# Functional Safety Information LM25143 Functional Safety FIT Rate, FMD and Pin FMA

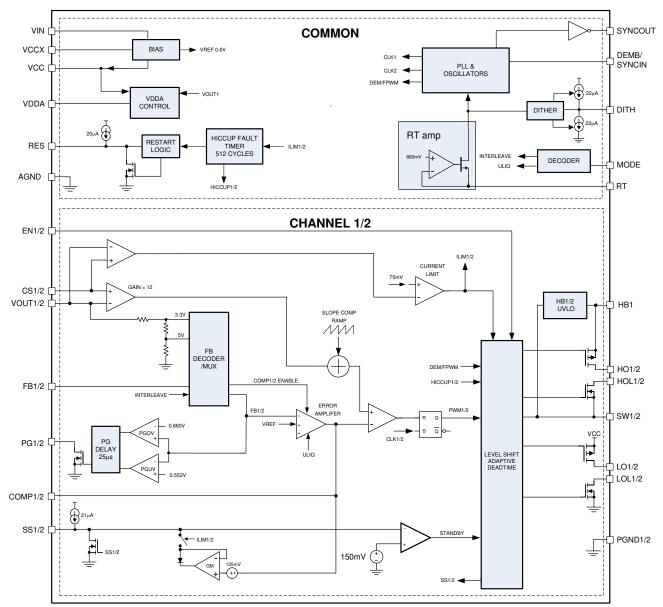
# **TEXAS INSTRUMENTS**

# **Table of Contents**

| 1 Overview                                      | 2    |
|-------------------------------------------------|------|
| 2 Functional Safety Failure In Time (FIT) Rates |      |
| 3 Failure Mode Distribution (FMD)               |      |
| 4 Pin Failure Mode Analysis (Pin FMA)           |      |
|                                                 | •••• |

## Trademarks

All trademarks are the property of their respective owners.


2

# 1 Overview

This document contains information for LM25143 (VQFN package) to aid in a functional safety system design. Information provided are:

- Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (Pin FMA)

Figure 1-1 shows the device functional block diagram for reference.



#### Figure 1-1. Functional Block Diagram

LM25143 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.





# 2 Functional Safety Failure In Time (FIT) Rates

This section provides Functional Safety Failure In Time (FIT) rates for LM25143 based on two different industrywide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

#### Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

| FIT IEC TR 62380 / ISO 26262 | FIT (Failures Per 10 <sup>9</sup> Hours) |
|------------------------------|------------------------------------------|
| Total Component FIT Rate     | 32                                       |
| Die FIT Rate                 | 7                                        |
| Package FIT Rate             | 25                                       |

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 750 mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- Substrate Material: FR4
- EOS FIT rate assumed: 0 FIT

#### Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

| Table | Category                                          | Reference FIT Rate | Reference Virtual T <sub>J</sub> |
|-------|---------------------------------------------------|--------------------|----------------------------------|
| 5     | CMOS/BICMOS<br>ASICs Analog & Mixed =< 50V supply | 32 FIT             | 55°C                             |

The Reference FIT Rate and Reference Virtual  $T_J$  (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

# 3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for LM25143 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

| Die Failure Modes                                     | Failure Mode Distribution (%) |  |  |  |  |
|-------------------------------------------------------|-------------------------------|--|--|--|--|
| SW1/2 no output                                       | 45%                           |  |  |  |  |
| SW1/2 output not in specification - voltage or timing | 40%                           |  |  |  |  |
| SW1/2 power FET stuck on                              | 5%                            |  |  |  |  |
| PG1/2 false trip or fails to trip                     | 5%                            |  |  |  |  |
| Short circuit and two pins                            | 5%                            |  |  |  |  |

| Table 3-1. Die Failure Modes and Distribution |
|-----------------------------------------------|
|-----------------------------------------------|

The FMD in Table 3-1 excludes short circuit faults across the isolation barrier. Faults for short circuit across the isolation barrier can be excluded according to ISO 61800-5-2:2016 if the following requirements are fulfilled:

- 1. The signal isolation component is OVC III according to IEC 61800-5-1. If a SELV/PELV power supply is used, pollution degree 2/OVC II applies. All requirements of IEC 61800-5-1:2007, 4.3.6 apply.
- 2. Measures are taken to ensure that an internal failure of the signal isolation component cannot result in excessive temperature of its insulating material.

