.

For example, consider a situation on a C64x CPU at 600 MHz. An active TR on priority Q2 is
reading from L2 and writing to a 64-bit 100-MHz SBSRAM on EMIF-A. Another active TR on
priority Q0 is reading from the SBSRAM and writing to the video port. The ideal transfer
bandwidth of each transfer is 800 MB/sec (limited by the SBSRAM bandwidth), but they will
actually share the bandwidth of the SBSRAM. See the EDMA performance documents for
details on the bandwidth split.

This also applies to a single TR reading from and writing to a single peripheral port, such as an
L2 to L2 transfer.

2.3.3 Schedulable With Respect to Time

Transfers which can be triggered at times specified by the system designer are schedulable with
respect to time. These types of transfers increase the flexibility of the system by allowing the
designer to manually avoid possible TR interference.

Most transfers can be forced onto a time schedule. For example, transfers can be scheduled by:

• Configuring the timer peripheral to trigger a transfer or series of transfers.

• Using transfer A to trigger transfer B via chaining or linking.

• Placing two transfers on the same priority level will, in the case that both TRs are submitted
in close proximity, cause them to occur serially, thus “scheduling” the second after the first.

If the above methods of scheduling with respect to time are insufficient for a particular transfer,
the following methods offer more control. The DSP has added flexibility because its resources
are memory-mapped, allowing EDMA transfers to define and modify operation on the fly. In an
extreme case, a designer may rely on these mechanisms to schedule transfers:

• The CPU/Timer/event triggers an ISR that polls serial ports, buffers, etc. and triggers
transfers intelligently according to some set of rules. For example, if two transfers may
interfere with each other, submit only one at a time.

• The chain and link mechanisms can be used to schedule transfers. The chaining feature can
start a preprogrammed EDMA transfer upon the conclusion of a transfer. The linking feature
can be used to load a new set of parameters for the EDMA transfer upon its completion, and
subsequent events for the channel will trigger the new transfer.

• Transfers can enable other transfers by directly modifying the PaRAM, or a memory-mapped
control register. For example, transfer A  does one of the following: 1) updates another
transfer EDMA parameter set or 2) updates the EDMA channel enable register.
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There are always tradeoffs when scheduling transfers in these ways. Sometimes the overhead
involved in scheduling transfers outweighs the benefit of traffic flexibility. In other instances, a
transfer is initiated by a host or the cache controller or has random periodicity. In those cases, a
transfer is not considered to be schedulable with respect to time (though they may still have
schedulable priority).

2.3.4 Schedulable With Respect to Priority

The priority scheme in the EDMA is meant to allow time-critical transfers to take precedence
over others. Here are a few key things to remember when considering assigning priority.

• When two active TRs target the same source or destination port, priority determines which
transfer takes precedence.

• TRs are sorted into queues based on priority, so transfers of the same priority level occur
serially.

• A priority setting does not affect the speed at which a transfer occurs. A high or low priority
transfer, uninterrupted by others, will have the same transfer duration.

2.3.5 Transfer Requestor Priority Allocation

Each transfer requestor has a limited number of TRs that it can submit to each priority queue.
This is dictated by the priority queue allocation registers (PQARs). Programmability of this limit
varies by requestor and device family. For details on programming the PQARs, see the
appropriate EDMA architecture document.

2.4 Scheduling System Traffic

The above analysis gives insight into transfer interaction and helps define a starting place for
scheduling. With that insight, TRs can be intelligently scheduled. Once scheduled with respect to
priority and time (where applicable), use transfer timetables (described below) to determine the
worst-case interference. If deadlines are met under the worst-case conditions, then scheduling is
successful.

2.4.1 TR Timetables

A transfer timetable is a graphical tool that will help in determining the interference between TRs
and actual transfer latency and duration (see example timetable in Figure 2). After determining
the interference between TRs in the worst case and calculating the resulting transfer latency and
duration, transfer deadlines can then be assessed.

