DMD 101:
Introduction to Digital Micromirror Device (DMD) Technology

Benjamin Lee

ABSTRACT
This document describes the basic structure and operation of the digital micromirror device (DMD) array.

1 Overview
This document covers the basic structure and operation of DMD devices. The DMD is a unique combination of opto-mechanical and electro-mechanical elements. The journey begins with understanding how one pixel works and building on that to encompass the entire array of pixels that comprise a DMD.

2 Mirror (Pixel)
The DMD pixel (mirror) is both an opto-mechanical element and an electro-mechanical element.

2.1 Bi-Stable Operation (±12 Degrees)
The DMD pixel is an electro-mechanical element in that there are two stable micromirror states (+12° and −12° for most current DMDs) that are determined by geometry and electrostatics of the pixel during operation.

The DMD pixel is an opto-mechanical element in that these two positions determine the direction that light is deflected. In particular, the DMD is a spatial light modulator. By convention, the positive (+) state is tilted toward the illumination and is referred to as the "on" state. Similarly, the negative (−) state is tilted away from the illumination and is referred to as the "off" state. Figure 1 shows two pixels, one in the on and one in the off state. These are the only operational states of the micromirror.

![Figure 1. Pixels in On and Off State](image)
2.2 **Mechanical**

Mechanically the pixel is comprised of a micromirror attached by means of a via to a hidden torsional hinge. The underside of the micromirrors make contact with the spring tips shown in Figure 2. The diagram shows a micromirror in the **unpowered** state. The two electrodes shown are used in holding the micromirror in the two operational positions (+12° and -12°).

![Figure 2. Pixel with Labeled Parts](image-url)
2.3 Electrical

2.3.1 Dual CMOS Memory

Below each micromirror is a memory cell formed from Dual CMOS memory elements as depicted in Figure 3. The state of the two memory elements are not independent, but are always complimentary. If one element is logical 1 the other element is logical 0 and vice versa. The state of the pixel memory cell plays a part in the mechanical position of the micromirror, however, loading the memory cell does not automatically change the mechanical state of the micromirror.

![Figure 3. Dual CMOS Pixel Memory](image)

2.3.2 Memory State versus Micromirror State

Although the state of the dual CMOS cell plays a part in determining the state of the micromirror, it is not the sole factor. Once the micromirror has landed changing the state of the memory cells will not cause the micromirror to flip to the other state. Therefore, memory state and micromirror state are not directly linked together.

2.3.3 Mirror Clocking Pulse – Transferring Memory State to Mirror State

In order for the state of the CMOS memory to be transferred to the mechanical position of the micromirror, the pixel must receive a "Mirror Clocking Pulse" (formerly referred to as a "Reset"). This Mirror Clocking Pulse momentarily releases the micromirror and then re-lands it based on the state of the CMOS memory below. Therefore it is important that during a Mirror Clocking Pulse operation that the memory cell is not being written to. The various DMD data sheets specify the time before and after a Mirror Clocking Pulse occurs that data cannot be loaded to the pixel CMOS memory.

This allows the memory of groups of pixels to be pre-loaded and then their mechanical position to be changed simultaneously with a Mirror Clocking Pulse.

2.3.4 Power Up and Power Down

When a DMD is “powered up” or “powered down” there are prescribed operations that are necessary to ensure proper operation of the micromirrors. These operations land the micromirrors during power up and release them during power down. Specific details are described in the various DLP Controller and DMD data sheets.
3 DMD Array Operations

A DMD is an array of individual pixels, the array dimensions being determined by the resolution of the particular DMD. For example consider a DMD with XGA resolution; 1024 columns by 768 rows.

The CMOS memory array consists of 768 rows of 1024 pixels long. 1 = on, 0 = off
Each row is randomly or sequentially addressable (automatic counter).

Figure 4. DMD Array

DMD memory is loaded by row. An entire row must be loaded even if only one pixel in the row needs to be changed.
3.1 Row Load

Loading a row is accomplished via a parallel bus of 16, or 32 bits. Current 2xLVDS XGA Type A devices use a 32 bit wide bus. This data is loaded on both rising and falling edges of the data clock (known as dual data rate [DDR]). For the XGA device 32 clock edges (16 clock cycles) over the 32 bit wide bus are needed to load the 1024 bits of a complete a Row. Figure 5 shows a Row Load. Note: The 2xLVDS 1080p Type A device uses two 32 bit wide buses.

![Diagram of Row Load]

Row data is loaded 32 bits per clock over 32 edges (1024 bits per row) for the 2xLVDS XGA Type A DMD.

Figure 5. Row Load

3.2 Row Addressing

Rows can be addressed sequentially by way of an automatic counter or randomly by row address.

3.2.1 Sequential Mode (Automatic Counter)

Sequential addressing means that when row (n) is loaded, the DMD internally increments the row address pointer to (n + 1).

NOTE: The pointer does not automatically reset to zero when the last row is loaded. An explicit command to set the row pointer to zero must be issued.

This mode is useful when it is expected that most of the data in the image will change each time the device is loaded. Further it does not require the user to keep track of the row address pointer.

3.2.2 Random Mode

Random addressing means that as row data is supplied a row address (n) must also be supplied. The DMD will then load the row data to row (n) specified by the row address.

This mode is useful when it is expected that the data in the image will only change in a subset of rows. However it does requires the user to keep track of row address pointer and supply the row address during each row load.
4 Block Operations

For the purpose of Mirror Clocking Pulses and quickly clearing data, the DMD is divided into blocks. 2xLVDS XGA Type A devices are divided into 16 blocks of 48 rows each. Figure 6 illustrates the blocks. Note: 2xLVDS 1080p Type A devices are divided into 15 blocks of 72 rows each.

