I3 TEXAS Application Report
INSTRUMENTS SPRAA46A_December 2008

Advanced Linker Techniques for Convenient and Efficient
Memory Usage

George Mock Software Development Systems

ABSTRACT

The linker is the code generation development tool responsible for linking together all the object files and
libraries into the final executable form. The linker offers many features, including some recent additions,
which make it easy to use system memory efficiently. This application note gives practical advice on how
to use three of these features: automatic section splitting, copy tables, and trampolines. Automatic section
splitting distributes code or data across separate memory ranges. Copy tables are a convenient way to
manage code or data overlays at runtime. Trampolines change how function calls are implemented such
that far call memory models are no longer necessary. Detailed examples show all of these linker features
in action.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: https://www.ti.com/lit/zip/spraa46a.

Contents
1 0o [ox 1T P 2
2 [T ST gl ==] TN 3
3 U 0] . = (T oRR T =T o 110 TS o] 14] o 4
4 (070])V 1= 0] 1= 7
5 Example of Automatic Section Splitting and Copy Tablesiiiviiiiiiiiiiii i i s s e anneeanas 10
6 = 100 10 1 = 14
7 Feature AVaIlabilityeeiiiie et 18
8 D001 0= 19
9 o2 10T 1= T o 1= o =T 19
Appendix A Placing Functions in Subsections Can Cause Code Growthcicvevviiiiiiiiniiiiniiiiienans 20
Appendix B Trampolines Improve Performance on Reference Frameworks Examplec.viivievviiiiinneninnnnes 22
List of Figures
1 OVEIVIEW OF LINKING . e ettt et e s st e e s et s s s a i n e e s s aan e s s s ne s s annnness 3
2 AUtOMALIC SECHON SPITIING . uvvetiii ettt i e s i e s s e s s aanree s saanneessaannnessaasnneessannnnessaannrensennnes 5
3 Section Splitting and CopyiNg @t RUNTIMIE ... u e ueirietiieiite s sia s sar e aanns 11
4 L= 1. 10 L1 = 15
5 gz Lo [T TR I = U0 0] o] 1= 17
List of Tables
1 Assembly Language TOOIS USEI'S GUIOES . .uuuuuuetiirittesiraatssssassssssaasssessaasnssssaaannsessannnsssssnnnes 3
2 Put FUNCLIONS IN SUDSECHONS 1. utiusiiseitinseitiise s s n e reas 7
3 Feature Availabilityveeuie e 18
4 Code Generation TooIs Versions DY CCS VerISION.ueeiiiiieeiiiiirerriieesrarsss s raaaass s aaaasssaaanness 18
SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 1

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1

Introduction

It is tempting to view the linker as just a necessary utility; the tool that links all the object files and libraries
together into the final executable. In fact, the linker contains a number of features which make it easy to
use memory efficiently. This application note gives practical advice on using three of these features.

Automatic section splitting makes it easy to distribute code or data across multiple memory ranges. These
memory ranges do not have to be adjacent. The algorithm that distributes the pieces of code or data
among the memory ranges focuses entirely on saving memory.

Copy tables are a feature which makes it very straightforward to manage code or data overlays. Overlays
are used to share a relatively small block of fast memory among multiple pieces of code or data. The code
or data is first loaded into slow memory, then as required at runtime, copied into the fast memory block for
execution. Before copy tables, managing the details of the runtime copy was cumbersome. With copy
tables, managing the overlays is much easier.

Trampolines are a feature that changes how function calls are implemented. Some CPU architectures use
different code sequences to implement function calls. The correct sequence to use depends on the
distance in memory between the function call and the destination of the call. Without trampolines,
managing this detail is either error prone, or tends to waste memory and cycles. Trampolines
automatically implement a near perfect solution to this problem. In common cases, switching from various
large code model build options to using trampolines results in notable performance improvement.
Appendix B walks through an example based on Reference Frameworks Level 3 in which trampolines
improve performance by almost 10%!

A detailed example binds all the practical advice together. This example is presented in the form of a
Code Composer Studio™ project. You will see how the project is built, the details of what linker did, and
watch the example code execute.

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

2

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

i3 TEXAS
INSTRUMENTS

www.ti.com Linker Basics

2 Linker Basics
Figure 1 illustrates how the linker combines (links) several object files and libraries together.

.obj .obj .obj ceo .obj soe lib Object files & libs

W Input sections

Output sections

M1 M2 M3 Target memory areas

Figure 1. Overview of Linking

Each obiject file is viewed as a collection of input sections. The same is true for each member object file
brought in from an object library. The input sections are combined together into output sections. Next, the
output sections are allocated to target memory. The final output object file can also be viewed as a
collection of sections. These sections, however, are different in two ways: 1) They are output sections, not
input sections, and 2) These sections are allocated to target memory.

The basics of using the linker are described in the Linker Description chapter of the Assembly Language
Tools Guide. There is one such guide for each Tl processor family. Table 1 lists the User’s Guides for the
Tl processors most commonly used today.

Table 1. Assembly Language Tools User's Guides

Title Literature Number
TMS320C6000 Assembly Language Tools User's Guide SPRU186
TMS470R1x Assembly Language Tools User's Guide® SPNU118
TMS320C55x Assembly Language Tools User's Guide SPRU280
TMS320C54x Assembly Language Tools User's Guide SPRU102
TMS320C28x Assembly Language Tools User's Guide SPRU513

@ The guide applies to both ARM7 and ARM9.
Users of ARM7 and ARM9 devices should refer to the TMS470R1x User's Guide.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 3

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

Automatic Section Splitting www.ti.com

The remainder of this application note presumes the following basic knowledge, as described in the
documentation.

 The MEMORY directive assigns names to ranges of target memory

* The SECTIONS directive

— Collects input sections into output sections

— Allocates output sections to memory ranges as defined in the MEMORY directive
» The MEMORY and SECTIONS directives must be defined in a linker command file

e The specific syntax of the MEMORY and SECTIONS directives

To access any of these User’'s Guides online, visit the TI main web page http://www.ti.com and enter the
literature number in the Keyword Search text box. The appropriate User's Guide is also bundled with Code
Composer Studio™. To see it select Help | User Manuals. The online help in Code Composer Studio™
also documents the linker. Select Help | Contents | Code Generation Tools | Using the Linker.

3 Automatic Section Splitting

3.1 Problem Description
The C/C++ compiler places all code in the section .text by default. The simplest way to place such code in
memory is to create a single output section, also named .text, and allocate it to an appropriate area in
target memory. It might look like this in the SECTIONS directive ...
.text > M
This statement instructs the linker to collect all of the input sections with the name .text into an output
section also named .text , and allocate the .text output section into the memory range M1. Such a
statement requires M1 to be large enough to contain .text.
Suppose M1 is not large enough to contain .text. But there are other memory ranges M2 and M3 that,
when combined together with M1, are large enough to hold .text. Suppose further that M1, M2, and M3
are not contiguous. What is the best way to allocate the .text section into the memory ranges M1, M2, and
M3?