The x-axis represents time, and the y-axis has 4 divisions that represent priority level (C64x
only). TRs will be depicted on their respective priority levels.

Transfer latency represents the first stage of a TR which should be shown on the timetable. The
TR can be delayed during this stage if its requestor is stalled (a situation which should be
avoided), and if it is waiting behind other TRs in the same priority queue.

Transfer duration represents the second stage of a TR which should be shown on the timetable.
The TR can be delayed during this stage by other active TRs according to the priority scheme,
read/write parallelism, or port blocking.
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When a TR is actively using a port, keep track of how much bandwidth it utilizes. When multiple
TRs access the same port, the bandwidth sharing section above describes how bandwidth is
split between them. The bandwidth available to a transfer will determine its progress and affect
its duration. When the behavior of the EDMA is in question, refer to the EDMA architecture
document. Understanding the priority queues, queue registers, commands, ports, and command
buffers is the key to understanding how transfers interact.

The timetable does not need to cover every possible TR interaction. It only needs to show the
worst cases for each TR (or each delay-sensitive TR).

2.4.2 Finding the Worst-Case Scenario for a TR

For the TR in question (TRIQ − the most delay sensitive TR), the worst case is the scenario in
which it is delayed the most by other TRs. It must be assumed that other TRs are interfering with
the TRIQ in the worst possible way (except for those TRs guaranteed not to interfere by
scheduling with respect to time or by other constraints).

Create a timetable depicting the worst-case scenario. Start with the TRIQ. Show the ideal
transfer latency and duration on the timetable. Review the three places TRs interfere, and
determine the worst combination of other TRs that will delay the TRIQ in each place. The
following guidelines will help in determining the worst-case scenario:

• The transfer requestor nodes:

TR nodes can stall if they submit more than their allotted limit to any of the priority queues.
When stalled, no TRs are submitted to any priority level. This scenario should be avoided by
properly programming the priority queue allocation registers.

To check for stalls, assume that the requestor of the TRIQ has submitted all possible TRs on
any priority level, just before the TRIQ is submitted.

Has the requestor exceeded its limit on outstanding TRs? If so, reevaluate the priority queue
allocation register programming and transfer priority levels to avoid requestor stalls.

• The priority queues:

TRs are serviced serially in the FIFO priority queue.

Assume that all requestors have submitted all possible TRs on the same priority level as the
TRIQ, just before the TRIQ is submitted.

Is the TRIQ stalled behind any other TRs in the queue ahead of it? Keep in mind that those
TRs may be delayed by others.

• The queue registers (active TRs):

Active TRs on different priority levels are those being processed in the queue registers.
These active TRs can interfere according to the priority scheme, read/write parallelism, or
port blocking.

Assume that all other TRs (on any priority level) using the same resources as the TRIQ
(source/dest ports) were submitted just before the TRIQ. Delay the TRIQ with port blocking
and read/write parallelism as much as possible.

Is the TRIQ delayed beyond its deadline by other active TRs which share/block its
resources? If it is then traffic needs to be re-evaluated.

Add TRs to the timetable according to the above worst-case interference guidelines, accounting
for interference in the latencies and durations of all TRs on the timetable. All other TRs need not
be added; only those which interfere with the TRIQ.
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Also account for any transfers that can recur multiple times within the timeframe of the single
TRIQ. For example, if the TRIQ is a relatively long (20 uS) data transfer from EMIF, it may be
interrupted multiple times by a QDMA transfer recurring every 3 uS.

Once the timetable is complete, determine the actual transfer latency and duration of the TRIQ
in the worst case, and compare this to its deadline. If any deadlines are violated, traffic
scheduling must be re-evaluated.

3 Proper IO Scheduling – Example System

3.1 System Definition

In this example system a 600-MHz DM642 DSP is used to process video. It receives
compressed audio/video data from a PCI host, decompresses and processes this data, delivers
the uncompressed video to the video port for display, and sends the audio output to the audio
codec via the McBSP. The program code is on-chip, and data is stored in a 133-MHz 32-bit
SDRAM connected via the EMIF. This SDRAM has an ideal bandwidth of 533 MB/sec.

