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Educational Objectives:  
 
REVIEW C programming 
UNDERSTAND conditional statements and loops in C 
DEVELOP logic and arithmetic functions  
LEARN how to debug simple programs in C  
DESIGN, BUILD & TEST A SOFTWARE COMPONENT  

As the robot explores its world, it must make decisions. In the lab 
associated with this module, you will write software that takes input from three 
distance sensors and determines if one of eight possible scenarios is present, 
see Figure 1. The actual sensors will be interfaced in Lab 15, but in this lab you 
will write software to be used in the robot later. 

Prerequisites (Module 1) 

• Running code on the LaunchPad using CCS (Module 1) 

 
Recommended reading materials for students: 

• Volume 1 Chapter 1, Sections 2.8, 5.1, 5.2, 5.3, 5.6, and 5.8  

Embedded Systems: Introduction to the MSP432 Microcontroller 

ISBN: 978-1512185676, Jonathan Valvano, copyright (c) 2017 

or 
• Volume 2 Sections 1.4, 1.5, 3.1, 3.2, 3.3, and 3.4 

Embedded Systems: Real-Time Interfacing to the MSP432 

Microcontroller, ISBN: 978-1514676585, Jonathan Valvano,  

copyright (c) 2017 

  

Figure 1. Eight possible scenarios as the robot explores the maze. As the robot approaches an intersection, it first determines 
what alternative paths exist, and then it chooses which way to go 
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This module serves as a brief introduction to C. C is a general-purpose 
programming language initially developed by Dennis Ritchie between 1969 and 
1973 while at AT&T Bell Labs. In 1999, a professional standard version of C, 
called C99, was defined. In this class we will write our software in C99, because 
it is prevalent in industry. 
 
A compiler is system software that converts a high-level language program 

(human readable format) into object code (machine readable format). It produces 
software that is fast but to change the software we need to edit the source code 
and recompile. 
 
The Project Explorer in CCS shows us the various components used for each 
project. A linker builds a single software system by connecting (linking) software 
components. In CCS, the build command performs both a compilation and a 

linking.  
In an embedded system, the loader will program object code into flash ROM. We 

place object code in ROM because ROM is retains its information if power is 
removed and restored. In CCS, the Debug command performs a load operation 

and starts the debugger. 
 
A debugger is a set of hardware and software tools we use to verify system is 

operating correctly. The two important aspects of a good debugger are control 
and observability. 

Before we write software, we need to develop a plan. Software development is 
an iterative process. Even though we list steps the development process in a 
1,2,3,4 order, in reality we cycle through these steps over and over. I like to begin 
with step 4), deciding how I will test it even before I decide what it does.  

1) We begin with a list of the inputs and outputs. This usually defines what 
the overall system will do. We specify the range of values and their 
significance.  

2) Next, we make a list of the required data. We must decide how the data 
is structured, what does it mean, how it is collected, and how it can be 
changed.  

3) Next we develop the software algorithm, which is a sequence of 
operations we wish to execute. There are many approaches to 
describing the plan. Experienced programmers can develop the 
algorithm directly in C language. On the other hand, most of us need an 
abstractive method to document the desired sequence of actions. 
Flowcharts and pseudo code are two common descriptive formats. 
There are no formal rules regarding pseudo code, rather it is a 
shorthand for describing what to do and when to do it. We can place our 
pseudo code as documentation into the comment fields of our program. 
Next we write software to implement the algorithm as define in the 
flowchart and pseudo code.  

4) The last stage is debugging. Learning debugging skills will greatly 
improve the quality of your software and the efficiency at which you can 
develop code.  

 
In the lab associated with this module, you will develop and test some 

software functions that will be used later in the explorer robot. In particular, 

the first function will convert ADC measurements from a sensor into distance 

to the wall, and the second function will take three distance measurements 

and classify the situation into the most likely scenario. 
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