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.



# 4 Pin Failure Mode Analysis (Pin FMA)

This section provides a Failure Mode Analysis (FMA) for the pins of the LM25143. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

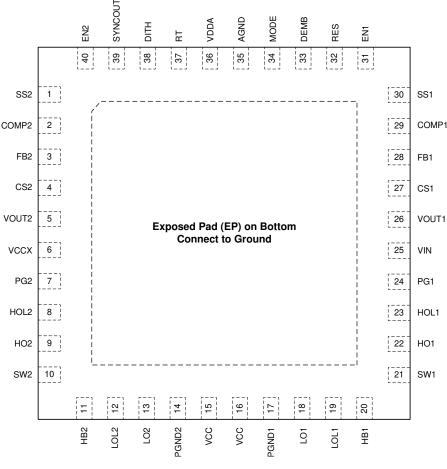

- Pin short-circuited to Ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuit to VIN (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

| Class | Failure Effects                                             |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|
| A     | Potential device damage that affects functionality          |  |  |  |
| В     | No device damage, but loss of functionality                 |  |  |  |
| С     | No device damage, but performance degradation               |  |  |  |
| D     | No device damage, no impact to functionality or performance |  |  |  |

#### Table 4-1. TI Classification of Failure Effects

Figure 4-1 shows the LM25143 pin diagram. For a detailed description of the device pins please refer to the *Pin Configuration and Functions* section in the LM25143 data sheet.



#### Figure 4-1. Pin Diagram

Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

- Application Circuit as per LM25143 data sheet is used
- PG1 and PG2 are pulled-up to VOUT1 and VOUT2