The compressed audio/video input data is a fixed-rate 2 Mbps stream. The PCI host sends data
in 128-byte (32-word) blocks every 488 uS. The PCI transfers this data to a buffer, located in
SDRAM. The PCI peripheral submits TRs after every 8-words received, for a total of four TRs for
the 32 word block. Transfers from a PCI host operating at 33 MHz to 133 MHz SDRAM should
take 9-PCI cycles (272.7 nS) for each 8-word transfer (source: TMS320C64x DSP Peripheral
Component Interconnect (PCI) Performance, SPRA965). The TMS320C64x PCI contains a 16
word write FIFO to buffer the PCI data stream that should allow this transfer speed to be
sustained. However, if internal traffic prevents these transfers from being serviced at this speed,
then the PCI transfer will stall and wait states will be inserted. So the only deadline for the PCI is
the 488 uS repeat rate of the input data.

The output video format is 720x480 video at 30 fps. In this video format each pixel is 16 bits
deep, making each video frame 675 kb. To sustain this output, the video port is configured to
request 720 byte blocks of data (half a video line) every 34.72 uS. The video port has an output
buffer that it will maintain at a level of 4400 bytes, so the maximum short-term deadline
(assuming a full buffer) is about 212 uS.

The video decompression algorithm uses the QDMA for all data transfers, and accesses data in
16x16 pixel blocks (single 2-D TR for all 256 pixels). Processing a single video frame of output
data requires the algorithm to transfer, in the worst case, 6 video frames worth of data (4050 kb)
between buffers and internal memory for motion estimation purposes. This worst-case would
transfer one block (512-byte TR) every 4.12 uS; which is the short-term deadline for the
algorithm transfers. These accesses may be reads (EMIF to L2) or writes (L2 to EMIF). When
determining the worst case, the type of access that causes the longest delay will be assumed.

The audio output format is 44 kHz, 16-bit stereo audio. Left and right channel samples are sent
to the audio codec via the McBSP. One word (both left and right samples) is transferred every
22.72 uS to support this format.

The audio decompression algorithm uses the QDMA for all data transfers, and sends data in
8-sample blocks (16-byte transfers). Assume that in the worst case it must transfer 880 kb to
decompress a second worth of audio output data. In this worst case, the algorithm would submit
TRs for 16-byte transfers every 17.76 uS. These transfers may be reads (EMIF to L2) or writes
(L2 to EMIF). When determining the worst case, the type of access that causes the longest
delay will be assumed.

http://www-s.ti.com/sc/techlit/spra965
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The data in SDRAM will be defined as non-cacheable, as the algorithms access the external
buffers in a somewhat random fashion.

Assume the decoding stage of operation is the only one with multiple sensitive transfers
occurring, therefore it will be the only stage considered during IO scheduling.

3.2 Video System Traffic

Summarizing system traffic yields Table 1 and Table 2.

Table 1. Video System Traffic Summary

Incoming Stream Outgoing Video Outgoing Audio
Video Algorithm
QDMAs

Audio Algorithm
QDMAs

TR requestor PCI node EDMA channel
node

EDMA channel
node

L2 controller node L2 controller node

Source port PCI port EMIF (SDRAM) EMIF (SDRAM) L2/EMIF L2/EMIF

Destination port EMIF (SDRAM) Video peripheral McBSP EMIF/L2 EMIF/L2

Transfer size
(per TR)

32 bytes 720 bytes 4 bytes 512 bytes 16 bytes

Periodicity 4 TRs recurring
every 488 uS

1 TR every
34.72 uS

1 TR every
22.72 uS

Irregular: 1 TR
(min. recur:
4.12 uS)

Irregular: 1 TR
(min. recur:
17.76 uS)

Table 2. Video System TR Port Usage

Port Incoming Stream Outgoing Video Outgoing Audio Video Algorithm Audio Algorithm

L2 Controller R/W R/W

EMIF-A WRITE READ READ W/R W/R

PCI READ

Video WRITE

McBSP WRITE

Table 3 compares the TRs temporal characteristics. Transfer duration is found by finding the
duration of the transfer for the slower port, then adding in the offset.
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Table 3. TR Temporal Characteristics

Incoming Stream Outgoing Video Outgoing Audio Video Algorithm Audio Algorithm

Transfer Size 32 bytes 720 bytes 4 bytes 512 bytes 16 bytes

Source
Bandwidth

PCI: 1.2 GB/sec EMIF: 533 MB/sec EMIF: 533 MB/sec 533 MB/sec or
2.4 GB/sec

533 MB/sec or
2.4 GB/sec

Destination
Bandwidth

EMIF: 533 MB/sec VP: 2.4 GB/sec McBSP: 1.2
GB/sec

2.4 GB/sec or
533 MB/sec

2.4 GB/sec or
533 MB/sec

Transfer
Duration

66.7 nS 1353.3 nS 10.8 nS 963.9 nS 33.3 nS

Transfer
Latency

83.3 nS 117.5 nS 117.5 nS 117.5 nS or70 nS 117.5 nS or70 nS

Deadline Avg.: 122 uS
Short-term: 122 uS

Avg.: 34.72 uS
Short-term:
~212 uS

Avg.: 22.72 uS
Short-term:
22.72 uS

Avg.: 4.12 uS (min.
recurrence interval)
Short-term: flexible

Avg.: 17.76 uS
(min. recurrence
interval)
Short-term: flexible

Delay
Tolerance

Avg.: 121.8 uS
Short-term:
121.8 uS

Avg.: 33.25 uS
Short-term:
210.5 uS

Avg.: 22.59 uS
Short-term:
22.59 uS

Avg.: 3.03 uS
Short-term: flexible

Avg.: 17.61 uS
Short-term: flexible

3.3 Examining System Traffic

The EMIF is used by every transfer and should be considered carefully. It is necessary to decide
which transfers will have priority, which should share the bandwidth (if any), and how to
schedule traffic to best use EMIF bandwidth.

The incoming and outgoing audio/video data streams have strict hardware deadlines, are delay
sensitive, and should be placed in the higher priority range.

The fact that the outgoing video TR is relatively large (720 bytes) is significant. Other sensitive
TRs on the same priority could be delayed for the duration of the transfer. Since the outgoing
video TR has more short-term delay tolerance than the other sensitive TRs (due to the large
video buffer) it will be prioritized just below them.

As the algorithm QDMAs are the least delay sensitive, they will be given the lowest priority.
However, even on low priority, keep in mind that they may interfere via read/write parallelism
(see the EDMA architecture document for details). Read/write parallelism, however, will not be a
major concern for small transfers, as they may complete in a single read/write command.

3.4 Scheduling System Traffic

In light of the above considerations the following priority schedule will be used:

• The incoming stream will be placed on the high priority queue (Q1).

• The outgoing video TRs will be placed on the medium priority (Q2).

• The outgoing audio TRs will be placed on the urgent priority (Q0).

• The audio and video algorithm QDMAs will be on low priority (Q3).

This layout puts the short TRs and sensitive TRs on the higher priorities, and longer TRs are
placed on their own priority levels.
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Table 4. TR Priorities and Requestors

Incoming Stream Outgoing Video Outgoing Audio Video Algorithm Audio Algorithm

Priority Q1 Q2 Q0 Q3 Q3

Requestor PCI node EDMA channel node EDMA channel node L2 node L2 node

The incoming stream TR are generated by the PCI. The priority queue allocation register in the
PCI peripheral (TRCTL) must be programmed to submit TRs to the high priority level. Also, the
allocation limit should be left at the default value of 4.

The QDMA submits TRs to Q3. The number of QDMA TR requests submitted to this queue is
not expected to exceed 6 TR in this application. Therefore, L2ALLOC3 should be set to 6. The
other L2ALLOCn registers will be left at default (to accommodated cache and for future
expansion).

