
 
 
 
 

  

Module 3 
Lab 3: ARM Cortex M Architecture 



Lab 3: ARM Cortex M Architecture  
 

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition 
SWRP142 

 

3.0 Objectives 
 
The purpose of this lab is to introduce the architecture of the Cortex M. 

1. You will learn about registers, RAM, and flash ROM. 
2. You will write an assembly function with input and output parameters, 

which includes conditional and arithmetic operations. 
3. You will learn debugging techniques like single stepping, breakpoints, 

and watch windows. 
4. You will use an automated test approach called black-box functional 

testing to verify your algorithm is operating properly 
 

Good to Know: We will be programming the robot challenge in C. However, the 

compiler converts the C code into assembly code. It is this low-level code that 
actually runs on the MSP432, which is a Cortex-M microcontroller. In this lab, you 
will experience some of the details of how the microcontroller executes software. 
Knowing these low-level details will make you a better high-level software 
developer. 

 
3.1 Getting Started  
 
3.1.1 Software Starter Projects  

 
Look at these three projects:  
SimpleProject_asm (a simple project that implements a random number 

generator),  
LinearInterpolation_asm  (an implementation of sine), and  
Lab03_Assembly (starter project for this lab) 

 
3.1.2 Student Resources (in datasheets directory-Links)     

 
spmu159a.pdf , Cortex-M3/M4F Instruction Set 
 

3.1.3 Reading Materials  

 
Volume 1 Section 1.7, Chapter 3, and Section 5.3  
Embedded Systems: Introduction to the MSP432 Microcontroller", 
or 
Volume 2 Sections 1.1, 2.1, and 2.5 
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller", 

 
 

3.1.4 Components needed for this lab 

 

Quantity Description Manufacturer Mfg P/N 

1 
MSP-EXP432P401R 
LaunchPad 

TI MSP-EXP432P401R 

 

3.1.5   Lab equipment needed (none) 

 

3.2 System Design Requirements 
 
Throughout the course you will acquire knowledge that will allow you to solve 
many robot challenges. The goal of this lab is to better understand how the 
computer performs tasks. We expect most students will complete the robot 
challenge programming in C. However, in this lab you will write a simple function 
in assembly.  
 

Note: In the robot challenge you will use a distance measuring sensor unit 
composed of an integrated position sensitive detector and an IR sensor. This is 
also called a Proximity sensor which will be placed on the robot to measure 
distance. 

 
 
In lab of module 4 you will develop a C function that converts raw ADC samples 
into a distance for the GP2Y0A21YK0F proximity sensor.  
 
 
Let n be a 14-bit sample from the ADC (0 to 16383), and D be the distance in 

mm. The basic form of this nonlinear transfer relation is 
 

D = 1195172/(n – 1058) 

 
where 1195172 and -1058 are calibration coefficients to be empirically 
determined in the ADC lab (Module 15).  
 
The maximum measurement distance for the sensor is 800 mm, so if the ADC 
value is less than 2552, your function should return 800. The C prototype for your 
function is 
 
int32_t Convert(int32_t n);  



Lab 3: ARM Cortex M Architecture  
 

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition 
SWRP142 

However, since you are writing the function in assembly, you must adhere to a 
programming standard, called ARM Architecture Procedure Call Standard 

(AAPCS). There are many components of this standard, but the ones relevant to 
this lab include: 
 

 If there is one input parameter, it is passed in R0 

 If there are two input parameters, they are passed in R0, R1 

 If there are three input parameters, they are passed in R0-R2 

 If there are four input parameters, they are passed in R0-R3 

 If there is an output parameter, it is returned in R0 

 The function can modify R0-R3, R12 freely 

 If a function wishes to use R4-R11 then it must save and restore them 
using the stack.  

 If a function calls another, then it must save and restore LR 

 Functions must balance the stack 
 
Adhering this standard will allow you to develop assembly code that can be 
called from C, and allow your C code to be called from assembly. In particular, 
the compiler will adhere to this standard when creating object code.  
 

3.3 Experiment set-up  
This lab uses the LaunchPad without any input/output hardware.  
 

3.4 System Development Plan 
3.4.1 Functions and debugging 

In this lab section you will build and debug the SimpleProject_asm example. 

Using the debugger, observe the input and output parameters of the function 
while you single step through the main program.  

Answer the following: 

i) How are data passed into Seed?  
ii) How are results passed back from Rand?  

iii) What happens to the LR register when a function is called? 
iv) How does a function return? 
v) How does the software access global RAM?  
vi) What is the difference between storing data in a register and storing it 

in global RAM?  
vii) Where is the machine code stored?  
viii) What do .data and .text mean? 

ix) Where are the constants 1664525 and 1013904223 stored?  

x) You can observe the variables M and n by placing their addresses 
into a Memory Browser window.  

xi) Using the step-over command, execute the Rand function multiple 
times and observe the values in M and n. In particular, look at bit 0 of 
M; what pattern do you see in bit 0? 

Next you will build and debug the LinearInterpolation_asm project. If you are 

unfamiliar with “linear interpolation”, do an internet search on the topic to better 
understand the math used in this project.  

Using the debugger, place a breakpoint inside the Sin function, and use the 
debugger observe the values of the registers during one execution of the Sin 

function. From a programming theory standpoint, these registers are considered 
local variables for the function.  

Answer the following: 

i) Can you prove the three subtract instructions will never overflow, when 
calculating (Ix-x1), (y2-y1), and (x2-x1)?  

ii) Can you prove the multiply instruction will never overflow, when 
calculating (y2-y1)*(Ix-x1)?  

iii) Can you prove it will never divide by zero?  
iv) Why do we use SDIV instead of UDIV for this function?  

Observe how this main program tests the Sin function. We call the form of testing 
in main.asm Black Box functional testing, because the testing just sets inputs 

and observes outputs. In other words, we look at the outside of the software, and 
not probe any of the internal details of the function. Black box testing looks at the 
overall functionality of what software does without know of how it works. 

3.4.2 Distance Conversion 

Write an assembly function that converts raw 14-bit ADC data to distance in mm. 
Use .field statements to encapsulate the calibration parameters. 

IRSlope  .field 1195172,32 
IROffset .field -1058,32 
IRMax    .field 2552,32 

  



Lab 3: ARM Cortex M Architecture  
 

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition 
SWRP142 

You can use the main program delivered as part of the Lab_Assembly project 
to test your Convert function. Similar to LinearInterpolation_asm, this testing 
approach is Black Box functional testing. This test program contains 16  

test cases (inputs and expected outputs). The expected results are plotted as 
Figure 1.  

 
Figure 1. Expected results for the GP2Y0A21YK0F conversion function. 

Run main and compare your results with expected values. It is ok if your results 
differ by ±1 (which could be due to rounding). 
 

3.4.3. Observing Compiler-Generated Assembly Code 

Revisit one of the C examples you ran as part of Lab 1. Within the debugger, 
open a Disassembly window. Single step the C code and observe the actual 
instructions  

 

3.5 Troubleshooting  

Convert doesn’t work:  

• Using main, find an input value that does not work, write a simple main 

program that calls your function with just that input, and single step your 
program comparing your internal calculations with expected values. 
Observing internal values is called white-box testing. 

• If you are still having bugs, consult with your instructor and/or fellow 
students. You may be interpreting the problem in a different way as the 
testing procedure. 

3.6 Things to think about    

In this section, we list thought questions to consider after completing this lab. 
These questions are meant to test your understanding of the concepts in this lab. 
The goal of this module is for you to know enough assembly language to be able 
to interpret the machine-executable code generated by the compiler.  

• What information do we store in ROM? Why? 
• What information do we store in RAM? Why? 
• What information do we store in R0-R12 registers? Why? 
• How are R4-R11 different from R0-R3, R12? 
• How is the LR used? 
• How is the SP used? 
• How is the PC used?  
• How do functions work? Input parameters? Return parameter? 
• Can you prove the (n – 1058) subtraction never overflows? 

• Can you prove the division never attempts a divide by zero? 
• Using integer division, what is the result of 1/n for any values of n 

greater than 1? This error (loss of information) is called dropout. 

• The input is a 14-bit number (0 to 16383), but the output is only a 10-bit 
number (0 to 800). This reduction of four bits is a mild form of dropout. 

How could you have reformulated the problem to have less dropout? 
• Notice that SimpleProject_asm project uses just one source file, while 

LinearInterpolation_asm  Lab_Assembly  projects use two source 

files. How are these two files used? What is the advantage of separating 
the implementation software from the testing software? 

• List the debugging techniques used in this lab. 

  

0

100

200

300

400

500

600

700

800

900

0 5000 10000 15000

D
is

ta
n

c
e
 (

m
m

) 

14-bit ADC 

Expected Results 



Lab 3: ARM Cortex M Architecture  
 

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition 
SWRP142 

3.7 Additional challenges  

In this section, we list additional activities you could do to further explore the 
concepts of this module. You could extend the system or propose something 
completely different. For example, 

• Consider exhaustive testing that tries every possible 14-bit input from  
0 to 16383. How would you generate the test cases? How would you 
change the main program? What are the advantages of exhaustive 
testing? 

• The robot can have multiple proximity sensors. Redesign the Convert 

function to handle three sensors, where each sensor has a unique set  
of three calibration coefficients (IRSlope  IROffset  IRMax).  

• Use the debugger to estimate the time it takes to execute your  
Convert function. 

• The Cortex M supports floating point arithmetic. Implement a floating 
point version of the function and develop a means to test it. Compare 
the accuracy and execution times for the two versions. 

3.8 Which modules are next? 

We will use the next few labs to create components we will need to control the 
robot. The input/output are an important component of an embedded system. 
The following modules will build on this module: 

Module 4)  Introduce C and develop some functions needed for the robot. 
Module 5)  Begin construction of the robot, including battery and  
 voltage regulation 
Module 6)  Learn how to input and output on the pins of the microcontroller 
Module 7)  Study finite state machines as a method to control the robot 
Module 8)  Interface actual switches and LEDs to the microcontroller. This  
 will allow for more inputs and outputs increasing the complexity  
 of the system. 
 

 

3.9 Things you should have learned 

In this section, we review the important concepts you should have learned in  
this module: 

• Understand how the processor uses registers during execution  
• Discover the differences between RAM and ROM and how the software 

uses each. 
• Perform arithmetic calculations in assembly with addition, subtraction, 

multiplication, and division 
• Understand how constants are stored on the microcontroller 
• Make decisions with conditional branch assembly statements 
• Use the debugger to single step and visualize variables 
• Perform functional testing 

 
 



IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