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                                    | Failure<br>Effect<br>Class |  |  |
|----------|---------|---------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| SS2      | 1       | VOUT1 = regulation, VOUT2 = 0 V                                                                               | В                          |  |  |
| COMP2    | 2       | VOUT1 = regulation, VOUT2 = 0 V                                                                               |                            |  |  |
| FB2      | 3       | If FB = VDDA, then VOUT1 and VOUT2 = 0 V.                                                                     | В                          |  |  |
| FDZ      | 5       | If FB = GND, then VOUT1 = regulation and VOUT2 = 5 V.                                                         | В                          |  |  |
| CS2      | 4       | VOUT1 = regulation, VOUT2 = oscillation                                                                       | С                          |  |  |
| VOUT2    | 5       | VOUT1 = regulation, VOUT2 = 0 V, excessive current from VIN, and enters overcurrent protection                | В                          |  |  |
|          |         | If VCCX = GND, then VOUT1 and VOUT2 = regulation.                                                             | D                          |  |  |
| VCCX     | 6       | If VCCX is connected to VOUT2, then VOUT1 = regulation, VOUT2 = 0 V, and the internal VCC regulator is used.  | В                          |  |  |
|          |         | If VCCX is connected to an external supply, then VOUT1 and VOUT2 = regulation.                                | В                          |  |  |
| PG2      | 7       | VOUT1 and VOUT2 = regulation, and PG2 is forced low.                                                          | В                          |  |  |
| HOL2     | 8       | VOUT1 and VOUT2 = 0 V. VCC will be discharged through HB2.                                                    | В                          |  |  |
| HO2      | 9       | VOUT1 and VOUT2 = 0 V. VCC will be discharged through HB2.                                                    | В                          |  |  |
| SW2      | 10      | VOUT1 = regulation, VOUT2 = 0 V, and excessive current from VIN                                               | A                          |  |  |
| HB2      | 11      | VOUT1 and VOUT2 = 0 V. VCC regulator is loaded to current limit.                                              | В                          |  |  |
| LOL2     | 12      | VOUT1 and VOUT2 = regulation                                                                                  | D                          |  |  |
| LO2      | 13      | VOUT1 and VOUT2 = regulation                                                                                  | С                          |  |  |
| PGND2    | 14      | VOUT1 and VOUT2 = regulation                                                                                  | D                          |  |  |
| VCC      | 15      | VOUT1 and VOUT2 = 0 V                                                                                         | В                          |  |  |
| VCC      | 16      | VOUT1 and VOUT2 = 0 V                                                                                         | В                          |  |  |
| PGND1    | 17      | VOUT1 and VOUT2 = regulation                                                                                  | D                          |  |  |
| LO1      | 18      | VOUT1 and VOUT2 = regulation                                                                                  | С                          |  |  |
| LOL1     | 19      | VOUT1 and VOUT2 = regulation                                                                                  | С                          |  |  |
| HB1      | 20      | VOUT1 and VOUT2 = 0 V. VCC regulator is loaded to current limit.                                              | B                          |  |  |
| SW1      | 21      | VOUT1 = regulation, VOUT2 = 0 V, and excessive current from VIN                                               | B                          |  |  |
| HO1      | 22      | VOUT1 and VOUT2 = 0 V                                                                                         | B                          |  |  |
| HOL1     | 23      | VOUT1 and VOUT2 = 0 V                                                                                         | B                          |  |  |
| PG1      | 24      | VOUT1 and VOUT2 = regulation, and PG1 is forced low.                                                          | C                          |  |  |
| VIN      | 25      | VOUT1 and VOUT2 = 0 V                                                                                         | A                          |  |  |
| VOUT1    | 26      | VOUT1 = 0 V, VOUT2 = regulation, and excessive current from VIN                                               | B                          |  |  |
| CS1      | 27      | VOUT1 = oscillation, VOUT2 = regulation                                                                       | C                          |  |  |
| FB1      | 28      | If FB1 = VDDA, then VOUT1 and VOUT2 = 0 V.<br>If FB1 = GND, then VOUT1 = 5 V expected and VOUT2 = regulation. | B                          |  |  |
| COMP1    | 29      | VOUT1 = 0 V, VOUT2 = regulation                                                                               | В                          |  |  |
| SS1      | 30      | VOUT1 = 0 V, VOUT2 = regulation                                                                               | В                          |  |  |
| EN1      | 31      | VOUT1 = 0 V, VOUT2 = regulation                                                                               | В                          |  |  |
| RES      | 32      | VOUT1 and VOUT2 = regulation, cannot exit hiccup mode                                                         | В                          |  |  |
| DEMB     | 33      | If DEMB = VDDA, then VOUT1 and VOUT2 = 0 V.                                                                   | В                          |  |  |
| BEINB    | 00      | VOUT1 and VOUT2 = regulation                                                                                  | С                          |  |  |
| MODE     | 34      | If MODE = VDDA, then VOUT1 and VOUT2 = 0 V.                                                                   | В                          |  |  |
|          | •••     | If MODE = GND, then VOUT1 and VOUT2 = regulation.                                                             | D                          |  |  |
| AGND     | 35      | VOUT1 and VOUT2 = regulation                                                                                  | D                          |  |  |
| VDDA     | 36      | VOUT1 and VOUT2 = 0 V, no switching                                                                           |                            |  |  |
| RT       | 37      | VOUT1 and VOUT2 = regulation, operating at the maximum switching frequency                                    | С                          |  |  |
| DITH     | 38      | VOUT1 and VOUT2 = regulation                                                                                  | С                          |  |  |
| SYNCOUT  | 39      | VOUT1 and VOUT2 = regulation                                                                                  | D                          |  |  |

#### Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

#### Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground (continued)

| Pin Name | Pin No. | Description of Potential Failure Effect(s) | Failure<br>Effect<br>Class |
|----------|---------|--------------------------------------------|----------------------------|
| EN2      | 40      | VOUT1 = 0 V, VOUT2 = regulation            | В                          |