The EDMA submits TRs to Q0 and Q2. The number of requests to these queues is expected to
be six or less in this application. Therefore, PQAR0 and PQAR2 should be set to 6.

Remember that each priority queue has a maximum depth of 16. Table 5 summarizes priority
queue allocation registers and shows that this maximum is not exceeded.

Table 5. Priority Queue Allocation Registers

L2 Node EDMA Channel Node Master Peripherals† Total

Priority Q0 L2ALLOC0 = 6 PQAR0 = 6 12

Priority Q1 L2ALLOC1 = 2 PQAR1 = 6 PCI TRCTL: priority = 1,
allocation = 4

12

Priority Q2 L2ALLOC2 = 2 PQAR2 = 6 8

Priority Q3 L2ALLOC3 = 6 PQAR3 = 6 12

† Allocation registers for unused master peripherals can be ignored.

3.5 Determining Worst Case for TRs

Since the outgoing audio TR is the most delay sensitive, it will be examined in depth here with a
TR timetable.

3.5.1 TRIQ: Outgoing Audio

Outgoing audio data has a short term delay tolerance of 22.59 uS for the transfer to complete.
Once the transfer begins, it will only take 10.8 nS to complete. With a transfer this small the only
real concern is for the transfer to gain access to the resources. This is why the audio transfer
was placed on the urgent priority queue. In the worst case situation, the audio transfer could be
in a port blocking scenario (see the EDMA architecture document for details) where the 4 EMIF
read command buffers are full from the outgoing video transfer. If an audio TR reached the
queue registers at that point it would be given priority, however, its read command would be
delayed behind the 4 read commands already in the EMIF command buffers. The length of the
delay is equal to the amount of data in those 4 buffers (16 words each in the worst case) divided
by the SDRAM bandwidth of 533 MB/sec. The incoming stream TR could be delayed 609 nS
(480 nS transfer duration + 129 nS transfer latency).
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The delay could be increased further due to read/write parallelism (see TMS320C64x DSP
EDMA Performance Data, SPRAA02) if an ongoing video algorithm was writing to EMIF-A at the
same time as the outgoing video was reading from EMIF-A. If the outgoing audio TR arrived in
this situation (both read and write EMIF-A command buffers full), then the port blocking delay
from the outgoing video transfer would still exist, and additionally this delay would increase due
to the ongoing video algorithm write to EMIF-A. So rather then a 609 nS delay, there would be a
delay of 2049 nS (the read transfer only receives 25% of EMIF-A bandwidth, 480 nS/0.25 +129
nS). Even with this addition to the worst case situation the transfer would still complete with 20
uS to spare.

If there had been a conflict, then the outgoing audio could be stored in L2 rather then external
memory; then the outgoing audio would experience negligible delay.

The following TR timetable depicts the worst-case scenario described above.

Q0:

Q1:

Q2:

Q3:

A = The TRIQ latency period = 129 nS
B = The TRIQ read command is stalled behind the outgoing video read commands = 1920 nS
C = The TRIQ outgoing audio data is read from the EMIFand written to the McBSP = 10.8 nS
D = The outgoing video read commands are stalled behind the outgoing audio read commands  = 10.8 nS

event completion

0 nS 625 nS 1250 nS 1875 nS 2500 nS

Worst-Case Scenario, TRIQ: Outgoing Audio

      Ongoing video algorithm QDMA

A B

Outgoing Video

C

D

Figure 2. Example TR Timetable

4 EDMA Performance

This section discusses EDMA performance in general. The bandwidth of the various peripherals
are discussed. For device specific information regarding performance measurements and test
data, see TMS320C64x EDMA Performance Data (SPRAA02) or TMS320C671x/C621x
Performance Data (SPRAA03).

4.1 EDMA Bandwidth

The EDMA bandwidth varies by device, and is calculated by the fact that it can write an element
of data to the peripheral ports every EDMA clock cycle.

The size of the element depends on the peripheral port involved. The L2 port, video port, EMIF
port, and TCP/VCP port are all 64-bit ports. The UTOPIA, McBSP, and master peripheral ports
are 32-bit. The port size affects the EDMA bandwidth available to the peripherals.

http://www-s.ti.com/sc/techlit/spraa02
http://www-s.ti.com/sc/techlit/spraa02
http://www-s.ti.com/sc/techlit/spraa03
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The EDMA frequency is CPU frequency divided by 2 (C64x) or equal to the CPU frequency
(C621x/C671x).

For example, a C64x with CPU frequency of 600 MHz has an EDMA frequency of 300 MHz.
This results in a bandwidth of 1.2 GB/sec for 32-bit ports, and 2.4 GB/sec for 64-bit ports. In
contrast, a 133-MHz 32-bit SDRAM has an ideal throughput of 533 MB/sec.

The EDMA bandwidth is generally not the limiting factor in a transfer, though it must be
considered. The most important factors are the source and destination peripheral bandwidths.
The slower of the two limits the overall rate at which the transfer can progress. The slower port
is considered busy for the entire duration. The faster port is only considered busy for a fraction
of the time, roughly equal to the ratio of bandwidths. It is able to service other transfers in the
interim.

Another important factor is transfer arbitration and interaction, which was introduced in the
EDMA architecture document and explored in depth in the IO Scheduling section of this
document. The effects of transfer arbitration and interaction can be approximated by the
techniques described in the IO Scheduling section.

4.2 Peripheral Bandwidth

To find the duration of a transfer, it is necessary to know the bandwidth of the peripherals
involved. Ideal peripheral bandwidths are given here, though it may be necessary to account for
any transfer interaction and external peripheral activity (such as page misses in an SDRAM).

4.2.1 L2 and Video Port

The L2 memory controller and the video port have the fastest memory accessible by the EDMA.
Both contain 64-bit memories accessible at a frequency of CPU divided by 2. In the case of a
600-MHz CPU, the resulting bandwidth is 2.4 GB/sec. For the L2 memory, remember that this
bandwidth is shared between CPU accesses, EDMA accesses, and cache coherency
operations.

4.2.2 EMIF

In the case of the EMIF, data bursts into the command buffers at the EDMA bandwidth. From the
command buffers, data is conveyed to/from the external memory interface at the rate of the
attached device. This bandwidth is defined by the EMIF control registers, which specify external
memory bus width, frequency, and programmable wait states (asynchronous setup, strobe, and
hold times). For example, a 64-bit, 100-MHz external SBSRAM has an ideal bandwidth of
800 MB/sec.

4.2.3 Utopia, McBSP/McASP, and Master Peripherals

The UTOPIA, McBSP/McASP, and master peripheral ports behave differently than memory
ports. This is because transfers to and from these ports typically have a short, defined length
that fit into the respective command buffers in the port. As a result, the bandwidth of transfers to
or from these ports is not dependent on upon external data flow. The bandwidth depends only
on the EDMA, and it is equal to the EDMA frequency times 32-bits (the width of these ports).

For example, when the McBSP peripheral receives 1 word, it generates a receive event and
moves that data to its read command buffer. The EDMA reads that command buffer (at the
EDMA clock rate through the McBSP port which is 32-bit wide). At an EDMA clock rate of
300 MHz, giving this port has an effective bandwidth of 1.2 GB/sec.
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The same is true for a McBSP write. The EDMA writes data to the McBSP write command buffer
at the EDMA clock rate. The same effective bandwidth is achieved. Once the data enters the
command buffer, the EDMA has finished the transfer. The McBSP peripheral is left to send the
data out the serial port at the serial rate.

The UTOPIA and master peripherals operate the same way, achieving the same effective
bandwidth from an EDMA transfer perspective.

4.2.4 Other Peripherals

EDMA transfers accessing peripherals that do not have ports (such as the I2C) are routed
through the L2 controller, utilizing the L2 peripheral port. The data is passed to the peripheral
configuration bus where it is routed to its destination. Generally these are single-word accesses.
For writes, the TR is finished as soon as the data is transferred to the L2 controller. Thus, the
transfer bandwidth is the same as a normal L2 access. For reads, the data is fetched from the
peripheral configuration bus

5 Summary

This application note discusses efficient EDMA IO scheduling for the TMS320C6000 line of
DSPs. Several techniques to organize system transfers to aid in scheduling are presented.
These techniques are demonstrated in an example to properly schedule system traffic.
Understanding the EDMA architecture, and the expected EDMA performance will greatly aid a
design in properly scheduling EDMA traffic. For more information on these topics please consult
the application notes listed in the reference section.
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Appendix A Terminology
• Active TR: TR that is currently being processed in a queue register set in the EDMA transfer

controller. There can be up to four simultaneous, active TRs. Technically, it is no longer in the
priority queues, and no longer outstanding.

• Commands: Active TRs submit commands to the peripheral ports. These commands are for
a burst of data to be read or written.

• Data transfer, access, or transfer: High-level, abstract terms that refer to data movement
in a system. Can refer to an entire data flow, or part of a data flow, depending on context.
This is in contrast to a transfer request (see definition below).

• EDMA transfer controller: The transfer engine of the C64x, C671x, and C621x DSPs, that
handles all data movement in the system.

• EDMA channel controller: A user-programmable mechanism for submitting TRs to the
EDMA transfer controller based on internal and external events.

• Master peripheral: The EMAC, HPI, and PCI peripherals are considered master
peripherals.

• Outstanding TR: A TR that is awaiting processing by in the priority queues. A single TR
requestor is limited in the number of outstanding TRs it can have per priority level.

• Read/Write parallelism: Active TRs in the EDMA queue registers submit read and write
commands to source and destination ports. Because the read and write command pipelines
are independent of one another, it is possible for a single port to receive read commands
from one TR and write commands from another TR, regardless of the TRs priorities. In this
way, a peripheral may interleave servicing of two TRs of different priority. See the EDMA
architecture document for further details and an example.

• Transfer duration: Transfer duration is measured from the first read from the source
peripheral to the last write on the destination peripheral.

• Transfer latency: Transfer latency is the time it takes for the following: an event to generate
a TR, for that TR to reach the EDMA queue registers for processing, and for the first
command to start transferring data at the source peripheral port. Thus, it can be measured
from the time the event goes active to the time the source peripheral begins reading data.

• Transfer request (TR): Refers to a specific data transfer request submitted to the EDMA
Transfer Controller by a transfer requestor.

• Transfer requestor: Module that submits TRs. There are three transfer requestors: the
EDMA channel controller, the L2 controller, and the master peripheral.

• Transfer/IO scheduling: The process of defining transfer priority and timing.
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Appendix B Transfer Interaction Summary: Priorities and Ports
The two basic resources inside the EDMA are priority levels and peripheral ports. The rules that
define interaction of transfer requests are based on these two resources:

• TRs within a priority level occur serially in the order of their arrival, because there can be
only one active TR from each priority level at any given time.

• Ports receive commands from the active TR with the highest priority which utilizes that port.
Note, however, that reads and writes are considered separately by the source (read
commands) and destination (write commands) pipelines. Also note that if a higher priority
transfer isn’t fully utilizing the peripheral bandwidth, lower priority transfers are allowed to
submit commands.

• The L2 port can often service multiple active TRs because it is often ready faster than other
ports.

Note that the priority level of cache servicing and master peripherals is programmable in the
C64x family, but not in the C67x/C62x family.
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Appendix C Units
Bandwidth units are as follows:

• MB/sec equals 1,000,000 bytes per second

• GB/sec equals 1,000,000,000 bytes per second

Data size units are as follows:

• kB equals kilobyte equals 1,024 bytes

• MB equals megabyte equals 1,048,576 bytes
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