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In this paper, an audio coprocessor architecture is discussed for low power applications like portable audio
players and music playback features in cellular phones. The architectural details are split into hardware
and software domains. The audio coprocessor hardware consists of a bitstream processor to handle
parsing, buffering and control, and an arithmetic unit to handle math intensive operations. Additionally, the
hardware contains peripherals, memory modules and interfaces like ports, DMA, RAM/ROM and a Inter-IC
sound interface. The use of hardware features and capabilities is illustrated with an MPEG1 Layer 3
decoder as an example.
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This paper explains the decoding of an MPEG 1 bitstream with a dual core architecture model. The bit
processing unit (BPU) performs bitstream parsing and Huffman decoding, and acts as master for
controlling the arithmetic unit (AU). The AU performs math intensive operations like dequantization,
inverse transform and synthesis filter.

The paper is organized into three major sections namely hardware description, BPU software and
BPU-AU interface. The hardware description focuses mainly on BPU hardware architecture. The BPU
software section provided insight into BPU software architecture and top-level software design for MP3
decoder.

The BPU-AU interface provided insight into control and data flow across various modules in this dual core
audio coprocessor architecture by taking an MP3 decoder as an example. The AU architecture is not
described in detail as this is similar to other digital signal processor (DSP) architectures with capabilities
limited to audio processing functionality and precision requirements.

The functional block diagram of the audio core is shown in Figure 1. The audio core is composed of two
autonomous processing units: bit processing unit (BPU) and arithmetic unit (AU), and I/O peripherals. The
BPU and AU interface through shared memory. The BPU is essentially a control processor with special
instructions and hardware for bitstream parsing. The AU is a programmable fixed-point computation
engine for performing DSP operations like discrete cosine transform (DCT) and filters [5]. Core and I/O
peripheral synchronization is carried out by the BPU (master). The audio core can be used as a
coprocessor for audio codecs and effects.

Figure 1. JAZZ Audio Core Block Diagram

The audio core is a slave requiring a master (HOST) for initialization. The master could be a
general-purpose processor like ARM [7]. While holding the audio core in reset (halting processor
execution), the HOST loads programs of BPU and/or AU (flow 0). The BPU can load programs onto the
AU. For reducing program memory size, memory overlay can be used. That is, only the program that is
needed is loaded onto the audio core memory. The program/data memory is loaded dynamically based on
need. Though dynamically loaded, the dynamic loading is per stream decode/encode. That is,
program/data is not dynamically loaded for each frame [4].
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Consider Figure 1 with respect to an MP3 decode. The HOST fetches the streams for decode onto the
external memory (SDRAM) from the hard-disk or flash memory. The HOST would inform the data start
and size parameters to the audio core via the control input port (CIP). The BPU can program the data
input port (DIP) DMA to fetch the streams onto the internal memory of the audio core (flow 1). The BPU
unpacks the bitstream and decodes variable length (Huffman decode) encoded information. The BPU
shares the control information extracted from the bitstream and the Huffman decoded frequency samples
into shared memory (flow 2). The BPU gives control to the AU for the generation of PCM samples from
frequency samples. The AU performs de-quantization, joint-stereo, anti-alias butterfly, inverse modified
DCT (IMDCT), overlap-add, frequency inversion and synthesis. The synthesized PCM samples are written
into shared memory (flow 3). Once the PCM samples are available in shared memory, the AU gives
control to the BPU for streaming the samples to the DAC via the PCM port (flow 4). An inter-IC sound
(I2S) interface is supported for connecting the external DAC to the PCM port [10].

The BPU is a programmable processor with hardware acceleration and instructions customized for audio
decoding. It is a 16-bit RISC processor with register-to-register operations and an address generation unit
operating in parallel. This unit is capable of performing an ALU operation, a memory I/O, and a memory
address update operation in one system clock cycle.

The unit has two pipeline stages: Instruction Fetch/Pre-decode, and Decode/Execution. The decoding is
split and merged with the Instruction Fetch and Execution respectively. This arrangement reduces one
pipeline stage and thus branching overhead. Also the shallow pipe in Figure 2 operation enables the
processor to have a very small register file (three general purpose registers, a dedicated bitstream
address pointer, and a control/status register), since memory can be accessed with only a single cycle
delay [2].