The XGA array is divided into 16 blocks of 48 rows.

Figure 6. DMD Blocks

4.1 Mirror Clocking Pulses

Previously it was noted that loading the CMOS memory does not cause the micromirrors to change their mechanical state and that in order for the loaded memory to change the mechanical position of the mirrors a “Mirror Clocking Pulse” must be applied.

A Mirror Clocking Pulse is issued to a Block. The pixels in that block whose data has changed moves to the opposite mechanical position and those whose data did not change will remain in the same mechanical position. These operations are referred to as “cross-over” transitions and “same-side” transitions respectively.

NOTE:
Although memory cannot be loaded in a block that is undergoing a Mirror Clocking Pulse, memory can be loaded in a block that is not undergoing a Mirror Clocking Pulse. However, there is a minimum time that must transpire after a Mirror Clocking Pulse is sent to a block before new data can be loaded to that block. This wait time is referred to as the “Mirror Settle Time”.

The DMD has 16 Mirror Clocking Pulse input lines; one for each block as illustrated in Figure 7.

There are four Mirror Clocking Pulse modes that determine which blocks Receive a Mirror Clocking Pulse when issued:

- Single block mode
- Dual block mode
- Quad block mode
- Global mode

4.1.1 Single Block Mode

In single block mode, a single block can be loaded and sent a Mirror Clocking Pulse. After a block's memory is loaded, it is sent a Mirror Clocking Pulse to transfer the information to the mechanical state of the mirrors (that is, display the data). These blocks can be sent a Mirror Clocking Pulse in any order.
4.1.2 Dual Block Mode

In Dual Block Mode Mirror Clocking Pulse blocks are paired together as follows (0-1), (2-3), (4-5) . . . (14-15). After data is loaded a pair can be sent a Mirror Clocking Pulse to transfer the information to the mechanical state of the mirrors. These pairs can be sent a Mirror Clocking Pulse in any order.

Figure 9. Dual Block Mirror Clocking Pulse

4.1.3 Quad Block Mode

In Quad Block Mode Mirror Clocking Pulse, blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-15). After a quad group is loaded, it can be sent a Mirror Clocking Pulse to transfer the information to the mechanical state of the mirrors. Each quad group can be sent a Mirror Clocking Pulse in any order.

Figure 10. Quad Block Mirror Clocking Pulse

4.1.4 Global Mode

In Global Mode, all Mirror Clocking Pulse blocks are grouped together. Therefore, the entire DMD must be loaded with the desired data before issuing a Global Mirror Clocking Pulse to transfer the information to the mechanical state of the mirrors.

Figure 11. Global Mirror Clocking Pulse
4.2 Block Clear

Although memory can be “cleared” by loading all zeros into a block a special block function known as a “Block Clear” can be issued. Loading 48 rows would require 48 x 16 (768) clock cycles, but a Block Clear command causes the DMD to load all zero’s into the specified block. For a 2xLVDS XGA Type A DMD a Block Clear command takes the same amount of time as one Row Load operations. Thus, in the time it takes to load a row of data (16 clock cycles) an entire block can be loaded with zeros. Therefore, it is possible to clear the entire XGA DMD memory in less time than it would take to load a single block (48 times faster than loading zeros using Row Loads). This function is useful when short display times are desired with continuous illumination sources.

NOTE: The 2xLVDS 1080p Type A devices require a Block Clear command followed by two No Operation [NoOp] Row Cycles to clear a block (24 times faster than using Row Loads). Block Clear commands (including any subsequent NoOps) and Row Load operations cannot be executed simultaneously, even if the row is not in the block to be cleared.

4.3 Phased Operation

4.3.1 Motivation

For some applications, it is desirable to display a given image (binary frame) for a short period of time. If a Global Mirror Clocking Pulse is used, the array cannot begin loading data, even using a Block Clear command, until the Mirror Settle Time is satisfied. A shorter effective display time can be achieved by loading a subset of blocks during the Mirror Settle Time of another subset of blocks. This can be done in a cascading fashion down the surface of the DMD until the entire image has been briefly displayed. The result is that the Mirror Settle Time is allowed to occur while other blocks are loading. This in effect removes the Mirror Settle time from time it takes to display one binary frame.

This operation is analogous to the way a focal plane shutter works in a modern SLR camera to achieve high shutter speeds.

NOTE: In 2xLVDS XGA Type A parts (at 400 MHz clock), the load time of one block is shorter than the required Mirror Settle time. Therefore, in practice, two consecutive blocks are loaded before returning to clear the initial blocks. This is the example that is used in the following illustration.

4.3.2 How It Is Done

A phased operation uses both block operations (Mirror Clocking Pulse and Block Clear) to achieve short effective display times.

Several steps of a Phased Mirror Clocking Pulse operation for a 2xLVDS XGA Type A part (at 400 MHz) are illustrated in Figure 12.
Figure 12. Phased Mirror Clocking Pulse Steps

In this sequence a “window” of two displayed blocks sweeps down the surface of the DMD. The image is effectively displayed for the time that it takes to load two blocks. When the bottom of the DMD is reached, the next frame of data can begin a sweep immediately since the blocks at the top of the DMD have already satisfied the Mirror Settle Time. Note: The entire image is not displayed simultaneously; therefore, sufficient exposure time is needed to integrate the image.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated