

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 1
Copyright © 2014, Texas Instruments Incorporated

Software Description

MCU selection and peripherals Pin details

The interface between the TI design board and a microcontroller is through I2C bus and SPI. This flexibility allows
using any microcontroller to implement and test this design. We have used a Tiva TM4C123 GXL Launchpad for
design and testing. The ground pin should be shorted between the Launchpad and the RTD test board.

I2C bus is used to control the ADC and to read the status. SPI is used to read/ write the ADC registers and hence
used for initialization and data retrieval.

1. Initialization

1.1 SPI (Serial Peripheral Interface)

Synchronous serial interface (SSI) has a programmable interface option for FREESCALE SPI, MICROWIRE or
Texas Instruments synchronous serial interfaces. Each SSI module is a master or slave interface for synchronous
serial communication with peripheral devices SSI supports programmable clock bit rate and pre-scaler. The SSI
performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control,
and status information. The transmit and receive paths are buffered with internal FIFO memories allowing up to
eight 16-bit values to be stored independently in both transmit and receive modes. The SSI also supports the
µDMA interface. Transmit and receive FIFOs can be programmed as destination/source addresses in the µDMA
module.

In this design, SSI0 was used. The peripheral pins used are

 PA5 - SSI0Tx (master out)

 PA4 - SSI0Rx (master in)

 PA3 - SSI0Fss (chip select)

 PA2 - SSI0CLK (master clock)

 //
 // The SSI0 peripheral must be enabled for use.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
 //
 // For this example SSI0 is used with PortA[5:2]. The actual port and pins
 // used may be different on your part, consult the data sheet for more
 // information. GPIO port A needs to be enabled so these pins can be used.
 // TODO: change this to whichever GPIO port you are using.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 //
 // Configure the pin muxing for SSI0 functions on port A2, A3, A4, and A5.
 // This step is not necessary if your part does not support pin muxing.
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinConfigure(GPIO_PA2_SSI0CLK);
 GPIOPinConfigure(GPIO_PA3_SSI0FSS);
 GPIOPinConfigure(GPIO_PA4_SSI0RX);
 GPIOPinConfigure(GPIO_PA5_SSI0TX);

 //

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 2
Copyright © 2014, Texas Instruments Incorporated

 // Configure the GPIO settings for the SSI pins. This function also gives
 // control of these pins to the SSI hardware. Consult the data sheet to
 // see which functions are allocated per pin.
 // The pins are assigned as follows:
 // PA5 - SSI0Tx
 // PA4 - SSI0Rx
 // PA3 - SSI0Fss
 // PA2 - SSI0CLK
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_5 | GPIO_PIN_4 | GPIO_PIN_3 |
 GPIO_PIN_2);
 //
 // Configure and enable the SSI port for SPI master mode. Use SSI0,
 // system clock supply, idle clock level low and active low clock in
 // freescale SPI mode, master mode, 1MHz SSI frequency, and 8-bit data.
 // For SPI mode, you can set the polarity of the SSI clock when the SSI
 // unit is idle. You can also configure what clock edge you want to
 // capture data on. Please reference the datasheet for more information on
 // the different SPI modes.
 //
 SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
 SSI_MODE_MASTER, 2000000, 8);
 //
 // Enable the SSI0 module.
 //
 SSIEnable(SSI0_BASE);
 SSIEnable(SSI1_BASE);
 //
 // Read any residual data from the SSI port. This makes sure the receive
 // FIFOs are empty, so we don't read any unwanted junk. This is done here
 // because the SPI SSI mode is full-duplex, which allows you to send and
 // receive at the same time. The SSIDataGetNonBlocking function returns
 // "true" when data was returned, and "false" when no data was returned.
 // The "non-blocking" function checks if there is any data in the receive
 // FIFO and does not "hang" if there isn't.
 //
 while(SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[0]))
 {
 }

SPI communication

The SPI is communicating at 2 Mbps speed. Chip select should be low to communicate and the start pin has to be
asserted high, before reading configuration from ADS1248.

After each byte is written, values from ADC are read back into the same register from next cycle.

/**
* @name Spi_Read_write_8bit
* @brief Send/ reseive data in the Specified ssi base for the specified length
* @param Pbuff : Pointer to send the data and to keep the received data
* @param Length : Length of the data need to be send/ receive
* @param uiBase : Base address of the ssi

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 3
Copyright © 2014, Texas Instruments Incorporated

* @return None
***/

void Spi_Read_write_8bit(unsigned char* Pbuff,uint16_t Length,unsigned int uiBase)
{

 uint32_t temp=0;
 while(SSIDataGetNonBlocking(uiBase,&temp));
 for(temp_count=0;temp_count<Length;temp_count++)
 {
 SSIDataPut(uiBase,*(Pbuff));
 SSIDataGet(uiBase,&temp);
 *(Pbuff++) = temp;
 }
}

1.2 I2C (Inter Integrated Circuit)

The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design (a serial data
line SDA and a serial clock line SCL). Devices on the I2C bus can be designated as either a master or a slave.

– Supports both transmitting and receiving data as either a master or a slave
– Supports simultaneous master and slave operation

■ Four I2C modes
– Master transmit
– Master receive
– Slave transmit
– Slave receive

■ Four transmission speeds:
– Standard (100 Kbps)
– Fast-mode (400 Kbps)
– Fast-mode plus (1 Mbps)
– High-speed mode (3.33 Mbps)

In this design, I2C1 was used. The peripheral pins used are

 I2C SDA

 I2C SCL

void I2C1_Init(void)
{

unsigned int Status=0;

 SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C1);
 SysCtlPeripheralReset(SYSCTL_PERIPH_I2C1);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 SysCtlPeripheralClockGating(true);
 SysCtlDelay(2);

 GPIOPinConfigure(GPIO_PA6_I2C1SCL);
 GPIOPinConfigure(GPIO_PA7_I2C1SDA);
 SysCtlDelay(2);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 4
Copyright © 2014, Texas Instruments Incorporated

 GPIOPinTypeI2CSCL(GPIO_PORTA_BASE, GPIO_PIN_6);
 GPIOPinTypeI2C(GPIO_PORTA_BASE, GPIO_PIN_7);
 SysCtlDelay(2);

 ROM_I2CMasterInitExpClk(I2C1_BASE, SYS_CLOCK, false);
 SysCtlDelay(2);

 Status=I2CMasterLineStateGet(I2C1_BASE);
}

I2C communication

The I2C bus is used to switch the excitation current which is selected through the external multiplexer. RTD_SEL0
and RTD_SEL1 are used to switch the excitation current to different RTD channels. I2C bus is also used to switch
the ADC chip select and to monitor for /DRDY

I2C send/ receive routines

/**
 * @name I2C_Send
 * @brief This function sends data on SDA Line of I2C Protocol.
 * After Start bit MSB is transmitted first. Therefore, if
multiple bytes need to be transmitted always send the highest byte first
 * @param dev_addr : address of the device to which MSP intends to send data
 * @param dev_buff : contains pointer to location from where data is to be
 * transmitted and the size of data to be Tx.
 * @return status : indicates if the I2C Operation has been successful or not
 ***/
unsigned char I2C_Send(I2C_DATA_BUFF* dev_buff)
{
 unsigned char status = I2C_OP_PASS;
 unsigned int i = dev_buff->size;
 unsigned int base = dev_buff->i2c_base;
 unsigned char data = 0;

 // Set the slave address, and set the Master to Transmit mode
 I2CMasterSlaveAddrSet(base, dev_buff->dev_addr, false);

 // Initiate send of character(s) from Master to Slave
 if (i == 1) //Check if only one byte of data is to be sent
 {
 data = *(dev_buff->pBuff);
 I2CMasterDataPut(base, data);
 I2CMasterControl(base, I2C_MASTER_CMD_SINGLE_SEND);
 }

 else
 {
 // Place the character to be sent in the data register. MSB First
 data = *(dev_buff->pBuff+i-1);
 i--;

 I2CMasterDataPut(base, data);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 5
Copyright © 2014, Texas Instruments Incorporated

 // Initiate send of character(s) from Master to Slave
 I2CMasterControl(base, I2C_MASTER_CMD_BURST_SEND_START);

 // Wait until transmission completes

 timerTimeoutFlag1=0;

while((I2CMasterBusy(base)) && timerTimeoutFlag1==0);

 if (timerTimeoutFlag1==1)
 {
 return I2C_OP_FAIL;
 }

 // Check for errors.
 if(ROM_I2CMasterErr(base) != I2C_MASTER_ERR_NONE)
 {
 return I2C_OP_FAIL;
 }

 for(; i<1; i--) //Check if the byte to be sent is the last byte
 {
 data = *(dev_buff->pBuff + i - 1);
 I2CMasterDataPut(base, data);
 I2CMasterControl(base, I2C_MASTER_CMD_BURST_SEND_CONT);
 while(I2CMasterBusy(base)){}
 }

 // send the last byte
 data = *(dev_buff->pBuff + i -1);
 I2CMasterDataPut(base, data);
 I2CMasterControl(base, I2C_MASTER_CMD_BURST_SEND_FINISH);
 }

 // Wait until transmission completes
 // To avoid staying here on no daughter card and to finish transmission
 timerTimeoutFlag1=0;
 Timer0Enable();
 while((I2CMasterBusy(base)) && timerTimeoutFlag1==0);
 Timer0Disable();
 if (timerTimeoutFlag1==1)
 {
 return I2C_OP_FAIL;
 }

 // Check for errors.
 if(ROM_I2CMasterErr(base) != I2C_MASTER_ERR_NONE)
 {
 return I2C_OP_FAIL;
 }

 return status;
}

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 6
Copyright © 2014, Texas Instruments Incorporated

/**
 * @name I2C_Recv
 * @brief This function receives data on SDA Line of I2C Protocol
 * @param dev_addr : address of the device from which MSP intends to receive data
 * @param dev_buff : contains pointer to location where data is to be
 * received and the size of data to be Rx.
 * @return status : indicates if the I2C Operation has been successful or not
 ***/
unsigned char I2C_Recv(I2C_DATA_BUFF* host_buff)
{
 unsigned char status = I2C_OP_PASS;
 unsigned int i = 0;
 unsigned int base = host_buff->i2c_base;

 // Set the slave address, and set the Master to Transmit mode
 I2CMasterSlaveAddrSet(base, host_buff->dev_addr, true);

 // Initiate send of character(s) from Master to Slave
 if (host_buff->size == 1) //Check if only one byte of data is to be read
 I2CMasterControl(base, I2C_MASTER_CMD_SINGLE_RECEIVE);

 else
 {
 // Initiate send of character(s) from Master to Slave
 I2CMasterControl(base, I2C_MASTER_CMD_BURST_RECEIVE_START);

 // Wait until transmission completes
 // while(I2CMasterBusy(base)){}
 // usecWait(300); // To avoid staying here on no
daughter card and to finish transmission
 timerTimeoutFlag1=0;
 Timer0Enable();
 while((I2CMasterBusy(base)) && timerTimeoutFlag1==0);
 Timer0Disable();
 if (timerTimeoutFlag1==1)
 {
 return I2C_OP_FAIL;
 }

 // Check for errors.
 if(ROM_I2CMasterErr(base) != I2C_MASTER_ERR_NONE)
 return I2C_OP_FAIL;

 *(host_buff->pBuff) = I2CMasterDataGet(base);

 for(i=1; i<((host_buff->size)-1); i++) //Check if the byte to be sent is the
last byte
 {

 I2CMasterControl(base, I2C_MASTER_CMD_BURST_RECEIVE_CONT);
 while(I2CMasterBusy(base)){}
 *(host_buff->pBuff + i) = I2CMasterDataGet(base);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 7
Copyright © 2014, Texas Instruments Incorporated

 }

 // Receive the last byte
 I2CMasterControl(base, I2C_MASTER_CMD_BURST_RECEIVE_FINISH);
 }

 // Wait until transmission completes or times out

 timerTimeoutFlag1=0;
 Timer0Enable();
 while((I2CMasterBusy(base)) && timerTimeoutFlag1==0);
 Timer0Disable();
 if (timerTimeoutFlag1==1)
 {
 return I2C_OP_FAIL;
 }

 if(I2CMasterBusy(base))
 return I2C_OP_FAIL;
 // Check for errors.
 if(ROM_I2CMasterErr(base) != I2C_MASTER_ERR_NONE)
 {
 return I2C_OP_FAIL;
 }

 *(host_buff->pBuff + i) = I2CMasterDataGet(base);
 return status;
}

1.3 ADS1248

Generation of Excitation current

 The internal voltage reference should be ON (MUX1 register, VREFCON) to generate the excitation
current on the DACs.

 ADS1248 generates two excitation currents that could be output to pins AIN0…AIN7 or IEXT1/ IEXT2
using register IDAC1.

 By default, the excitation current is disconnected and can be turned ON using IDAC1.

 The excitation current can be varied between 50uA to 1500uA using register IDAC0. By default the
excitation currents are turned off.

ADC reference

The ADC internal reference is always ON. This can be done with register MUX1. The external reference input pair
REF1 (REFSELT1) and normal mode of operation (MUXCAL) is selected.

Chip Select

 Whenever it is intended to communicate to ADS1248, it is necessary to assert CS low. After
communication is over it is asserted high.

 Start pin has to be high to communicate with the ADC.

void Set_CS_Low(void)
{

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 8
Copyright © 2014, Texas Instruments Incorporated

 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &=0xEF; // Clear other bits (except CS)

 i2c_write_data[0]=I2CData;

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE; //reset to pull low //check
 Send_I2C1_Expander_Cmd(i2c_write_data);
}

void Set_CS_High(void)
{
 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &=0xEF; // Clear other bits (except CS)

 i2c_write_data[0]=I2CData | 0x10; //set CS

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE; //reset to pull low //check
 Send_I2C1_Expander_Cmd(i2c_write_data);
}

Convert Start

 Start can be pulled high all the time to enable continuous sampling happens. The other way is to time the
start signal and assert the pin high for a short duration (more than 3 ADC clock cycles). When the start
pin is low, it is not possible to read the configuration registers.

 Allow 32 ADC clock cycles for ADC to settle.

 Wait for DRDY/

 Assert the chip select pin

 Issue a READ command..

void Set_StartConv_High(void)
{
 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &=0xF7; // Clear other bits (except START)

 i2c_write_data[0]=I2CData | 0x08;//SET_ADC_START_CONV

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;
 Send_I2C1_Expander_Cmd(i2c_write_data);
 SysCtlDelay(100);
}

void Set_StartConv_Low(void)
{
 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &=0xF7; // Clear other bits (except START)

 i2c_write_data[0]=I2CData;

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 9
Copyright © 2014, Texas Instruments Incorporated

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;
 Send_I2C1_Expander_Cmd(i2c_write_data);
}

1.4 ADC Initialization for RTD sampling (Ratiometric)

 When ADC is initialized for RTD sampling, the excitation currents should be turned ON and routed
through IEXC1 and 2.

 The excitation current of 500 uA is chosen.

 Current swapping by routing the same current through the different excitation source and averaging them
will cancel out errors.

 Internal reference is always ON.

 The external reference of REF1 pair is selected.

 Gain of 16 and sampling rate of 20 samples per second settings are chosen.

 During initialization self-offset calibration process is initiated, followed by a settling time delay.

void ADS1248_Init(void)
{
//SPI pins are already configured

//Reset low is done already

//chip select
 Set_CS_Low();
 SysCtlDelay(10);

//configure the ADC registers
 Spi_write_data[0] = WREG | IDAC0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x04;//excitation current 500uA (RTD)
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

#ifdef CURRENT_SWAP_TEST //Alternate between IEXC1 and IEXC2 to cancel errors
 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | IDAC1;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x98;//0xFF - to disconnect //select IDAC output pins
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();
#else
 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | IDAC1;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x89;//0xFF - to disconnect //select IDAC output pins
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();
#endif

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 10
Copyright © 2014, Texas Instruments Incorporated

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | MUX1;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x28;//internal osc, internal reference ON, REF1 input pair
selected, Normal measurement
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();
 msecWait(10);

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | SYS0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x42;//Select gain 16 and sampling rate 20sps
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 msecWait(10);

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | OFC0;
 Spi_write_data[1] = THREE_REGISTERS_READ_WRITE;
 Spi_write_data[2] = 0x00;//OFFSET calibration
 Spi_write_data[3] = 0x00;
 Spi_write_data[4] = 0x00;
 Spi_Read_write_8bit(Spi_write_data, 5, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

#ifdef GPIO_CONFIG //To reduce interference on I2C bus, by ADS INT and RESET pins
 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | GPIOCFG;
 Spi_write_data[1] = ONE_REGISTERS_READ_WRITE;
 Spi_write_data[2] = 0x03;//config as GPIO
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | GPIODIR;
 Spi_write_data[1] = ONE_REGISTERS_READ_WRITE;
 Spi_write_data[2] = 0x03;//config as input
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();
#endif

 Set_CS_Low(); //self offset calibration

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 11
Copyright © 2014, Texas Instruments Incorporated

 SysCtlDelay(10);
 Spi_write_data[0] = 0x62;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_Read_write_8bit(Spi_write_data, 2, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 msecWait(802);
}

1.5 ADC initialization for ADC mode (without excitation current and internal reference switched on)

To utilize ADS1248 in ADC mode without excitation current,

 the excitation current has to be turned OFF or

 the IDACs have to be disconnected and

 On board internal reference has to be selected.

void ADS1248_Init(void)
{
//SPI pins are already configured

//Reset low is done already

//chip select
 Set_CS_Low();
 SysCtlDelay(10);

//configure the ADC registers

 Spi_write_data[0] = WREG | IDAC0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x04;//500uA for each excitation
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | IDAC1;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0xFF;//select IDAC output pins// Now disconnected
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | MUX1;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x30;//0x28;
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 12
Copyright © 2014, Texas Instruments Incorporated

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | SYS0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x40; //choose sampling rate and gain
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | OFC0;
 Spi_write_data[1] = THREE_REGISTERS_READ_WRITE;
 Spi_write_data[2] = 0x00;//OFFSET calibration
 Spi_write_data[3] = 0x00;
 Spi_write_data[4] = 0x00;
 Spi_Read_write_8bit(Spi_write_data, 5, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low();
 SysCtlDelay(10);
 Spi_write_data[0] = WREG | FSC0;
 Spi_write_data[1] = THREE_REGISTERS_READ_WRITE;
 Spi_write_data[2] = 0x00;//calibration coefficient- gain scaling 1
 Spi_write_data[3] = 0x00;
 Spi_write_data[4] = 0x40;
 Spi_Read_write_8bit(Spi_write_data, 5, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 Set_CS_Low(); //self offset calibration
 SysCtlDelay(10);
 Spi_write_data[0] = 0x62;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_Read_write_8bit(Spi_write_data, 2, SSI0_BASE);
 SysCtlDelay(10);
 Set_CS_High();

 msecWait(10);
}

2. Functional Description

2.1 I2C Expander

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 13
Copyright © 2014, Texas Instruments Incorporated

The IO expander has an I2C can be used to configure the pins as inputs or outputs.

#define I2C_EXPANDER_ADDR 0x21
#define READ 0x01
#define WRITE 0x00

The bit definitions for the I2C expander pins are shown below.

 The DRDY/ is configured as an input and the other 7 bits are configured as outputs.

 The I2C bus is also used to assert the start, chip select, reset/ pins and the two LEDs. The I2C bus is also
used to read the DRDY/ signal from ADC.

#define SELECT_RTD_CHANNEL1 0x00 //RTD channel selection
#define SELECT_RTD_CHANNEL2 0x01
#define SELECT_RTD_CHANNEL3 0x02
#define SELECT_RTD_CHANNEL4 0x03

#define CHK_ADC_RDY_N 0x04 //input
#define SET_ADC_START_CONV 0x08
#define SET_ADC_CS_N 0x10
#define SET_ADC_RESET_N 0x20

#define LED1_SET_RESET 0x40
#define LED2_SET_RESET 0x80

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 14
Copyright © 2014, Texas Instruments Incorporated

2.2 Initial configuration for I2C port pins

The configuration register (0x03) bits can be set to 1 to make it input or 0 to make it output.
Then using the output register (0x01) appropriate bits can be set to 1 or 0. The input register (0x00) can be used
to read the port pin values.

uint8_t Set_I2C1_Expander_Config (void)
{
 I2C_DATA_BUFF ADS1248_config_dir_buff = {0};
 unsigned int data_len = 2;
 unsigned char status = I2C_OP_PASS;

 ADS1248_config_dir_buff.i2c_base = I2C1_BASE;
 ADS1248_config_dir_buff.dev_addr = I2C_EXPANDER_ADDR | WRITE;
 ADS1248_config_dir_buff.size = data_len;

 i2c_write_data[0] = 0x04; //bitwise '0' for output and '1' for Input
 i2c_write_data[1] = I2C_IO_CONFIG; //Configuration reg of I2c expander

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 15
Copyright © 2014, Texas Instruments Incorporated

 ADS1248_config_dir_buff.pBuff = i2c_write_data;

 status = I2C_Send(&ADS1248_config_dir_buff);

 if(status == I2C_OP_FAIL)
 {
 return status;
 }
 return status;
}

2.2.1 Setting I2C configuration defaults

void Set_I2C_Expander_Defaults (void)
{
 i2c_write_data[0]=0xD8;
 //Set the value of LEDs to high
 //set chip select to low

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;
 Send_I2C1_Expander_Cmd(i2c_write_data);

 i2c_write_data[0]=0xE8;
 //Set the value of LEDs to high
 //set chip select to low

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;
 Send_I2C1_Expander_Cmd(i2c_write_data);
}

2.3 Check if ADC conversion is complete using DRDY bit

Before any data is read from the ADC, DRDY/ pin should be low. Only then the read data command can be
issued.

 // Look for DRDY signal going Low
 // DRDY signal is monitored through the IO Expander
 temp_buff.i2c_base = I2C_base;
 temp_buff.dev_addr =I2C_EXPANDER_ADDR;
 temp_buff.pBuff =&data;
 temp_buff.size =1;
 temp= 0xFF;
 data = 0x00;

 // Loop to wait till DRDY goes low
 while(temp)
 {
 data = I2C_IO_INPUT_READ;
 temp_buff.size =1;
 temp_buff.pBuff =&data;
 I2C_Send(&temp_buff);
 temp_buff.size =1;
 status = I2C_Recv(&temp_buff);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 16
Copyright © 2014, Texas Instruments Incorporated

 if(status == I2C_OP_FAIL)
 {
 Error_status = TRUE;
 break;
 }
 temp = data & CHK_ADC_RDY_N; // Getting DRDY Bit
 SysCtlDelay(10);
 }

2.4 Read the I2C expander port pins

The following code snippet can be used to read the I2C expander port pins.

uint8_t Read_I2C_Expander_Data(void)
{
 I2C_DATA_BUFF ADS1248_CS_DRDY_buff = {0};
 unsigned int data_len = 1;
 unsigned char status = I2C_OP_PASS;

 ADS1248_CS_DRDY_buff.i2c_base = I2C1_BASE;
 ADS1248_CS_DRDY_buff.dev_addr = I2C_EXPANDER_ADDR | READ;
 ADS1248_CS_DRDY_buff.size = data_len;

 ADS1248_CS_DRDY_buff.pBuff = i2c_write_data;

 i2c_write_data[0]=I2C_IO_OUTPUT_READ_WRITE;

 status = I2C_Send(&ADS1248_CS_DRDY_buff);
 status = I2C_Recv(&ADS1248_CS_DRDY_buff);

 return i2c_write_data[0];
}

2.5 External Multiplexer

The I2C expander pins RTD_SEL0 and RTD_SEL1 offer the channel selection.

RTD_SEL0 RTD_SEL1 Channel selected

0 0 RTD channel 1 (default)

0 1 RTD channel 2

1 0 RTD channel 3

1 1 RTD channel 4

The following code snippet does the external multiplexer’s channel selection. Then the IEXC1 and IEXC2 are
routed through the appropriate RTD channel. (ex: RTD1_IEXC1)

Note: Care should be taken to switch appropriate internal ADC MUX settings that match with the external
multiplexer settings.

void Select_I2C_Channels (uint8_t channelNum)
{
 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &=0xFC;// Clear the channel selection bits

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 17
Copyright © 2014, Texas Instruments Incorporated

 switch (channelNum)
 {
 case 0:
 i2c_write_data[0]=0x00 | I2CData;
 break;
 case 1:
 i2c_write_data[0]=0x01 | I2CData;
 break;
 case 2:
 i2c_write_data[0]=0x02 | I2CData;
 break;
 case 3:
 i2c_write_data[0]=0x03 | I2CData;
 break;
 }

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;

 Send_I2C1_Expander_Cmd(i2c_write_data);
}

uint8_t Send_I2C1_Expander_Cmd (uint8_t *write_data)
{
 I2C_DATA_BUFF ADS1248_CS_DRDY_buff = {0};
 unsigned int data_len = 2;
 unsigned char status = I2C_OP_PASS;

 ADS1248_CS_DRDY_buff.i2c_base = I2C1_BASE;
 ADS1248_CS_DRDY_buff.dev_addr = I2C_EXPANDER_ADDR | WRITE;
 ADS1248_CS_DRDY_buff.size = data_len;

 ADS1248_CS_DRDY_buff.pBuff = i2c_write_data;

 status = I2C_Send(&ADS1248_CS_DRDY_buff);

 if(status == I2C_OP_FAIL)
 {
 return status;
 }
 return status;
}

2.6 RTD channel switching

The following code snippet, switches external multiplexer through I2C bus and the ADC internal multiplexer
settings through SPI bus.

For ADC, to process AIN0 as positive and AIN1 as negative, MUX0 register is chosen as 0x01.

void select_Channel(uint8_t ChnNum)
{
 Set_CS_Low();
 SysCtlDelay(10);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 18
Copyright © 2014, Texas Instruments Incorporated

 switch (ChnNum)
 {
 case 0:
 Select_I2C_Channels(0);
 //first take default readings for AIN0+ and AIN1- channel1
 Spi_write_data[0] = WREG | MUX0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x01;//AIN0 positive and AIN1 negative
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 break;
 case 1:
 Select_I2C_Channels(1);
 //second channel
 Spi_write_data[0] = WREG | MUX0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x13;//AIN2 positive and AIN3 negative
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 break;
 case 2:
 Select_I2C_Channels(2);
 //third channel
 Spi_write_data[0] = WREG | MUX0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x25;//AIN4 positive and AIN5 negative
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 break;
 case 3:
 Select_I2C_Channels(3);
 //fourth channel
 Spi_write_data[0] = WREG | MUX0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x37;//AIN6 positive and AIN7 negative
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
 break;
 }
 SysCtlDelay(10);
 Set_CS_High();
}

2.7 Read ADC Data

Wait for /DRDY to be asserted. Then issue a read data command on SPI bus. This is followed by sending 0xFF
thrice to send 24 clock cycles to ADC.

 temp_array[0] = RDATA;//0x20;
 temp_array[1] = 0xFF;
 temp_array[2] = 0xFF;
 temp_array[3] = 0xFF;

 Set_CS_Low();
 SysCtlDelay(10);

Spi_Read_write_8bit(temp_array, 4, spiBase);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 19
Copyright © 2014, Texas Instruments Incorporated

 // Get 24 bit data from ADC
 for(temp=0;temp<3;temp++)
 {
 data = temp_array[temp];
 Rtd_data = (Rtd_data<<8) | data;
 }

2.8 LED indications

The LEDs are used to indicate the present status of the RTD channel that is getting scanned. Binary logic is used
to show the RTD channel number via 2 LEDs.

Present Scanning of channel LED1 (D2) status LED2 (D3) status

Channel 1 OFF OFF

Channel 2 OFF ON

Channel 3 ON OFF

Channel 4 ON ON

void Select_I2C_Channels (uint8_t channelNum)
{
 uint8_t I2CData = 0;
 I2CData = Read_I2C_Expander_Data();
 I2CData &= 0x3C; //clear channel selection + LED 0xFC;// Clear the channel selection
bits
 switch (channelNum)
 {
 case 0:
 i2c_write_data[0]=0x00 | I2CData | 0x00;
 break;
 case 1:
 i2c_write_data[0]=0x01 | I2CData | 0x40;
 break;
 case 2:
 i2c_write_data[0]=0x02 | I2CData | 0x80;
 break;
 case 3:
 i2c_write_data[0]=0x03 | I2CData | 0xC0;
 break;
 }

 i2c_write_data[1]=I2C_IO_OUTPUT_READ_WRITE;

 Send_I2C1_Expander_Cmd(i2c_write_data);
}

3. Sensor Open/ short testing

When enabled, two burnout current sources flow through the selected pair of analog inputs to the sensor. One
sources the current to the positive input channel, and the other sinks the same current from the negative input
channel. When the burnout current sources are enabled, a full-scale reading may indicate an open circuit in the
front-end sensor, or that the sensor is overloaded. It may also indicate that the reference voltage is absent. A
near-zero reading may indicate a short-circuit condition in the sensor.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 20
Copyright © 2014, Texas Instruments Incorporated

 //
 // Check the channels in which sensor is present
 //
 Set_CS_Low();
 Set_StartConv_High();

#ifdef SENSOR_DETECT

 SysCtlDelay(10);
 Spi_write_data[0] = 0x40 | 0x0A;//WREG | IDAC0;
 Spi_write_data[1] = 0x00;//ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0x00;//OFF
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);

 SysCtlDelay(10);
 Spi_write_data[0] = 0x40 | 0x02; //MUX1
 Spi_write_data[1] = 0x00;
 Spi_write_data[2] = 0x30;
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);

 msecWait(10);

 Sensor_Open=0;
 Sensor_Short=0;
 Sensor_Active=0;

 for (ChnNum=0; ChnNum < 4; ChnNum++)
 {
 Select_I2C_Channels(ChnNum);
 msecWait(2);
 CheckSensorPresent(ChnNum);

 msecWait(100);

 Sum_Burnout = 0;

 for (i1=0; i1<250; i1++)
 {
 RTD[ChnNum]= Read_RTD_data(SSI0_BASE, I2C1_BASE,ChnNum);

 Sum_Burnout = Sum_Burnout + RTD[ChnNum];
 }

 if (Sum_Burnout > 8175000)
 { //Fix an arbitrary threshold to detect sensor open
 //Open circuit or sensor overload
 Sensor_Open |= (1<<ChnNum);
 }
 else
 {
 if (Sum_Burnout <= 217000) short
 { //Fix an arbitrary threshold to detect sensor

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 21
Copyright © 2014, Texas Instruments Incorporated

 //short circuit
 Sensor_Short |= (1<<ChnNum);
 }
 else
 {
 Sensor_Active |= (1<<ChnNum);
 }
 }

 }
#endif

/**
*********/
// void CheckSensorPresent(uint8_t ChnNum)
//
// Description:
// 1. Switches RTD channel Mux0 register based on ChnNum parameter
// 2. Route the Burn out current source to the respective RTD
channel pins
// Precondition:
// Ensure START is high before calling this function
// Ensure SPI peripheral and pins are initialized
// Ensure the MACRO, SENSOR_DETECT is defined, to use this function
// Returns: None
/**
*********/
void CheckSensorPresent(uint8_t ChnNum)
{
 uint8_t RTDchn=0;
 switch (ChnNum)
 {
 case 0:
 RTDchn = 0x01;
 break;
 case 1:
 RTDchn = 0x25;
 break;
 case 2:
 RTDchn = 0x37;
 break;
 case 3:
 RTDchn = 0x13;
 break;
 default:
 break;
 }
 Spi_write_data[0] = WREG | MUX0;
 Spi_write_data[1] = ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = 0xC0 | RTDchn;
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 22
Copyright © 2014, Texas Instruments Incorporated

 SysCtlDelay(10);
 Spi_write_data[0] = 0x40 | 0x0B;//WREG | IDAC1;
 Spi_write_data[1] = 0x00;//ONE_REGISTER_READ_WRITE;
 Spi_write_data[2] = RTDchn;
 Spi_Read_write_8bit(Spi_write_data, 3, SSI0_BASE);
}

4. GUI interface

4.1 GUI Installation

The GUI has some component dependencies:

Install the software in the following order:

1. LV Runtime - http://www.ni.com/download/labview-run-time-engine-2010-sp1/2292/en/

2. VISA Runtime - http://www.ni.com/download/ni-visa-run-time-engine-5.1.2/2918/en/

 3. The GUI “.exe” file can be run now

4.2 Usage

The GUI works only when the MACRO “GUI” is defined. Ensure that the GUI is not in simulation mode by
unchecking the “checkbox.

The GUI interface uses USB bulk data transfer to communicate with Tiva Launchpad.

Automatic update

Periodically, it switches between the channels and continues to display the readings as a graph.

Manual update

Instead of periodically switching the channels, it is possible to read the data by as and when it is required, using
GUI. The user sets the RTD channel and reads the corresponding ADC data by selecting update button. If the
user intends to read data from all 4 channels, he shall select all and then select update.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and
other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

TIDU765-November 2014 23
Copyright © 2014, Texas Instruments Incorporated

About Author

Vivek Gopalakrishnan is a Firmware Architect at Texas Instruments India where he is responsible for developing
reference design solutions for the Smart Grid within Industrial Systems. Vivek brings to his role his experience in
firmware architecture design and development. Vivek earned his Master’s degree in Sensor Systems Technology
from VIT University, India. He can be reached at vivek.g@ti.com

mailto:vivek.g@ti.com

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers (“Buyers”) who are developing systems that
incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains
responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.
TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any
testing other than that specifically described in the published documentation for a particular reference design. TI may make
corrections, enhancements, improvements and other changes to its reference designs.
Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the
reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY
OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right,
or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE
REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