Figure 2. BPU Block Diagram

The architecture model includes memory (RAM and ROM), a 5 by 16 bit ALU register file (r0, r1, r2, r3, r6
(bit)), 6 by 13 bit Index Register file (ir0, ir1, ir2, ir3, ir4, ir5) status register (sr), I/O enable register (en/r4),
program counter (pc) and a special register named r5 with all 1’s named as “-1” or r5. The bit register is
used for holding bitstream position in terms of bits as required by bitstream parsers.

Each instruction word contains a memory control part and an ALU control part. In each cycle, the
microcode engine can perform one ALU operation, and one memory read or write operation.

The destination of a memory read is always one of two ALU registers (r0/r1), or the PC for branch
instructions. The source of a memory write is always the ALU result. Inputs to ALU operations always
come from the ALU register file, and the destination is one of the source registers, memory, or an index
register. This architecture effectively pipelines the operand reads for the ALU operation, but makes the
pipeline registers part of the programming model. This gives more flexibility and decreases control logic
for the pipeline.
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The ALU register R5 (alternate name "-1") contains constant bit pattern of all ones. Thus when used as an
ALU source it is not necessary to load the actual value -1 into a register. This is used to implement
increment, decrement, logical complement, and logical and arithmetic shift right by one. R5 cannot be
used as an ALU destination.

There is no stack in the machine. Interrupts are handled by a one-level memory-mapped interrupt return
address register. Interrupt nesting is handled by copying the return address to a private memory location.
Subroutines are handled by explicitly passing the return address in the register file. These methods are
straightforward when the interrupt handler and/or subroutine are not re-entrant [1].

There are four possible modes:
• Immediate: Load a signed 13-bit value from the instruction word.
• Direct: Load a memory location specified by a 13-bit field in the instruction word.
• Register: Load a value from index register IR0-5, or ALU register R0 or R6.
• Indirect: Load a value from memory, addressed via index register IR0-5, or ALU register R0 or R6.

There are six sources of interrupts:
• Data input port (DIP)
• PCM output buffer empty
• Control input port (CIP)
• Input buffer breakpoint
• Arithmetic unit operation complete
• Real-time failure

The first three interrupts (DIP, PCM, and CIP) are by convention only. These three interrupt sources are
external to the BPU/AU core. The last three interrupts are internal to the BPU/AU core and are hardwired.

Data Input Port (DIP) Interrupt
The DIP interrupt is generated when the DIP finishes the DMA copy of new data into the memory. This
interrupt is used for DMA copying of the new data each time, as the input bitstream contains large amount
of data.

PCM Buffer I/O Breakpoint Interrupt
This interrupt is similar to the input buffer I/O breakpoint interrupt and is used by the PCM buffer output
unit to signal the output buffer empty condition. The response should be to refill the PCM output buffer.
Placing this under microcode control allows more flexible management of the PCM output buffer, leading
to reduced buffer size.

Control Input Port (CIP) Interrupt
This interrupt is generated by the CIP port. This interrupt service routine (ISR) can be used for receiving
commands issued by control processor (ARM).

Input Buffer Breakpoint Interrupt
This interrupt is generated when the bit/r6 register touches the word boundary of the programmed memory
word. This interrupt can be used for managing the circular input buffer. Using the breakpoint interrupt
handler to wrap the read pointer allows the size of the buffer to be optimized for the determined worst
case buffer conditions.

Arithmetic Unit Operation Complete Interrupt
This interrupt is generated after the AU executes the NAP instruction signaling the end of the execution
sequence started by the auop () instruction.
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Real-Time Failure Interrupt
There are situations that occur during the correct operation of the decoder which force real-time deadlines
to be missed. These can be caused by pathological input bitstreams which underflow the PCM output
buffer due to limited input buffer capacity. These events must be detected to take corrective action.

The microcode engine uses a 13-bit address for each of the instruction and data spaces. The data space
contains both RAM and table lookup ROM. The memory unit used here is word (16 bits).

Address
Space
0x0000- BPU RAM (4K)
0x0FFF
0x1000- BPU ROM
0x1BBF
0x1BC0- Memory Mapped Registers
0x1BFF
0x1C00- AU RAM Window (1K)
0x1FFF

This section uses an MPEG 1 Layer 3 decoder for illustrating the program flow and buffering capabilities
of the BPU.

Figure 3 provides a top-level program flow in the BPU for an MPEG1 Layer 3 decoder. At the start of
decoder operation, the bit pointer (bit) is initialized to the buffer start position of the input buffer. Sync word
is searched on byte by byte basis. On finding the sync word, the header and CRC information are parsed.
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Figure 3. MP3 Decoder Flowchart on BPU

Upon finding the layer of the stream, respective layer code is loaded into program memory. The parsed
header information is validated with the header information of the 11172-3 standard. If there are any
header errors, the bit is moved back to the found sync position + 8 bits. This is done to minimize the
possibilities of pseudo sync word detection.

Upon finding the valid header info, the successive sync position is parsed with the frame size. If the
successive sync position is not present, the bit is moved back to the found sync position + 8 bits. This step
is used for validating the sync word.

After finding the successive sync, the Side Information is parsed. The parsed side info parameters like
main_data_begin, block_type, scfsi, etc. are tested for validity [3]. If there are any errors, the bit is moved
to the next sync position. This allows for graceful handling of corrupted frames.
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The main data, which includes Scale Factors and Huffman data, is parsed. After the completion of the
decoding of main data, if the decoded frame is not the last frame, the bit is moved to the next sync
position for further decoding. If the decoded frame is the last frame, the decoding operation is closed.

The function of the BPU is to generate the frequency samples and manage all the hardware resources as
it acts as master in the programming environment. The BPU program is divided into small modules as
shown in Figure 4. This section explains briefly about each module. The numbers in parentheses indicate
the module number. The flow proceeds from START and goes through various modules and ends up in
module (9.1), and EOF parse is called. The reader is assumed to have familiarity with the MPEG1 audio
standard [3]. Input buffer of size 499 words (480 + 19(SI Maximum)) is used for decoding purpose.

Figure 4. BPU Modules Tree Diagram

(1) Sync Search
Search for sync word (0xfff) in the bitstream on each byte boundary. If the bit pointer exceeds the end of
file (EOF) marker, exit sync search stating EOF reached.

(2) DIP DMA gbf ISR
This function triggers DMA to refill if the sync word is not found up to the EOB. Refilling is needed to bring
new data in the input buffer starting from the previous refill point to EOB. On completion of refill, the
routine branches to the INTERRUPT RETURN address of sync search function. It calls module 9.1 (EOF
parsing) if sync search exceeded the EOF mark during sync search. (Note: gbf is the instruction for
extracting bits from the bitstream buffer).

(3) Sync DMA
If the expected sync position is not equal to the actual frame start position (having junk between frames),
a refill is needed from the previous refill point to the present frame start.

(4) Header + Cyclic Redundancy Code (CRC) Parse
This module parses the Header and CRC info which follow the sync word.

(5) Header Error
This routine validates the header bits for each MP3 frame. If any header error is found except emphasis
(not used for any computation of decoding process), it returns back with error code and the bit position is
wrapped to the present frame start + 8 bits for further sync search.
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(6) Main_data_begin_extraction
This function extracts the main data begin location (9 bits) from the bitstream, which is used for buffering.

(7) MD Begin Look Back DMA
This function finds the main data begin location in the bitstream buffer using the non-zero main data begin
value extracted from the bitstream, with the help of the MD Bit Look Back routine. If the present main data
begin location falls in the previously parsed main data or future data (due to circular buffering), returns
with error code.

After finding the main data begin buffer pointer, the number of words from the previous buffer refill point to
the present main data begin (for non-zero main data begin) or current frame start (for zero main data
begin) are filled with bitstream for further decoding by use of DMA.

(7.1) MD Bit Look Back
This subroutine helps to find the main data begin buffer pointer for the non-zero main data begin by
skipping the Header and Side Info bits. This routine uses the H_SI_skip routine, if needed.

(7.1.1) H_SI skip
Skip the Header and Side Info bits during the MD Bit Look Back function.

(8) SI Parse
Parse the Side Info from the main data begin extraction point.

(9) Look Ahead Sync
This routine searches for a successive sync in the bitstream for decoding the current frame. If sync is
found, the function returns to caller successfully. If sync is missing but not the last frame, the function
returns back with error code. If the last frame decode with the frame fully available in the buffer, the
function returns with the last frame decoded samples. If the current frame is the last frame, this routine
invokes Song Completion.

(9.1) Song Completion (EOF parsing)
This function is called by Look Ahead Sync when the last frame is not fully in the buffer or by the DIP
DMA gbf ISR when the bit pointer exceeds the EOF mark during sync search or on completion of the
last frame decoding by BPU.

(10) Buffer Error handling
This is used to handle errors by muting the PCM buffer when look ahead sync is not found (bit moved to
frame start + 8 bits) or the wrong main data begin, like the first few frames pointing to future data or the
present main data begin falling in previously used main data (bit moved to next Sync position). If the error
is in the last frame decode returns to EOF parsing.

(11) Buffer Management
This module sets up the breakpoints for the main data parsing. The sync position that follows the present
main data begin is found for non-zero main data begin case and the break point is set at (sync word-1)
word if the main data begin position is less than the sync position else on EOB.

(12) CRC and scfsi check
This is used to validate the CRC and scfsi of the MP3 audio frame. If the parsed CRC and computed CRC
do not match, error code is returned. As CRC is optional in the stream, CRC validation cannot be used for
error detection entirely. The scfsi is forced to zero for a frame if any of the granules have non zero scfsi for
block_type=2.

(13) Main data parsing
This function parses the main data of two granules, and one or two channel(s) of a frame.

(13.1) Scale factor parsing (Part2 length)
The scale factors (long/short/mixed) are parsed.
(13.2) Huffman Parsing (part3 length)
If part2 length > part2_3 length for grX/chY, the sample memory is cleared to zero without any further
decode of the frame. If no errors are detected, Huffman parsing is done.
(13.2.1) Remove Stuffing Bits
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If stuffing bits are present for grX/ChY, these are removed using this module with 1 bit advancement
each time.

(14) MD Completion
After a frame is decoded, the bit pointer is advanced for the next frame decode and returns back to the
main () position. If the last frame decoding is done, returns to EOF parsing.

(15) Header Side Info
This is the module for decoding the frame data up to the main data begin of a frame. If any header/buffer
errors are encountered, branches to the sync search module.

(16) Master Reset Handler
This module is used to initialize the flags and variables that are used for decoding process. The first 499
words in the bitstream are fetched into the buffer using the DMA for the start of decoding operation.

(17) DIP DMA
The BPU is forced to sleep during DMA transfer for saving power (when no data is available for
processing). It also gives the EOF marker position if the file size words are completely transferred by
DMA.

gbf ISR
This ISR is triggered by any of the modules, namely 1(sync search), 4(Header and CRC), 8(SI parse),
and 13 (Main data parse). The breakpoint can be from EOB for all the above modules and SYNC
breakpoint for module 13 only. This ISR maps to the input buffer breakpoint interrupt. Depending on
the breakpoint that caused the interrupt, further processing is carried out.
EOB Bkpt Handling
The last two words of the buffer are stitched to the top (first two locations of the input buffer) and the
bit is wrapped to the top [9].
If sync search module (1) caused EOB breakpoint handling, the processing differs from the usual
return to the INT RET address. This is due to failure of sync detection up to the EOB. In such a case,
the processing comes out of gbf ISR saving the SYNC search module context to temporary memory
and branch to the point colored with BLUE color stating that DIP DMA is triggered in gbf ISR. This is
done to refill (from previous refill point to EOB) while keeping the ISR execution time short. Thus, in
such case the return from ISR does not follow the usual rule.
SYNC Bkpt handling
The 2 or 2 words (based on the position of sync) are stitched into to the H+SI info of the breakpoint hit
frame [9].
Next Bkpt Updating
The next breakpoint update is done only for main data parsing module (13) irrespective of the
breakpoint hit position (that is, from EOB or SYNC). The next breakpoint is kept at the next (SYNC-1)th
word if the main data of the present frame is in past frames or EOB if the main data is in the present
frame only.