3.2 Overview
The simplest solution is to use the linker feature for automatically splitting sections.
.text >> M {M2|MB /* splitting */
.no_split > M4 /* not splitting */
This statement instructs the linker to create the output section .text as before. Note the split operator >> is
different from the usual memory placement operator >. The output section .text is split into pieces that are
allocated into the different memory ranges M1, M2, and M3. See Figure 2.

4 Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—December 2008

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

I

TEXAS
INSTRUMENTS

www.ti.com Automatic Section Splitting

3.3

obj | eee | obj | oo lib Object files & libs

Input sections

.text no_split Output sections

[B IE no_split Section splitting
[/

\ \ \

M1 M2 M3 M4 Target memory areas

Figure 2. Automatic Section Splitting

The example in Figure 2 builds two output sections. The input sections A, B D, and E are combined into
the output section .text. The .text section is split as it is allocated to the memory ranges M1, M2, and M3.
The input sections C and F are combined into the output section no_split, which is not split as it is
allocated in to memory range M4.

Section splitting always takes place on input section boundaries. For example, an input section which
contains the code for a function does not get split. In general, the linker does not have enough information
about an input section to split it.

It is worth noting the difference between the >> operator and the > operator. The following example, while
legal, is not section splitting.
.text > ML M2| MB

By using > instead of >>, the .text section is not split. Instead, .text is allocated to the first memory range,
M1, M2, or M3 (in order) which can completely contain it. This is called allocation to multiple memory
ranges.

Splitting Data Sections

Section splitting is not limited to sections containing code, such as .text. Sections containing data may be
split as well. Be especially careful, however, when splitting data sections. Sometimes, code presumes
data is contained in a single contiguous block. Such data cannot be split.

Consider, as one example, the .bss section in the C6000 C/C++ compiler tools. Global variables are
defined in the .bss section. The register DP (B14) points to the beginning of the .bss section, and global
variables are accessed at an offset from the DP. The .bss section, then, cannot be split. If it were split,
some DP+offset global variable accesses would work, and others would not.

Any attempt to split a compiler generated data section which does not allow splitting causes the linker to
issue a warning and ignore the split operator. The C6000 .bss section is such a section. No such warning
is issued when other user defined data sections are spilit.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 5
Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

Automatic Section Splitting www.ti.com

3.4

3.5

Limitations on Splitting

At the time of this writing, the linker documentation which lists limitations on using the split feature has
some errors. These limitations are listed at the end of a section titled Automatic Splitting of Output
Sections Among Non-Contiguous Memory Ranges. A complete and correct list of which sections may
not be split is as follows:

» Certain sections created by the C/C++ compiler, including:
— .cinit, which contains the autoinitialization table for C/C++ programs
— .pinit, which contains the list of global constructors for C++ programs

Other sections created by the C/C++ compiler may not be split. Exactly which data sections cannot be
split varies by compiler. For instance, the C6000 compiler does not allow the .bss section, which
defines global variables, to be split.

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), or SIZE() operator applied to it. These operators provide
information about a section's load or run address and size. Splitting the section may compromise the
integrity of the operation.

* An output section that is a GROUP member. The intent of a GROUP directive is to force contiguous
allocation of GROUP member output sections.

» The run allocation of a UNION. Note splitting the load allocation of a UNION member is allowed.

If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

The bullets listed above comprise complete documentation on the limitations of section splitting.
Therefore, it mentions situations not described elsewhere in this application note.

Order of Section Splitting

To further illustrate how automatic section splitting uses memory efficiently, this section describes the
algorithm for how the input sections are allocated across multiple memory ranges.

Finding the optimal allocation of input sections across the different memory ranges is a difficult problem. In
computer science literature, it is called the bin packing problem. The linker handles this problem with a
relatively simple solution that takes little time to compute, and produces a good, often optimal, allocation
for cases that tend to occur in practice.

The input sections are sorted in this order:
* Aligned sections by size

» Blocked sections by size

* Remaining sections by size

Aligned and blocked sections both relate to allocating the section with reference to an address that is
divisible by a given power of 2. An aligned section is required to start on such an address. A blocked
section is required to either not cross such an address, or, start on such an address. Aligned sections are
more restricted in their placement than blocked sections.

The memory ranges are considered in the order given in the link command statement. A list of available
segments is maintained for each memory range. Note that allocating input sections with differing
requirements of alignment and size can create multiple available segments within a single memory range.

Allocation proceeds by available memory segments. Each available segment is filled, from the sorted input
sections list, until it is full or no more input sections can fit. Then the next available memory segment is
considered. In general, allocating larger aligned sections early tends to create holes that smaller unaligned
sections may fill later.

Note future releases of the linker may make minor changes to this algorithm aimed at even more efficient
use of memory.

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

I} TEXAS
INSTRUMENTS
www.ti.com Copy Tables
3.6 Use Subsections to Save Memory
All other things being equal, several small input sections tend to get a tighter allocation than a few large
input sections, and thus use less memory.
For C/C++ code, there is an easy automated way to separate the code into smaller input sections. Some
compilers have a build switch that places each function in a subsection. The default section for code is
. text
The functions in subsections build switch causes each function to be placed in a subsection named
.text:name of function
The compilers which support this switch are listed in Table 2.
Table 2. Put Functions in Subsections
Compiler Build Switch Alias
TMS320C6000 --gen_func_subsections -mo
ARM --gen_func_subsections -ms
TMS320C55x --gen_func_subsections -mo
Subsections are described in detail in Chapter 2 of the Assembly Language Tools User’s Guides. The
main effect on automatic section splitting is that the linker sees input sections that are much smaller than
otherwise. Without the functions in subsections switch, all the functions in a source file are combined into
a single input section. With the functions in subsections switch, each function in the application is placed
in its own input section. In most cases, changing to many smaller input sections results in a tighter
allocation, thus using less memory.
One downside of using the functions in subsections switch is that it can cause code size to increase.
Detalils of this code growth are described in Appendix A. In some cases, the code growth due to using the
functions in subsections switch is more than the memory saved by a tighter allocation. Whether this
technique saves memory in any particular system can only be determined by direct experimentation.
4 Copy Tables
4.1 Problem Description

Rare is the memory system where all the memory is as fast as desired. Most memory configurations
contain a relatively small block of fast memory. Achieving good performance demands efficient use of this
fast memory.

Some systems supply a cache for this purpose. A cache is a small fast memory holding recently accessed
code or data, designed to speed up subsequent access to the same code or data. The contents of the
cache are automatically controlled by hardware. What if the system does not have a cache? Or, more
direct control over the contents of fast memory is needed?

Such systems can be addressed by another efficiency technique which shares the fast memory among
several chunks of code or data. Code or data is loaded in slower memory, and then copied into the fast
memory block as needed for execution. This technique is called overlaying sections. For a general
overview of overlaying sections, see the section titled Run-Time Relocation in chapter 2 of the Assembly
Language Tools User’s Guide.

SPRAA46A—-December 2008
Submit Documentation Feedback

Advanced Linker Technigues for Convenient and Efficient Memory Usage

Copyright © 2008, Texas Instruments Incorporated

7

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

Copy Tables www.ti.com

Two steps are required to overlay sections:
1. The linker allocates the sections to a single memory range for running, but different memory ranges for
loading.

2. The application, at runtime, manages the process of copying a section, as needed, from the load
memory range to the run memory range.

Implement step 1 with the UNION directive. Details are in the section titled Overlaying Sections with
the UNION Statement in the linker chapter of the Assembly Language Tools User’'s Guide.
Implementing step 2 requires three pieces of information about each section in the overlay:
* Load address
* Run address
e Length
The assembler and linker provide support for managing this information in various forms. Such support
includes the .label directive, and the linker operators START(), END(), and SIZE() . While useful, these

constructs impose a large responsibility upon the user. Further, some operations, such as splitting the
load allocation over multiple memory ranges, are not even possible.

Copy tables are a new and improved method for managing overlays. They are introduced in the linker
bundled with Code Composer Studio™ version 3.00.

4.2 Overview
There are two elements to copy tables:
« The table directive in the linker command file creates the copy tables
» The function copy_in performs the copy at runtime, using information in the linker created copy tables.
The function copy_in is a runtime support function supplied with the compiler.
42.1 The Table Directive
The table directive instructs the linker to create a copy table for an output section. For example:
SECTI ONS{
... UNTON {
.funcl {funcl.obj (.text) } load = SLONMEM table (_funcl_copy_table)
.func2 {func2.0bj (.text) } load = SLONMEM table (_func2_copy_table)
} run = FAST_MEM
.ovly > SLOWMEM / * al |l ocate copy tables */
}
Each instance of the table directive instructs the linker to create a copy table that contains the information
necessary for copying the funcl or func2 code from SLOW_MEM to FAST_MEM. The symbol supplied in
the table directive is assigned the address of the table. Each copy table is allocated space in the
subsection .ovly:symbol name. Note this statement:
.ovly > SLOWMEM / * al |l ocate copy tables */
collects all the copy table input sections into an output section named .ovly and allocates it space in
SLOW_MEM.
If it were written in assembly, the copy table for funcl would be similar to:
.sect ".ovly:_funcl_copy_table" ;name the section
.global _funcl copy_table ; name of table is global
_funcl_copy_table: ;field sizes specific to C6000
.short 12 ; size of one copy table record
.short 1 ; how many copy table records
.word | oad address
.word run address ; linker supplies these val ues
.word length
8 Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—December 2008

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

I

TEXAS
INSTRUMENTS

www.ti.com Copy Tables

422

The Function copy_in

The function copy_in is one of the compiler runtime-support functions. The argument to copy_in is the
address of a linker created copy table. It performs 1 or more memory to memory block copies as set out in
the table, and returns no result. Here is an example based on the previous linker command file:

#i ncl ude <cpy_tbl.h>

void funcl(), func2();

extern far COPY_TABLE funcl_copy_table, func2_copy_table; /* may not need "far" */

voi d main()

{ copy_in(& uncl_copy_table);

funcl();
copy_i n(& unc2_copy_t abl e) ;
func2(); }

Note this statement below which includes the system header file that declares the COPY_TABLE structure
and the copy_i n function.

#i ncl ude <cpy_tbl.h>

This statement:
extern far COPY_TABLE funcl_copy_table, func2_copy_table; /* nmay not need "far" */

declares the copy tables. These are declarations of structures that are defined by use of the table()
directive in the link command file. Note the copy table symbols, when written in C/C++, are not prepended
with an underscore. This conforms to the convention for naming global objects that are referenced in
C/C++. Such symbols are written in assembly with a prepending underscore and in C/C++ without the
underscore. Use of the far keyword depends on which compiler is being used. Not all TI compilers support
a far data model, also known by terms such as large data model. Even among compilers that support far,
it does not necessarily follow that the copy tables reside in far memory. Consult the relevant Compiler
User’s Guide for details on the far data model.

These statements:

copy_i n(& uncl_copy_tabl e);
funcl();

call the copy_in function to copy the funcl code from SLOW_MEM to FAST_MEM, then call funcl. Recall
the argument to copy_in is the address of a copy table. That is why &funcl_copy_table is used instead of
simply funcl_copy_table. Note the funcl code must be copied from the load address to the run address
before calling funcl. Management of this detail is left entirely to the application. There is no error checking
by the compiler or linker to insure a given address has been copied over with the correct code or data
prior to execution at that address.

No method exists for executing funcl from SLOW_MEM. All of the symbols associated with funcl,
including the function entry point, are relocated on the presumption that funcl will execute from
FAST_MEM.

To see the source code for the definition of the COPY_TABLE structure or the copy_in function, extract it
from the source library for all the compiler runtime support functions. Execute the following at a command
prompt:

aréx -x rts.src cpy_tbl.h cpy_tbhl.c C6000 Specific

This example uses the C6000 archiver utility ar6x. Use the archiver utility in the code generation toolset of
interest. The file rts.src is a source library of all the runtime support functions bundled with the compiler. It
can be found in the \lib directory of the compiler distribution. In Code Composer Studio™ releases, it can
be found in the directory install base\device name\cgtools\lib.

4.3 Alternative Methods of Performing Copy
The table directive does not require that the RTS function copy_in be used to perform the runtime copy
operation. Other methods, such as DMA transfers, may be used as well.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 9

Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

Example of Automatic Section Splitting and Copy Tables www.ti.com

4.4

4.5

4.6

5.1

Function copy_in Does Not Work for Some C6000 Devices

All C6000 devices are based on a Harvard architecture, consisting of a path from the DSP's program fetch
pipeline to a dedicated program memory (or in some cases, a program cache) and a path from the DSP's
data load/store pipeline to a dedicated data memory (or in some cases, a data cache). Lower levels of
memory may include an L2 SRAM/Cache, L3 on chip SRAM, or external memory accessible via the
External Memory Interface (EMIF).

For devices with mapped Program Memory (including C620[1-5] and C6701), the program memory is not
directly accessible via Load/Store instructions, since these instructions are serviced via the data load/store
pipeline which is connected to data memory/cache. In this case, the function copy_in cannot be used to
relocate code to Program Memory. For these devices, DMA transfers must be used to copy blocks of
code. However, if code is relocated to locations other than Program Memory, the copy_in function can be
used.

For devices whose Program Memory (including C621x/C671x/C64x) always operates as a cache, the
lower level memory regions (including L2 SRAM or EMIF address range) are accessible via Load/Store
instructions, since the Data Memory controller and Program Memory controller have equal access to these
lower levels of memory. For these devices, the copy_in function can always be used.

For more information on internal program memory configurations, consult the TMS320C6000 DSP
Peripherals Overview (SPRU190), chapter 16.

Overlays and Cache

Cache can have an effect on code or data that is copied from one memory block to another. All the details
of such effects are beyond the scope of this application note. This section outlines some of the potential
problems.

Cache for memory that contains code, also known as program cache, generally does not account for the
possibility that code stored in memory can change as the application executes. Yet that is exactly what
occurs with code overlays. For a CPU with a program cache, any block copy for a code overlay should be
accompanied by commands that inform the cache about the change to program memory. If special steps
are not taken, calling a function just copied in may result in execution of whatever remains in the cache
from before.

Cache for memory that contains data is not handled the same way. If the CPU itself performs the overlay
memory block transfer, such as when calling copy _in, then there are no cache problems. The memory
block transfer is no different than any other CPU operation which modifies memory. If some other
mechanism, such as a direct memory access (DMA) peripheral, performs the transfer, then the transfer
operation should be accompanied by commands to inform the cache about the change to data memory.

Use Copy Tables for Boot Time Initialization

To support loading code from non-volatile memory such as flash or ROM into RAM at boot time, the table
directive supplies a special operand BINIT. For example:
.bcode: load = ROM run= RAM table(BINT)

For more information see the application note Creating a Second-Level Bootloader for FLASH Bootloading
on TMS320C6000 Platform with Code Composer Studio™ 2.2 (SPRA999A). While that application note is
specific to C6000, users of other devices will still benefit from the illustration of when and how to use the
BINIT form of the table directive.

Example of Automatic Section Splitting and Copy Tables

Overview

The example uses linker copy tables, which are introduced in Code Composer Studio™ version 3.00.
Thus, the example can only be run under Code Composer Studio™ version 3.00 or greater. The example
was developed using the C6416 Device Cycle Accurate Simulator as the execution platform. Running the
example on a different device or execution platform requires changes.

10

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Example of Automatic Section Splitting and Copy Tables

The application report is accompanied by a zip file that can be downloaded from the following URL:

http://www-s.ti.com/sc/techlit/spraa46.zip. Extract the contents of the zip file into an empty directory. Two

directories and one file are created. This example uses the contents of the directory linker_example. The

file DSK6713.gel and directory referenceframeworks are used in the example in Appendix B.

The files in the linker_example directory are:
e demo.c — Code for main and functions 1-3
e demo.cmd — Linker command file

* €6416_cache.c — Contains a routine for handling details of C6416 program cache behavior in
connection with code overlays

» func4.c — Code for function 4
» funch.c — Code for function 5
» func6.c — Code for function 6
» func7.c — Code for function 7
* linker_example.pjt — Code Composer Studio™ project file

Focus on how the code for functions 1-7 is linked. There are examples of both section splitting and copy
tables, sometimes in combination. Figure 3 is a visual summary. Most of what is displayed in Figure 3 is
implemented in the linker command file demo.cmd.

Object Input Output
files sections sections

demo.obj

E?nC1O funcl_scn funcl_scn

%ncZ() func2_scn

funca() func23_scn

func3_scn

{

func4.obj Split

funca() func45_scn

{

func5.obj

funcs() func45_scn

{

funce.obj func4567_scn

funce() func67_scn

{

func7.obj

%nc?() func67_scn

Split

Memory

L2SRAM

Runtime
copy

EMIFA_M1

func2_scn

EMIFA_M2

func3_scn

—

EMIFA_M3

func67_scn

EMIFA_M4

func45_scn

EMIFA

Figure 3. Section Splitting and Copying at Runtime

SPRAA46A—-December 2008
Submit Documentation Feedback

Advanced Linker Technigues for Convenient and Efficient Memory Usage

Copyright © 2008, Texas Instruments Incorporated

11

http://www-s.ti.com/sc/techlit/spraa46.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS

INSTRUMENTS
Example of Automatic Section Splitting and Copy Tables www.ti.com
5.2 Memory Configuration Details
On chip memory of the C6416 is a block of SRAM called L2. The term L2 comes from the fact all or part
of the SRAM can be configured as level 2 cache. The example uses the default configuration, which has
none of the block used as L2 cache. The external memory on the C6416 is accessed through an external
memory interface (EMIF). The example uses the first of such memory interfaces EMIFA. The first part of
EMIFA external memory is broken into artificially small blocks in order to illustrate section splitting.
5.3 Function by Function Description
Here is what happens to the code associated with each function as written in the files demo.c and
func[4-7].c.
The code for function 1 is placed in the input section funcl_scn. That is linked into the output section also
named funcl_scn. That output section is linked for loading into the general EMIFA external memory. At
runtime, this code is copied into L2 SRAM for execution.
The code for function 2 is placed into the input section func2_scn. The code for function 3 is placed into
the input section func3_scn. These two input sections are linked into the output section func23_scn. The
load allocation of the output section is split across the memory ranges EMIFA_M1 and EMIFA_M2. At
runtime, the functions are copied together into L2 SRAM for execution.
Note function 1 and functions 2-3 are executed from the same address range in L2Z2SRAM.
The code for functions 4 and 5 is placed in the input section func45_scn. The code for functions 6 and 7 is
placed in the input section func67_scn. Those two input sections are linked into the output section
func4567_scn. The output section is split across the memory ranges EMIFA_M3 and EMIFA_M4. These
functions are executed from external memory. They are not copied to on-chip memory for execution.
5.4 Build and Run
1. Configure Code Composer Studio™ to use the C6416 Device Cycle Accurate Simulator as the
execution platform.
2. Start Code Composer Studio™
3. Open the project. Select Project | Open, browse to thelinker_example directory, highlight the file
linker_example.pjt, then click Open.
4. Build the project. Select Project | Rebuild All or click the icon.
5. Load the program. Select File | Load Program. Browse to the Debug sub-directory of linker_example,
select the file name linker_example.out, then click Open.
6. Run the example. Select Debug | Run or hit F5. Output displays in the Stdout tab of the Output
window.
Correct output is as follows:
hit funcl, run address is ed80, x is O
hit func2, run address is ed80, x is 1
hit func3, run address is edeO, x is 3
hit func4, x is 6
hit func5, x is 10
hit func6, x is 15
hit func7, x is 21
I'i nker exanpl e PASSED!
Each function prints a message when it executes, and also increments the global variable x by the
function number. Note how functions 1 and 2 run at the same address. Functions 4-7 do not print a run
address since they are not part of the code overlay in on chip memory.
12 Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—December 2008

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

I

TEXAS
INSTRUMENTS

www.ti.com Example of Automatic Section Splitting and Copy Tables

5.5

Inspect the Map File

The linker option —m name of file creates a linker map file. The map file displays, in text tabular form,
information about the executable output file created by the linker. To see the map file select File | Open,
set the Files of Type drop-down box to Memory Map Files (*.map), browse to the Debug sub-directory of
linker_example, select the file linker_example.map, and then click Open.

