This document shares the tests results of the PGA400-Q1 EVM using varying capacitors as inputs. The output will be very linear since the test procedure utilizes varying capacitors (and not a true sense element). Therefore, linearization firmware is not necessary and the data is extracted after the ADC.

The data is structured into two main categories:

1. Test set up
2.
 a. PGA400-Q1 EVM GUI Settings
 b. PGA400-Q1 EVM GUI Procedure
3. PGA400-Q1 EVM ADC results

Equipment used to create this data:

1. 12V power supply
2. PGA400-Q1 EVM GUI installed on PC
3. PGA400-Q1 EVM + board that interfaces with PC (TI-ger board)
4. Varying capacitors (4.7pF – 50pF)
Section 1: Test set up

- Before the system is powered up, please make sure all hardware is configured properly. Check that all jumpers and headers are connected appropriately. For a detailed description of configurations, see EVM user’s guide.
- To power the board:
 - The PGA400-Q1 EVM is shipped with a TI-ger USB communication board that provides a link from the PC controlled GUI to the EVM. Connect the TI-ger board to the PGA400-Q1 EVM.
 - Connect 12V from a power supply to the EVM. The 12V bucks down to 5V to power the PGA400-Q1.
 - Connect the TIger board to the PC. See figure.
Section 2a: PGA400-Q1 EVM GUI settings

- To re-create the data, open up the EVM GUI and enter the following settings. Notice this is under the “Resistive” tab.
To re-create the data, open up the EVM GUI and enter the following settings. Notice this is under the “Capacitive” tab.
Section 2b: PGA400-Q1 EVM GUI Procedure

- Put in reset to do SPI communication. That is found under the “Test” tab, then click “If Select/UC_RST”. When the PGA400's MCU is in reset, SPI can be used to write to the registers that control the MUXes, gains, and offsets of the AFE.
- Put in settings as shown in the figures in section 2a under the “AFE/OFFSET” tab.
 - Note: Fields under the “resistive” and “capacitive” tabs are not exclusive to just resistive or just capacitive measurements. The information under both tabs are relevant in both cases.)
 - Note: Many buttons need to be toggled to be enabled. The input does not re-enable itself each time the input is changed and must be re-enabled again each time.
 - Under Sensor Select, select “Sensor 1”
 - Stage 1 gain: 10.20
 - Stage 2 gain: 3.86
 - Toggle “Invert Sensor” (to disable, then enable)
 - Toggle “Enable Bridge Drive Regulator” (to disable, then enable)
 - Under Sensor Select, select “Sensor 2”. Repeat steps for “Sensor 2”.
 - ZTC: 157 (hit “set” to program value, then “read” to verify and read back value)
 - PTAT: 32 (hit “set” to program value, then “read” to verify and read back value)
 - Drive voltage: 500mV
 - Drive current: 5uA
 - Trans-Z (transimpedance amp): 625kohms
 - Toggle “Active Capacitance AFE” to activate capacitance AFE
 - Toggle “ADC DC Level Shift” (to disable, then enable)
 - Note: These values are reflected in the grid to the left. The values can be saved by saving the grid.
 - Press “ADC Update” to read back the ADC value. Theoretically, as the input capacitance changes, so should the ADC value.
Section 3: PGA400-Q1 EVM ADC results

Below are the test results. As expected, the ADC value increases as the capacitance increases. The output is very linear. If the input were a true capacitive sense element, the pressure vs. capacitance would not be linear.

With these particular GUI settings, the 4.7pF saturates the ADC. If the GUI settings are tweaked, the saturation can be prevented.

<table>
<thead>
<tr>
<th>Var cap</th>
<th>ADC value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7pF</td>
<td>-32768</td>
</tr>
<tr>
<td>10pF</td>
<td>-22542</td>
</tr>
<tr>
<td>15pF</td>
<td>-10371</td>
</tr>
<tr>
<td>22pF</td>
<td>5844</td>
</tr>
<tr>
<td>27pF</td>
<td>18725</td>
</tr>
<tr>
<td>33pF</td>
<td>30811</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale. TI warrants performance of its reference designs only if such designs are used in accordance with TI’s published documentation. TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and supporting documentation. TI'S COMPLETE LIABILITY TO BUYER WITH RESPECT TO ANY REFERENCE DESIGN, REGARDLESS OF THE CAUSE, THE THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, IS LIMITED TO THE AVERAGE PURCHASE PRICE OF THE COMPONENTS CONTAINED IN EACH REFERENCE DESIGN.

Rep做梦 of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.