The BPU parses the header, CRC and main data begin of frame after finding the sync word of a frame in
the buffer. The BPU initiates the DMA for refill from the previous refill point up to the main data begin of
the current frame. The main data begin position gives how many number of words can be refilled into the
buffer from the previous refill point. Once the new data is copied into the buffer using DMA, BPU looks for
next frame sync word in the buffer to ensure that the detected sync word is not a false sync. After
completing successive sync search successfully, BPU parses the remaining SI. The main data parsing
which includes Scale Factors and Huffman samples is handled through the hardware input buffer
breakpoint by a mechanism called buffering without any additional main data buffer. For buffering, the
maximum frame span is calculated with this formula:

Maximum Frame Span=Maximum input Buffer Size/ Minimum Frame size (480/48 -> 10).

A Maximum frame span of 10 indicates that the present frame can have its main data in the previous nine
frames and also in its frame.
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The parsed scale factors and Huffman data, along with some parameters of SI that are together called as
Control data, are copied into the shared memory between BPU-AU for granule0. After this copy the BPU
gives control to the AU. The AU, which is designed for math operations, takes the frequency samples and
generates the 16-bit PCM samples into the shared memory and signals the BPU. The BPU copies these
data into the PCM buffer for audio playback by a D/A converter (DAC). The BPU again generates control
data for granule 1 and the above procedure continues for granule 1. A similar flow follows for both
channels if there is stereo audio.

After a frame is fully decoded the bit pointer is moved to the next sync position, obtained from the Look
Ahead Sync module. The decoding procedure continues in similar fashion as explained above for each
frame.

The input buffer breakpoint interrupt is initiated when the bit pointer reaches the EOB. In the gbf ISR the
bit pointer is wrapped to the top of the input buffer. Thus, this interrupt serves for circular buffering [9].

The following steps explain the decoder and audio playback operations using various hardware blocks in
the coprocessors. Figure 5 gives the timing and sequencing of various operations with respect to MP3
decoder.

Figure 5. Sequence Diagram of CIP, DIP, BPU, AU, PCM
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1. The CIP initiates the BPU for the start of song playback.
2. The BPU initializes the data RAM locations like flags, variables, shared memory between BPU and AU

(Left and Right Banks), PCM buffer, etc. that are needed for the decoder operation to start.
3. The BPU initiates the PCM for PCM data playback. The BPU initiates the DIP DMA to fill the input

buffer of 499 words (Maximum frame size (480) + Maximum SideInfo (19)).
4. The BPU parses the gr0_ch0, which includes Header, SideInfo, scale factors and Huffman samples

(frequency samples).
5. The BPU copies the frequency samples of gr0_ch0 along with some parameters of SideInfo, called

control data into the shared memory of left channel memory. The BPU initiates the AU for generation
of PCM samples for gr1_ch1 (Initially, the right bank is cleared by BPU). The AU accesses the shared
right channel memory and runs the synthesis operation for generating the PCM samples. The BPU
runs in parallel with the AU and decodes the gr0_ch1 frequency samples.

6. The BPU waits until the previously initiated operations of the AU and PCM are complete.
7. After the AU (synthesis) and PCM operations are completed. The BPU refills the PCM buffer with new

samples and initiates the PCM for playback. The BPU copies the gr0_ch1 control data into the shared
memory of right bank. The BPU invokes Inverse Quantization operation of gr0_ch0 of AU. The BPU
waits until the AU operation is completed. After the AU completes, the BPU again initiates the AU for
inverse quantization of gr0_ch1 and waits for AU completion.

8. The BPU and AU perform Joint Stereo (JS) processing for gr0. Here the BPU performs all data
movement operations associated with JS, while the AU performs ordering and JS processing.

9. The BPU initiates the AU for generation of PCM samples for gr0_ch0. The BPU runs parallel with the
AU and generates the frequency samples for gr1_ch0. After the AU completes operations, the BPU
initiates the AU for gr0_ch1 PCM samples. The BPU runs in parallel with the AU and generates the
frequency samples for gr1_ch1.

10. The BPU waits until the previous PCM buffer is played out. After the PCM buffer is played out, the
BPU refills the PCM buffer with the AU generated PCM samples.

11. The BPU copies the gr1_ch0 and gr1_ch1 control data into shared memory of left and right channel
memory, respectively. The BPU invokes Inverse Quantization operation of gr1_ch0 of the AU and waits
for AU completion. After the AU completes, the BPU again initiates the AU for inverse quantization of
gr1_ch1 and waits for AU completion.

12. The BPU and AU perform Joint Stereo (JS) processing for gr1. Here the BPU performs all data
movement operations associated with JS, while the AU performs ordering and JS processing.

13. Now a full frame is decoded by BPU. The BPU initiates the AU for generation of gr1_ch0 PCM
samples. The BPU runs the gr0_ch0 decode of the next frame concurrently with the AU processing.
The BPU buffer, after finding the main data begin of the present frame decode in gr0_ch0 decode,
needs a refill for the further decode of the frame. So the DIP DMA is initiated for refill up to the main
data begin. The main data begin pointer gives a good indication of how much refill can be done. The
BPU waits for further decode until the DIP completes the DMA. The DMA and AU run parallel.

14. After the DMA finishes data transfer, the BPU completes the remaining decode of gr0_ch0 and
generates frequency samples for gr0_ch0.

15. The BPU waits until the AU completes the generation of PCM samples for gr1_ch0.
16. Step 6 is repeated.

The processing, control and data flow continue in a similar fashion as explained in the above steps until
the bitstream is entirely decoded (until the end of stream is reached).
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The test platform is shown in Figure 6. The BPU and AU programs are tested on the JAZZ ModelSim
(Register Transfer Level) RTL simulator. The breakpoints were inserted in the respective modules and the
parsed data of the header, SI, Huffman and scale factors were dumped into files. A reference C code was
run on the UNIX host and similar data was dumped into files. The files taken from both the JAZZ RTL
simulator and the Reference C code were validated with file comparison software. If there is any mismatch
of the files, the respective module assembly code was corrected and tested again. This process was
carried on a frame to frame basis. The decoder was tested with many error test cases and PCM output
was checked for mute in case of any bitstream errors.

The integration of BPU-AU was tested by generating PCM samples and analyzing the SNR and precision
of output as specified by compliance test standard [6].

Figure 6. Test Platform Flowchart

The decoding of MPEG1 Layer 3 bitstream with a dual architecture model is realized on a ModelSim RTL
simulator platform and validated for performance and compliance. The model is estimated to consume
around 1mW power for MP3 audio playback (digital). The model is realizable using 20k Gates
approximately with 40kB RAM or RAM/ROM combination. The firmware can be extended to perform AAC,
AAC+, WMA9 and other format decoding. Additionally, audio effects algorithms also can be implemented
to work on PCM or frequency samples.

The memory usage and the BPU cycles are shown in Table 1. The cycles and memory comparison can
be better understood from the rows Total/Max for coprocessor and c55x [8].

Table 1. Profile for MP3 Decoder
Memory (Words) MPS (1)

RAM ROM CODE
BPU 3189 2902 2816 14.4
AU 3584 847 1032 21.1
Total/Max 6773 3749 3848 24.9
C55x (2) 14000 7300 8500 21.5

(1) 48 KHz Stereo
(2) General purpose DSP

Authors thank Mohamed Mansour, R&D, Texas Instruments Inc. for his contributions in the development
of MP3 decoder firmware on the audio coprocessor.
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