Here are excerpts from the map file which relates to code for functions 1-7.
22 SECTI ON ALLOCATI ON MAP

24 output attributes/
25 section page origin length input sections

27 .func23_scn: 1
28 * 0 80000000 00000060 RUN ADDR = 0000ed80
29 80000000 00000060 deno.obj (.func2_scn)

31 .func23_scn: 2
32 * 0 80000100 00000060 RUN ADDR = 0000ede0
33 80000100 00000060 demp. obj (.func3_scn)

35 .func4567_scn: 1

36 * 0 80000200 000000cO

37 80000200 00000060 func7.obj (.func67_scn)
38 80000260 00000060 func6.obj (.func67_scn)

40 . func4567_scn: 2

41 * 0 80000400 000000cO

42 80000400 00000060 func4.obj (.func45_scn)
43 80000460 00000060 func5.obj (.func45_scn)

ébI.funcl_scn
61 * 0 80001300 00000060 RUN ADDR = 0000ed80
62 80001300 00000060 deno.obj (.funcl_scn)

64 .ovly 0 80001360 0000002c
65 80001360 0000001c <linker> (.ovly:func23_ctbl) [fill =0]
66 8000137c 00000010 <linker> (.ovly:funcl_ctbl) [fill =0]

221 LINKER GENERATED COPY TABLES

222

223 _funcl_ctbl @8000137c records: 1, sizel/record: 12, table size: 16

224 .funcl_scn: copy 96 bytes from | oad addr=80001300 to run addr=0000ed80
225

226 _func23_ctbl @80001360 records: 2, sizel/record: 12, table size: 28

227 .func23_scn:1: copy 96 bytes from |l oad addr=80000000 to run addr=0000ed80
228 .func23_scn:2: copy 96 bytes fromload addr=80000100 to run addr=0000ed80

Note the line numbers on the left are not displayed in the Code Composer Studio™ editor.

Lines 27 and 31, as well as lines 35 and 40, illustrate the representation of an output section that is split.
The form is name of output section:number. Split sections are numbered individually, starting with 1. The
last column shows which input sections are placed in a given split. See lines 29, 33, 37-38 and 42-43.

Output sections which are part of an overlay are displayed at their load address. The run address is an
attribute in the last column. See lines 28, 32, and 61. Note that the run address for func23 scn:1 and
funcl_scn is the same. The run address for func23_scn:2 is different because function 2 and function 3
are copied at the same time.

The .ovly section, which contains the linker generated copy tables, is displayed starting on line 64.

The details of the copy tables start on line 221. There is an entry for each instance of the table directive.
One begins on line 223 and the other on line 226. Each entry displays the name of the copy table, the
name of the output section that is copied, and the length, load address, and run address for each record
used to perform the copy. Recall that the load allocation of func23_scn is split across two memory ranges.
Thus there are two records in the corresponding copy table func23_ctbl, one for each block of code that is
copied. The records are shown on lines 227-228.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 13
Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS

INSTRUMENTS
Trampolines www.ti.com
5.6 Handling Cache Effects
The example only copies code sections. Thus, only program cache, not data cache, needs to be
considered. The file c6416_cache.c contains a routine for informing the program cache that a change to
program memory has occurred. Specific details are contained in the comments to that source code, and
are not further described in this application note.
6 Trampolines
6.1 Problem Description
The C6000 and 470 CPUs each use different instructions sequences to call functions. One sequence
takes less code space and cycles, but is limited by the distance allowed between the call sequence and
the destination of the call. The other sequence has no distance limitation, but takes more code space and
cycles.
Compare the two methods of performing calls in C6000 assembly:
destination nust be +/- 1M words fromcurrent PC
CALL _near_call
. aesti nation can be anywhere
MKL _far_call, A3
MVKH _far_call, A3
CALL A3
The ideal solution always uses the smallest instruction sequence that can perform the call.
Compiler based solutions to this problem include things like the far keyword, and memory models
controlled by build time options. Such solutions fall short for two main reasons. First, it is difficult to
consistently use the far keyword only where needed. Second, memory model options often use larger call
sequences than necessary.
The linker replaces all these compiler based solutions with a new feature called trampolines.
14 Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—December 2008

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Trampolines

6.2 Overview

Trampolines are summarized visually in Figure 4.

call foo call foo_trampoline Linker
T generated
foo_trampoline: /

Out long_branch foo

Ny of E>

L — | range
call /”,\\i\rr/’/

foo: foo:

Figure 4. Trampolines

The compiler, or assembly language coder, always uses the smaller call sequence. Whenever the linker
encounters a small call sequence that cannot reach the destination, it redirects the call to a linker
generated trampoline. The trampoline uses a large branch instruction that can always reach the
destination. Because the trampoline uses a branch instead of a call, the called function returns not to the
trampoline, but to the original call sequence. Multiple calls to the same function may reuse the same
trampoline.

A trampoline is always placed where it can be reached by a small call sequence. It is usually appended to
the end of the output section, thought it may also be placed between input sections. If an input section is
so big that a small call sequence cannot reach the end, then an error message is issued. Very large input
sections, which must come from a single file, are rare.

In practice, most small function calls can reach their destinations. Relatively few calls require a trampoline.

Trampolines are not enabled by default. Use the linker option --trampolines to enable them. This option is
available only for the C6000 and 470 toolsets. For C6000, support starts with Code Composer Studio™
version 3.00. For 470, it is supported in the currently available Code Composer Studio™ version 2.20.
Note that under Code Composer Studio™ release 2.20 the option is --large_model.

6.3 Trampolines Improve Performance and Code Size

Consider complicated systems where the source is broken out into sub-modules that are built separately.
Alternatively, consider building a library of related functions. In both cases it is often not known where the
code may be placed in memory, and thus whether near calls can always reach their intended destinations.
Such code is commonly built with command line options that cause calls to always use the larger
encoding. On C6000 the options include

-m1l, -mM2, and -m3

On 470, it includes the
-

option. While using these options increases cycles and code size, that cost is outweighed by the
convenience of being able to place the code anywhere in memory.

Trampolines make those build options unnecessary, and improved performance often results. In practice,
most calls are to related functions. Such functions are typically grouped in the same file or library and thus
are typically near one another in memory. Therefore, near calls can reach these destinations. Using
trampolines means that such calls are performed optimally. The costs of using trampolines are only borne
by the less common calls to different modules or libraries that can be far away in memory.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 15
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

Trampolines www.ti.com

6.4

Appendix B gives an example which illustrates the performance difference. This example is based on
Reference Frameworks level 3 (RF3), and executes on a DSK6713. It is included in the zip file distributed
with this application report. The build option—mI3 is replaced by the build options —trampolines —-ml0, and
a 10% performance increase results. That is a very significant increase in performance for so little effort.

Using trampolines saves on code size as well. Recall the example of a C6000 near call and far call given
in section 6.1. The near call is 8 bytes smaller than the far call. That rate of savings becomes a noticeable
code size reduction when nearly all the calls change from far to near.

Basic Trampolines Example

The example from section 5 can make use of trampolines. The application in the example places the
functions for functions 4-7 in external memory, while everything else is in internal memory. The address
range distance between internal and external memory is very large, around 0x7ff00000 bytes. So the calls
to functions 4-7, as well the calls that functions 4-7 make to the compiler runtime support functions, have
to cross a large distance.

The example handles this by building with the far calls memory model switch -ml1. While that works, it has
the unfortunate side effect of making every function call use more instructions, which is unnecessary most
of the time.

The steps below remove the far calls build flag, note the errors that result, and then use trampolines to fix
those errors.

1. Open up Code Composer Studio™ and the linker example project.

2. Remove the far calls build option. Select Project | Build Options | Tab:Compiler | Category:
Advanced. In the Memory Models drop-down box select Near Calls & Data. Click OK.
o

3. Build the project. Select Project | Build or click the icon &= .
Note several link-time errors in the Build tab of the Output window. For instance:

>> error: relocation overflow occured at address 0x00000068 in section '.text' of input file

" C:\projects\c6x\Ilinker_exanpl e\ Debug\ deno. obj'. The 29-bit PCrelative displacenent 536863840
at this location is too large to fit into the 21-bit PC-Relative field; the called function is
out of range fromthis call site. Consider using the '--tranpolines' |linker option to generate
tranmpolines to bridge the distance between far caller/callee pairs.

4. Add the switch for trampolines. Select Project | Build Options | Tab:Linker. Click to place the cursor
at the end of the options box at the top, then type:- - t ranpol i nes. See Figure 5, where the option is
circled in red. Click OK.

16

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Trampolines

Build Options for linker_exa... @E\

Gereral | Compiler Linker] Lirk. Oirdler |

Cateqony: B azic

Advanced

Output Module:
Output Filenarne [-o]:
tap Filenarme [-m);
Autoint Model:

Heap Size [-heap]:
Stack Size [-stack):
Fill ' alue [-f):

Code Entry Paoint [-&]:

Irizlude Libranes [-1);

|'rteBA00 B M eelbd 16 b - trampolines

[Suppress Banner [-g]
v Exhaustively Bead Libraries [-x]

--c - D ebugilinker_example. map’’ -0 \Debughlinker_exarnple. out' - -

=l

|."»D ebughlinker_esxample. out

|."-.D ebughlinker_example.map

| Rur-Time Autoinitiahzation [= |

Library Search Fath [-i]:l

|rtsE4DD.IiI::;n:sIE¢H E.Ib

Ok,

Cancel

Help

Figure 5. Enabling Trampolines

At this writing the Code Composer Studio™ build interface does not directly support adding the switch

--trampolines, so it has to be added manually.

5. Build again. Select Project | Build or click on icon for incremental build.
Only the linker will run, and the build will complete. All the places where errors occurred in the previous

build are automatically changed to using trampolines.

6. Load the program. Select File | Load Program. Browse to the Debug sub-directory of linker_example,

select the file name linker_example.out, then click Open.
7. Run the example. Select Debug | Run or press Fb5.
The same output as before will appear in the Stdout tab of the Output window.

SPRAA46A—-December 2008
Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

Advanced Linker Technigues for Convenient and Efficient Memory Usage 17

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

Feature Availability

13 TEXAS
INSTRUMENTS

www.ti.com

6.5

Inspect the Map File
Here is the part of the map file which displays the trampolines generated.

Far Call Trampolines

call ee addr tramp addr call addr call info
) 8000020c func5.obj (.func45_scn)
rintf 00007f 20 . T$0005 800002c0 —
-P 8000026¢ func4. obj (.func45_scn)
) 8000040c funcé. obj (.func67_scn)
_printf 00007f 20 . T$0006 800004c0 80000460 func7. obj (.funce? sen)
_func4 80000260 . T$0001 000008480 00006f e8 deno. obj (.text)
_funch 80000200 . T$0002 000084a0 00006ff0 deno. obj (.text)
_funcé 80000400 . T$0003 000084c0 00006ff 8 deno. obj (.text)
_func7 80000460 . T$0004 000084e0 00007000 deno. obj (.text)

The column contents are as follows:

» callee — function called

* addr — address of callee

» tramp — automatically generated name for the trampoline

e addr — where the trampoline resides in memory

» call addr — list of addresses from which a call using the trampoline originates

» call info — the object file and input section that contain the originating call. If the object file is from a
library, the name of the library is shown as well.

The first four lines in the table are for calls to printf from functions 4-7. Each function calls printf one time.
Recall that functions 4-7 are all linked into the output section func4567_scn. Under normal circumstances,
this means all four calls to printf would share a single trampoline. However, the output section
func4567_scn is split into two memory regions. Thus, there is a trampoline for each part of the split.

The remaining entries are for calls to functions 4-7 from the main routine in demo.c.

Feature Availability

Table 3. Feature Availability

Feature Target(s) CCS Version
Section Splitting All 2.20
Copy Tables All 3.00
] ARM 2.20
Trampolines
C6000 3.00

» Feature — which linker feature

» Target(s) — which CPU devices have support for the feature. The term All means C6000, 470, C55x,
Cb54x, and C28x. These features are not supported for older devices.

* CCS Version — the version of Code Composer Studio™ which supports the feature. All later versions
of Code Composer Studio™ support the feature as well. Code Composer Studio™ 2.20 is generally
available today. Code Composer Studio™ 3.00 is planned for releases on various targets throughout

2004.

Table 4 indicates which version of the code generation tools is bundled with the given version of Code
Composer Studio™. This information is for developers who perform builds outside of Code Composer

Studio™.
Table 4. Code Generation Tools Versions by CCS Version
CCS Version C6000 ARM C55x C54x C28x
2.20 4.32 2.24 2.56 3.83 3.07
3.00 5.00 3.00 3.00 4.00 4.00

18 Advanced Linker Technigues for Convenient and Efficient Memory Usage

Copyright © 2008, Texas Instruments Incorporated

SPRAA46A—-December 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Summary

8 Summary

This application note describes three ways the linker makes it easy to use memory efficiently. Automatic
section splitting places pieces of code or data into distinct memory ranges. Copy tables make
implementing overlays a snap. Trampolines eliminate the need for far call memory models. The example
gives you all the details on how to use these features in your application.

This is not the end of the line for linker features dedicated to managing memory well. Stay tuned for more
to come.

9 Acknowledgements

Figures 1, 2, and 4 were provided by Todd Snider. The example in section 5 is based on work first done
by Ning Kang. The reference frameworks example in Appendix B was provided by Alan Campbell. Thank
you for these invaluable contributions.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 19

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix A Placing Functions in Subsections Can Cause Code Growth

A.10

When the compiler places functions in individual subsections, it also marks these sections for conditional
linking. If the linker sees no references to the symbols defined in such a section, it removes the section. In
effect, if a function is never called, it is removed. In this manner, placing functions in subsections can save
code size.

If very few functions are removed, however, placing functions in subsections can cause code size to grow.
The reasons for this code growth are target specific, as detailed below.

TMS320C6000

On C6000 each input section that contains code must be aligned on a 32-byte boundary. Such alignment
can create holes between the input sections. Placing functions in subsections increases the number of
input sections that require 32-byte alignment, which increases the possibility of holes between sections,
thus potentially causing overall code size to grow.

A formula for estimating the code growth in bytes is 16 * (functions — files) — sizeof (functions removed).

» 16 — the average size of the hole created by aligning on a 32-byte boundary. About half of the time the
hole will be larger, the other half of the time it will be smaller.

» functions — the number of functions in the system, not counting those removed because they are not
called.

» files — the number of files in the system
» sizeof(functions removed) — how much space is saved by removing functions that are not called

Note the term (functions — files) really represents the number of additional input sections that result from
placing each function in a subsection. When the functions are not placed in subsections, the number of
input sections is the same as the number of files. When functions are placed in subsections, the number
of input sections is the same as the number of functions. Thus the number of additional input sections is
(functions — files).

The rest of this section explains why input sections which contain code must be aligned on a 32-byte
boundary.

Here are some basic C6000 technical terms and relationships:
» All instructions on C6200, C6400, and C6700 devices are 4-bytes long

» Instructions are fetched (read) in groups of 8 instructions called a fetch packet. A fetch packet is
32-bytes long. A fetch packet boundary is a 32-byte boundary.

» An execute packet is a group of instructions which execute in parallel. An execute packet can contain 1
to 8 instructions.

* On C6200 and C6700 devices, an execute packet may not span a fetch packet boundary.

» On C6400 devices, an execute packet can span a fetch packet boundary with one exception: an
execute packet that can be the target of a branch may not span a fetch packet boundary.

There are two main reasons why an input section which contains code must be aligned on a fetch packet
boundary (32-byte boundary).

The assembler performs error checking to insure an execute packet does not span a fetch packet
boundary. Such checking requires the assembler to know the location of the fetch packet boundaries.
Such knowledge can be assured only by first aligning the section on a fetch packet boundary.

An input section that contains instructions must end on a fetch packet boundary. If it does not, when the
last fetch packet in the section is read it will pick up the first few bytes of the next piece of memory. For
that to be safe, that next piece of memory must exist, and it must contain valid C6000 instructions. Absent
such conditions, a system crash could result. Since these conditions cannot be guaranteed, the assembler
insures the section ends on a fetch packet boundary. This assurance is implemented by aligning the
section on a fetch packet boundary, then padding the end of section with the appropriate number of NOP
instructions.

20

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

I

TEXAS

INSTRUMENTS

www.ti.com TMS320C55x

A1l

A.12

TMS320C55x

On TMS320C55x there are two different sizes of call instructions. The smaller call instruction, while clearly
preferred, is limited by the distance in memory between the call and the destination of the call. The larger
call instruction has no limit on the distance to the call destination.

For calls to functions defined in the same input section, the assembler always encodes the smaller call
instruction (with extremely rare exceptions). If the call is to a function defined in a different input section,
even if that input section is in the same file, the assembler always encodes the larger call instruction.

Placing functions in subsections means no calls (except recursive calls) are to a function in the same input
section. Thus the larger call instruction is always encoded. Always encoding the larger call instruction can
cause overall code size to grow.

TMS470R1x

The TMS470R1x instruction set does not support any constant literals. Constant literals include both
integer constants and addresses. When a constant literal is needed, it is placed in a constant table in
memory, and then a reference is made to the table entry. This table entry reference is accessed at an
offset from the program counter (PC). The size of the offset is limited, which in turn limits the distance in
memory between the constant table and the function which references it. Thus, the constant table must be
placed in the same input section as the function which refers to the constant.

If there are multiple references to the same constant, even from different functions, these references can
share one constant table entry, provided the functions are all in the same input section with the constant
table. When each function is placed in its own subsection, there can be no sharing of constant table
entries between functions. References to the same constant result instead in duplicate entries in separate
constant tables. Thus, overall code size may grow.

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 21
Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix B Trampolines Improve Performance on Reference Frameworks Example

B.1

B.2

Introduction

Reference Frameworks for eXpressDSP Software are provided as starterware for developing applications
that use DSP/BIOS and the TMS320 DSP Algorithm Standard (also known as XDAIS). Reference
Frameworks are available for different levels of system complexity. The example here is based on
Reference Frameworks Level 3 (RF3) as described in the application note Reference Frameworks for
eXpressDSP Software: RF3, A Flexible, Multi-Channel, Multi-Algorithm, Static System (SPRA793).

The appendix walks through building the example code with two different option sets, and compares
performance. The example executes on a DSK6713.

The first build uses —mI3. Under —ml3, all calls are far calls that can reach any destination, but cost more
in cycles and memory. The example, built with these options, imposes a CPU load of about 10.5%.

The second build uses —trampolines —ml0 in place of —mI3. The advantage of using trampolines instead
of —mI3 is described in section 6.3. The example, built with these options, imposes a CPU load of about
9.5%. That is a performance improvement of just under 10%! No source changes required!

Note changing from —mI3 to —-ml0 also changes how global data is handled. That difference is discussed in
section B.5.

The files are in the zip file supplied with this application report. Extract the contents of that zip file to an
empty directory. The example makes use of the file DSK6713.gel and the directory referenceframeworks.
The directory linker_example is used in section 5.

The directions below use the name linkex to represent the directory where the zip files are extracted.

System Setup

Required components:

» DSK6713

e (6000 Code Composer Studio™ v3.00
* An emulator such as the XDS-560

* Audio cable

» Speakers or headphones

At this writing, the only way to control the DSK6713 with Code Composer Studio™ v3.00 is through an
emulator. Drivers to support a USB interface will be released at a later date.

Connect the audio cable to the sound output jack on the PC, and the line in jack on the DSK6713.
Connect the speakers or headphones to the headphone or line out jacks on the DSK6713.

The default GEL file supplied with the emulator needs is not specifically configured to the DSK6713.
Replace it with the DSK6713.gel file supplied with the example.

1. Open Code Composer Studio™ Setup

Configure the system to use an emulator connected to a C671x target system.

In the leftmost column, right click on the name of the emulator and select Properties.

Select the tab Startup GEL File(s).

Click the “..” box on the far right, browse to linkex, select the filename DSK6713.gel, then click Open,
then click Finish.

Save the configuration. Select File | Save.
7. Quit Code Composer Studio™ Setup. Select File | Exit.

akrwn

o

22

Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—-December 2008
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS
INSTRUMENTS

www.ti.com Build With -mI3 and Check Performance

B.3 Build With -mI3 and Check Performance

Building the reference frameworks example involves building several libraries as well as a Code
Composer Studio™ project. Batch files are supplied to perform these builds.

1. Open a DOS command window

2. Configure the path and environment variables for using Code Composer Studio™ command line build
tools. Run the batch file CCS install directory\DosRun.bat.

3. Change directory to linkex\referenceframeworks.

4. Build the libraries and application example with —mI3. Run the batch file
build6000_rf3_dsk6713_ml3.bat.

5. Do not close the DOS window.
6. Start Code Composer Studio™

7. Open the reference frameworks example project build with —mlI3. Select Project | Open. Browse to
linkex\referenceframeworks\apps\rf3\dsk6713, select the file app_ml3.pjt, then click Open.

8. Connect to the DSK6713. Select Debug | Connect.

9. Load the program. Select File | Load Program. Browse to the Debug subdirectory of the project
directory, select app.out, then click Open.

10. Start playing an audio source on the PC. For example, open Windows Media Player to play music
from a CD.

11. Back in Code Composer Studio™, run the application. Choose Debug | Run or hit F5.

12. Listen for the audio from the PC source to begin playing through the speakers or headphones
connected to the DSK6713.

13. Check the performance level by using the CPU Load Graph. Choose DSP/BIOS | CPU Load Graph.
Note the CPU load level is about 10.5%.

14. Halt the application. Choose Debug | Halt.
15. Close the project. Select Project | Close.

B.4 Build With --trampolines -ml0 and Check Performance
1. Return to the DOS window.

2. Rebuild the libraries and application with —trampolines and —mI0. Run the batch file
build6000_rf3_dsk6713 ml0_trampolines.bat.

3. Return to Code Composer Studio™.

4. Open the reference frameworks example project built with —trampolines —ml0. Select Project | Open.
Browse to linkex\referenceframeworks\apps\rf3\dsk6713, select the file app_ml0_trampolines.pjt, then
click Open.

5. If not connected to the DSK6713, select Debug | Connect.

6. Load the program. Select File | Load Program. Browse to the Debug subdirectory of the project
directory, select app.out, then click Open.

7. Make sure the audio started in step 10 above is still playing.
Back in Code Composer Studio™, run the application. Choose Debug | Run or hit F5.

9. Listen for the audio from the PC source to begin playing through the speakers or headphones
connected to the DSK6713.

10. Check the performance level by using the CPU Load Graph. Choose DSP/BIOS | CPU Load Graph.
Note the CPU load level is now about 9.5%.

©

SPRAA46A—-December 2008 Advanced Linker Technigues for Convenient and Efficient Memory Usage 23
Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

13 TEXAS

INSTRUMENTS
Compare Performance www.ti.com
B.5 Compare Performance
A CPU load of 9.5% is almost 10% less than a CPU load of 10.5%. That is quite a performance
improvement just for changing build options!
The measurement conditions for the CPU load measurement are:
» Reference Framework Level 3 running on a 225Mhz c6713 DSK
« Sampling rate of 44.1 khz with 80 samples per frame. This equates to a frame rate of 44100 / 80 = 551
Hertz.
The relatively high frame rate means that function calls are being made frequently, as compared to a
G723 system which has a frame rate of 8000 / 240 = 33Hz. The more a function is called, the more the
impact of employing trampolines to make that a near call rather than a far call.
On C6000 Performance Audio systems, which can run at up to 96khz, using trampolines to change far
calls to near calls can have even more impact.
B.6 Note on Data: -mI0 Works as Well as -ml3
Up to this point, the example has focused on how code and calls are handled. Another difference between
the build options —mI3 and —ml0 is how data is handled. Note this discussion only covers global and static
variables. Variables dynamically allocated on the stack or from the heap are not related to this issue in
any way.
Similar to the difference between near and far calls, there is a distinction between near and far data. Far
data takes more instructions to access than near data. The limitation of near data is that the total size of
all near data cannot exceed 32K hytes.
Under —mi3, all global data defaults to far access. Under —ml0, aggregate data defaults to far access, and
scalar data defaults to near access. Aggregate data is arrays, structures, and unions. Scalar data is
simple variables declared with integer, double, etc.
It may seem that —mIO imposes difficult constraints on how data is handled that is best avoided by using
—ml3. That simply is not the case.
Under —mlO0, only scalars are declared near. And the total size of all near data is limited to 32K bytes. The
largest scalar types use up 8 bytes: long long, double, and long double. Even if all the scalars were one of
those 8-byte types, it would take 4,097 differently named scalars to exceed the 32K byte limit. Exceeding
such a large limit is highly unlikely.
24 Advanced Linker Technigues for Convenient and Efficient Memory Usage SPRAA46A—December 2008

Submit Documentation Feedback
Copyright © 2008, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA46A
http://www.ti.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Advanced Linker Techniques for Convenient and Efficient Memory Usage
	1 Introduction
	2 Linker Basics
	3 Automatic Section Splitting
	3.1 Problem Description
	3.2 Overview
	3.3 Splitting Data Sections
	3.4 Limitations on Splitting
	3.5 Order of Section Splitting
	3.6 Use Subsections to Save Memory

	4 Copy Tables
	4.1 Problem Description
	4.2 Overview
	4.2.1 The Table Directive
	4.2.2 The Function copy_in

	4.3 Alternative Methods of Performing Copy
	4.4 Function copy_in Does Not Work for Some C6000 Devices
	4.5 Overlays and Cache
	4.6 Use Copy Tables for Boot Time Initialization

	5 Example of Automatic Section Splitting and Copy Tables
	5.1 Overview
	5.2 Memory Configuration Details
	5.3 Function by Function Description
	5.4 Build and Run
	5.5 Inspect the Map File
	5.6 Handling Cache Effects

	6 Trampolines
	6.1 Problem Description
	6.2 Overview
	6.3 Trampolines Improve Performance and Code Size
	6.4 Basic Trampolines Example
	6.5 Inspect the Map File

	7 Feature Availability
	8 Summary
	9 Acknowledgements
	Appendix A Placing Functions in Subsections Can Cause Code Growth
	A.10 TMS320C6000
	A.11 TMS320C55x
	A.12 TMS470R1x

	Appendix B Trampolines Improve Performance on Reference Frameworks Example
	B.1 Introduction
	B.2 System Setup
	B.3 Build With -ml3 and Check Performance
	B.4 Build With --trampolines -ml0 and Check Performance
	B.5 Compare Performance
	B.6 Note on Data: -ml0 Works as Well as -ml3