## Table 4-3. Pin FMA for Device Pins Open-Circuited

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                                  | Failure<br>Effect<br>Class |
|----------|---------|-------------------------------------------------------------------------------------------------------------|----------------------------|
| SS2      | 1       | VOUT1 and VOUT2 = regulation                                                                                | D                          |
| COMP2    | 2       | VOUT1 = regulation, VOUT2 = oscillation, and will not regulate                                              | С                          |
| FB2      | 3       | VOUT2 = regulation, VOUT2 = will not regulate. The controller will be configured for adjustable output.     | В                          |
| CS2      | 4       | VOUT1 = regulation, VOUT2 oscillation, and no overcurrent detection                                         | А                          |
| VOUT2    | 5       | VOUT1 = regulation, VOUT2 = oscillation, and will not regulate                                              | А                          |
| VCCX     | 6       | VOUT1 and VOUT2 = regulation                                                                                | D                          |
| PG2      | 7       | VOUT1 and VOUT2 = regulation, no PG2 information                                                            | С                          |
| HOL2     | 8       | VOUT1 = regulation, VOUT2 = VIN, will not regulate, and excessive current from VIN                          | D                          |
| HO2      | 9       | VOUT1 = regulation, VOUT2 = 0 V, and will not regulate                                                      | В                          |
| SW2      | 10      | VOUT1 = regulation, VOUT2 = VIN, and high-side FET control floating                                         | А                          |
| HB2      | 11      | VOUT1 = regulation, VOUT2 = 0 V, and high-side gate drive floating                                          | В                          |
| LOL2     | 12      | VOUT1 = regulation, VOUT2 = 0 V, no gate discharge path for low-side MOSFET                                 | В                          |
| LO2      | 13      | VOUT1 and VOUT2 = regulation, lower efficiency                                                              | С                          |
| PGND2    | 14      | VOUT1 and VOUT2 = 0 V, uncontrolled behavior because of the floating ground                                 | В                          |
| VCC      | 15      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| VCC      | 16      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| PGND1    | 17      | VOUT1 and VOUT2 = 0 V, uncontrolled behavior because of the floating ground                                 | В                          |
| LO1      | 18      | VOUT1 = regulation, lower efficiency, and VOUT2 = regulation                                                | С                          |
| LOL1     | 19      | VOUT1 = 0 V, no discharge path for low-side MOSFET, and VOUT2 = regulation                                  | В                          |
| HB1      | 20      | VOUT1 = regulation, VOUT2 = 0 V, and high-side gate drive floating                                          | В                          |
| SW1      | 21      | VOUT1 = no regulation, high-side FET control floating, and VOUT2 = regulation                               | А                          |
| HO1      | 22      | VOUT1 = will not regulate, VOUT2 = regulation                                                               | В                          |
| HOL1     | 23      | VOUT1 = VIN, will not regulate, excessive current from VIN, and VOUT2 = regulation                          | С                          |
| PG1      | 24      | VOUT1 = regulation, VOUT2 = regulation, and no PG1 information                                              | С                          |
| VIN      | 25      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| VOUT1    | 26      | VOUT1 = oscillation, will not regulate, and VOUT2 = regulation                                              | A                          |
| CS1      | 27      | VOUT1 = oscillation, no overcurrent detection, and VOUT2 = regulation                                       | A                          |
| FB1      | 28      | VOUT2 = will not regulate, the controller will be configured for adjustable output, and VOUT2 = regulation. | В                          |
| COMP1    | 29      | VOUT1 = oscillation and will not regulate, VOUT2 = regulation                                               | В                          |
| SS1      | 30      | VOUT1 and VOUT2 = regulation                                                                                | D                          |
| EN1      | 31      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| RES      | 32      | VOUT1 and VOUT2 = regulation, exit hiccup mode current limit quickly                                        | С                          |
| DEMB     | 33      | VOUT1 and VOUT2 = regulation, erratic switching                                                             | С                          |
| MODE     | 34      | VOUT1 = regulation, VOUT2 = 0 V, and error amplifier CH2 is set to zero.                                    | В                          |
| AGND     | 35      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| VDDA     | 36      | VOUT1 and VOUT2 = 0 V, noisy bias rail                                                                      | В                          |
| RT       | 37      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |
| DITH     | 38      | VOUT1 and VOUT2 = regulation, no spread spectrum                                                            | С                          |
| SYNCOUT  | 39      | VOUT1 and VOUT2 = 0 V, cannot be synchronized to another part                                               | С                          |
| EN2      | 40      | VOUT1 and VOUT2 = 0 V                                                                                       | В                          |

#### Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

| Pin Name | Pin No. | Shorted to | 24. PIN FMA for Device PINS Short-Circuited to Adjacent Pin Description of Potential Failure Effect(s)                          | Failure<br>Effect<br>Class |
|----------|---------|------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| SS1      | 1       | COMP2      | VOUT1 = regulation, VOUT2 = VIN                                                                                                 | В                          |
| 00100    | 2       | 500        | If FB2 = VDDA, then VOUT1 = regulation and VOUT2 = VIN.                                                                         | A                          |
| COMP2    | 2       | FB2        | If FB2 = GND, then VOUT1 regulation and VOUT2 = 0 V.                                                                            | В                          |
| 500      | _       | 000        | If FB2 = VDDA, then VOUT1 = regulation and VOUT2 = 3.3 V.                                                                       | В                          |
| FB2      | 3       | CS2        | If FB2 = GND, then VOUT1 = regulation and VOUT = 0 V.                                                                           | В                          |
| CS2      | 4       | VOUT2      | VOUT1 = regulation, VOUT2 = oscillation                                                                                         | В                          |
|          | F       | VCCX       | If VOUT2 < 6.5 V, then VOUT1 and VOUT2 = regulation,                                                                            | В                          |
| VOUT2    | 5       | VCCX       | If VOUT2 > 6.5 V, then the device damage exceeds the absolute maximum raring.                                                   | А                          |
| VCCX     | 6       | PG2        | VOUT1 and VOUT2 = regulation, PG2 corrupted                                                                                     | В                          |
| DCO      | 7       |            | VOUT1 and VOUT2 = regulation, PG2 corrupted                                                                                     | В                          |
| PG2      | 7       | HOL2       | If HOL2 > 6.5 V and exceeds the maximum rating, PG2 is damaged                                                                  | А                          |
| HOL2     | 8       | HO2        | VOUT1 and VOUT2 = regulation                                                                                                    | D                          |
| HO2      | 9       | SW2        | VOUT1 = regulation, VOUT2 < 3 V                                                                                                 | В                          |
| SW2      | 10      | HB2        | VOUT1 = regulation, VOUT2 = 0 V                                                                                                 | В                          |
| HB2      | 11      | LOL2       | VOUT1 and VOUT2 = 0 V                                                                                                           | В                          |
| LOL2     | 12      | LO2        | VOUT1 and VOUT2 = regulation                                                                                                    | В                          |
| LO2      | 13      | PGND2      | VOUT1 and VOUT2 = regulation                                                                                                    | В                          |
| PGND2    | 14      | VCC        | VOUT1 and VOUT2 = 0 V                                                                                                           | A                          |
| VCC      | 15      | VCC        | VOUT1 and VOUT2 = regulation                                                                                                    | D                          |
| VCC      | 16      | PGND1      | VOUT1 and VOUT2 = 0 V                                                                                                           | A                          |
| PGND1    | 17      | LO1        | VOUT1 and VOUT2 = regulation                                                                                                    | С                          |
| LO1      | 18      | LOL1       | VOUT1 and VOUT2 = regulation                                                                                                    | D                          |
| LOL1     | 19      | HB1        | VOUT1 = 0 V, VOUT2 = regulation                                                                                                 | В                          |
| HB1      | 20      | SW1        | VOUT1 = 0 V, VOUT2 = regulation                                                                                                 | В                          |
| SW1      | 21      | HO1        | VOUT1 = 0 V, VOUT2 = regulation                                                                                                 | В                          |
| HO1      | 22      | HOL1       | VOUT1 and VOUT2 = regulation                                                                                                    | D                          |
|          | 22      |            | VOUT1 and VOUT2 = regulation, PG1 corrupted                                                                                     | D                          |
| HOL1     | 23      | PG1        | If HOL1 > 6.5 V and exceeds the maximum ratings, PG1 can be damaged.                                                            | A                          |
| PG1      | 24      | VIN        | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation. If VIN > 6.5 V and exceeds the maximum rating of PG1, the device is damaged. | А                          |
|          |         |            | If VIN > 6.5 V and exceeds the maximum rating of PG1, the device is damaged.                                                    | A                          |
| VIN      | 25      | VOUT1      | VOUT1 = VIN no switching, VOUT2 = regulation                                                                                    | В                          |
| VOUT1    | 26      | CS1        | VOUT1 = oscillation, VOUT2 = regulation                                                                                         | В                          |
| 001      | 07      | 504        | If FB1 = VDDA, then VOUT1 = 3.3 V and VOUT2 = regulation.                                                                       | В                          |
| CS1      | 27      | FB1        | If FB1 = GND, then VOUT1 = 0 V and VOUT2 = regulation.                                                                          | В                          |
|          |         | 001454     | If FB1 = VDDA, then VOUT1 = VIN, excessive current from VIN, and VOUT2 = regulation.                                            | A                          |
| FB1      | 28      | COMP1      | If FB1 = GND, then VOUT1 = 0 V and VOUT2 = regulation.                                                                          | В                          |
| COMP1    | 29      | SS1        | VOUT1 = VIN, VOUT2 = regulation                                                                                                 | В                          |
|          |         |            | If EN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                                                               | D                          |
| SS1      | 30      | EN1        | If EN1 > 6.5 V, this exceeds the maximum ratings of SS1 pin and the device will be damaged.                                     | A                          |
|          |         |            | If EN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                                                               | D                          |
| EN1      | 31      | RES        | If EN1 > 6.5 V, this exceeds the maximum ratings of RES pin and the device will be damaged.                                     | A                          |
| RES      | 32      | DEMB       | VOUT1 and VOUT2 = regulation                                                                                                    | В                          |



| Pin Name | Pin No. | Shorted to | Description of Potential Failure Effect(s)                                                           | Failure<br>Effect<br>Class |
|----------|---------|------------|------------------------------------------------------------------------------------------------------|----------------------------|
| DEMB     | 33      | MODE       | If DEMB = MODE = GND, then configured as independent dual-output, VOUT1 and VOUT2 = regulation.      | В                          |
| DEIVID   | 33      | MODE       | If DEMB = MODE = VDDA, then configured as single-output interleaved VOUT1 and VOUT2 = 0 V.           | В                          |
| MODE     | 34      | AGND       | If MODE = GND, then VOUT1 and VOUT2 = regulation and is always in independent dual-output operation. | D                          |
| AGND     | 35      | VDDA       | VOUT1 and VOUT2 = 0 V                                                                                | В                          |
| VDDA     | 36      | RT         | VOUT1 and VOUT2 = 0 V, no switching                                                                  | В                          |
| RT       | 37      | DITH       | VOUT1 = VOUT2 = oscillation                                                                          | В                          |
| DITH     | 38      | SYNCOUT    | VOUT1 and VOUT2 = regulation, no spread spectrum                                                     | С                          |
| SYNCOUT  | 39      | EN2        | VOUT1 = regulation, VOUT2 = 0 V                                                                      | В                          |
| EN2      |         |            | If EN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                                    | D                          |
|          | 40      | SS2        | If EN1 > 6.5 V, this exceeds the maximum ratings of SS1 pin and the device will be damaged.          | А                          |

#### Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin (continued)

#### Table 4-5. Pin FMA for Device Pins Short-Circuited to VIN

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                          | Failure<br>Effect<br>Class |
|----------|---------|-----------------------------------------------------------------------------------------------------|----------------------------|
| SS1      | 1       | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                                  | D                          |
| 331      | I       | If VIN > 6.5 V, then exceeds the SS1 maximum rating and the SS1 pin is damaged.                     | Α                          |
| COMP2    | 2       | If VIN > 5 V and < 6.5 V, then VOUT1 and VOUT2 = 0 V.                                               | В                          |
| COIVIFZ  | Z       | If VIN > 6.5 V, then exceeds the COMP2 maximum rating and the COMP2 pin is damaged.                 | A                          |
|          |         | If VIN < 6.5 V and FB2 = VDDA, then VOUT1 = regulation and VOUT2 = 3.3 V.                           | В                          |
| FB2      | 3       | If VIN < 6.5 V and FB2 = GND, then VOUT1 and VOUT2 = 0 V and there is excessive current from VIN.   | В                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the FB2 pin voltage, then the FB2 pin is damaged. | Α                          |
| CS2      | 4       | If VIN < 60 V, then VOUT1 = regulation and VOUT2 = VIN.                                             | В                          |
| 0.52     | 4       | If VIN > 60 V and exceeds the maximum ratings of the CS2 pin, then the CS2 pin is damaged.          | А                          |
| VOUT2    | 5       | If VIN < 60 V, then VOUT1 = regulation and VOUT2 = VIN.                                             | В                          |
| V0012    | 5       | If VIN > 60 V and exceeds the maximum ratings of the VOUT2 pin, then the VOUT2 pin is damaged.      | Α                          |
| VCCX     | 6       | If VIN < 6.5 V, if VCCX = VOUT2, then VOUT1 = regulation and VOUT2 = VIN.                           | В                          |
| VUUX     |         | If VIN > 6.5 V and exceeds the maximum ratings of the VCCX pin, then the VCCX pin is damaged.       | Α                          |
| PG2      | 7       | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation and PG2 forced is high.                           | D                          |
| FGZ      |         | If VIN > 6.5 V and exceeds the maximum ratings of the PG2 pin, the PG2 pin is damaged.              | Α                          |
| HOL2     | 8       | If VIN < 6.5 V, then VOUT1 = regulation, VOUT2 = VIN – dropout, and there is no switching.          | В                          |
| HULZ     |         | If VIN > 6.5 V and exceeds the maximum ratings of the HOL2 pin, then the HOL2 pin is damaged.       | Α                          |
| HO2      | 9       | If VIN < 6.5 V, then VOUT1 = regulation, VOUT2 = VIN – dropout, and there is no switching.          | В                          |
| ΠUZ      | 9       | If VIN > 6.5 V and exceeds the maximum ratings of the HO2 pin, then the HO2 pin is damaged.         | A                          |
| SW2      | 10      | VOUT1 = regulation, VOUT2 = VIN, and excessive current from VIN                                     | В                          |
| HB2      | 11      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation and erratic switching on CH2.                     | В                          |
| ΠD2      | 11      | If VIN > 6.5 V and exceeds the maximum ratings of the HB2 pin, then the HB2 pin is damaged.         | Α                          |
| 1012     | 10      | If VIN < 6.5 V, then VOUT1 and VOUT2 = 0 V and excessive current from VIN.                          | В                          |
| LOL2     | 12      | If VIN > 6.5 V and exceeds the maximum ratings of the LOL2 pin, then the LOL2 pin is damaged.       | А                          |
| LO2      | 13      | If VIN < 6.5 V, then VOUT1 and VOUT2 = 0 V and excessive current from VIN.                          | В                          |
| LUZ      | 13      | If VIN > 6.5 V and exceeds the maximum ratings of the LO2 pin, then the LO2 pin is damaged.         | A                          |
| PGND2    | 14      | VOUT and VOUT2 = 0 V, excessive current from VIN                                                    | В                          |
| VCC      | 15      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                                  | D                          |
| VCC      | 15      | If VIN > 6.5 V and exceeds the maximum ratings of the VCC pin, then the VCC pin is damaged.         | A                          |

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                     | Failure<br>Effect<br>Class |
|----------|---------|------------------------------------------------------------------------------------------------|----------------------------|
| VCC      | 16      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | D                          |
| 100      | 10      | If VIN > 6.5 V and exceeds the maximum ratings of the VCC pin, then the VCC pin is damaged.    | А                          |
| PGND1    | 17      | VOUT1 and VOUT2 = 0 V, excessive current from VIN                                              | В                          |
| LO1      | 18      | If VIN < 6.5 V, then VOUT1 and VOUT2 = 0 V, and excessive current from VIN.                    | В                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the LO1 pin, then the LO1 pin is damaged.    | A                          |
| LOL1     | 19      | If VIN < 6.5 V, then VOUT1 and VOUT2 = 0 V and excessive current from VIN.                     | В                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the LOL1 pin, then the LOL1 pin is damaged.  | A                          |
| HB1      | 20      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | С                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the HB1 pin, then the HB1 pin is damaged.    | A                          |
| SW1      | 21      | VOUT1 = VIN, VOUT2 = regulation, and excessive current from VIN                                | В                          |
| HO1      | 22      | If VIN < 6.5 V, then VOUT1 = VIN – dropout, VOUT2 = regulation, and no switching.              | В                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the HB1 pin, then the HO1 pin is damaged.    | A                          |
| HOL1     | 23      | If VIN < 6.5 V, then VOUT1 = VIN – dropout, VOUT2 = regulation, and no switching.              | В                          |
|          | 20      | If VIN > 6.5 V and exceeds the maximum ratings of the HB1 pin, then the HOL1 pin is damaged.   | A                          |
| PG1      | 24      | If VIN < 6.5 V, VOUT1 and VOUT2 = regulation and PG1 is forced high.                           | D                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the PG1 pin, then PG1 pin is damaged.        | A                          |
| VIN      | 25      | VOUT1 and VOUT2 = regulation                                                                   | D                          |
| VOUT1    | 26      | If VIN < 60 V, then VOUT1 = VIN and VOUT2 = regulation.                                        | В                          |
| 10011    | 20      | If VIN > 60 V and exceeds the maximum ratings of the VOUT1 pin, then the VOUT1 pin is damaged. | A                          |
| CS1      | 27      | If VIN < 60 V, then VOUT1 = VIN and VOUT2 = regulation.                                        | В                          |
|          |         | If VIN > 60 V and exceeds the maximum ratings of the CS1 pin, then the CS1 pin is damaged.     | A                          |
|          | 28      | If VIN < 6.5 V and FB1= VDDA, then VOUT1 = 3.3 V and VOUT2 = regulation.                       | В                          |
| FB1      |         | If VIN < 6.5 V and FB1 = GND, then VOUT1 and VOUT2 = 0 V and excessive current from VIN.       | В                          |
|          |         | If VIN > 6.5 V and exceeds the maximum ratings of the FB1 pin voltage, the FB1 pin is damaged. | A                          |
| COMP1    | 29      | If VIN > 5 V and < 6.5 V, then VOUT1 and VOUT2 = 0 V.                                          | В                          |
|          | 20      | If VIN > 6.5 V and exceeds the COMP1 maximum rating, then COMP1 pin is damaged.                | A                          |
| SS1      | 30      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | D                          |
|          |         | If VIN > 6.5 V and exceeds the SS1 maximum rating, then SS1 pin is damaged.                    | A                          |
| EN1      | 31      | VOUT1 and VOUT2 regulation                                                                     | D                          |
| RES      | 32      | If VIN < 6.5 V, then VOUT1 = regulation, VOUT2 = regulation, and no hiccup mode.               | С                          |
|          |         | If VIN > 6.5 V and exceeds the RES maximum rating, then the RES pin is damaged.                | A                          |
| DEMB     | 33      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | В                          |
|          |         | If VIN > 6.5 V and exceeds the DEMB maximum rating, then the DEMB pin is damaged.              | A                          |
| MODE     | 34      | If MODE = GND, then VOUT1 and VOUT2 = 0 V.                                                     | В                          |
|          |         | If MODE = VDDA = and VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                           | В                          |
|          |         | If VIN > 6.5 V and exceeds the MODE pin maximum rating, then the MODE pin is damaged.          | A                          |
| AGND     | 35      | VOUT1 and VOUT2 = 0 V, excessive current from VIN                                              | В                          |
| VDDA     | 36      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | D                          |
|          |         | If VIN > 6.5 V and exceeds the VDDA pin maximum rating, then the VDDA pin is damaged.          | A                          |
| RT       | 37      | If VIN < 6.5 V, then VOUT1 and VOUT2 = 0 V.                                                    | В                          |
|          | ••      | If VIN > 6.5 V and exceeds the RT pin maximum rating, then the RT pin is damaged.              | A                          |
| DITH     | 38      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | В                          |
|          |         | If VIN > 6.5 V and exceeds the DITH pin maximum rating, then the DITH pin is damaged.          | A                          |
| SYNCOUT  | 39      | If VIN < 6.5 V, then VOUT1 and VOUT2 = regulation.                                             | В                          |
|          |         | If VIN > 6.5 V and exceeds the SYNCOUT pin maximum rating, then the SYNCOUT pin is damaged.    | A                          |

#### Table 4-5. Pin FMA for Device Pins Short-Circuited to VIN (continued)



|   | Table 4-5. PIN FMA for Device PINS Short-Circuited to Vin (continued) |         |                                            |                            |  |  |  |
|---|-----------------------------------------------------------------------|---------|--------------------------------------------|----------------------------|--|--|--|
|   | Pin Name                                                              | Pin No. | Description of Potential Failure Effect(s) | Failure<br>Effect<br>Class |  |  |  |
| [ | EN2                                                                   | 40      | VOUT1 and VOUT2 = regulation               | D                          |  |  |  |

# Table 4-5. Pin FMA for Device Pins Short-Circuited to VIN (continued)

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated