

INTERFACING THE ADS7870 AND THE MC68HC11E9 ANALOG TO MICROCOMPUTER MADE EASY

By Ed Rojas

INTRODUCTION

Assembly of a data-acquisition system with its many parts (multiplexed, amplifiers, ADC, voltage reference, etc.) can be complex and expensive. The new Burr-Brown ADS7870 solves the problem with its 12-bit low-power CMOS data-acquisition system containing all parts mentioned, and extras. The space saving system is in a small (SSOP-28 surface-mount) plastic package. The price of the entire system is \$3.90 (1K Qty).

Here is a simple and versatile two-chip data acquisition solution consisting of a Burr-Brown ADS7870 and a Motorola 68HC11-microcomputer. Serial interfacing is handled through an SPI port. The implementation in this article will demonstrate how to store sixty-four 12-bit conversions in memory of the microcomputer with a sample rate of approximately 20kHz.

ADS7870

The serial interface is designed for ease in interfacing with a wide range of microcontrollers; no glue logic is needed. The serial-interface pins of the ADS7870 are the standard \overline{CS} , DOUT, DIN, and SCLK. The interface is compatible with SPI, QSPI, Microwire, and 8051 protocols. There are also various hardware pins that affect the serial interface, or may be used in conjunction with the serial interface, that are listed in Table I.

Analog input to the system is a 4-channel differential, or 8-channel single-ended, multiplexer. Combinations of differential and/or single-ended inputs can be had by a write to the ADS7870 Gain/Mux register. An on-board programmable-gain true instrumentation amplifier with gains of 1, 2, 4, 5, 8, 10, 16, and 20 (see Figure 1). Special features include high input impedance, auto-zeroed for near zero and offset drift, and a PGA status register for overload conditions. A 12-bit SAR Analog-to-Digital Converter (ADC) with a maximum conversion rate of 50kHz, and a precision internal reference (2.048/2.5V) with 10ppm/°C (typical) and good stability. Four serial addressable general-purpose digital I/O pins are provided for any other logic needs.

SERIAL COMMUNICATIONS.									
PIN	LABEL	PURPOSE							
23	CS	Selects part for Communication and to resynchronize.							
22	SDOUT	Serial data output.							
21	SDIN	Default (serial data input) with interface control register bit D6 or D1 set LOW (3 wire). If either of the two are HIGH, SDIN is bi-directional (2 wire).							
20	SCLK	Serial control input pin.							
HARD\	WARE PIN	S THAT CAN AFFECT SERIAL COMMUNICATIONS							
9	RESET	Master reset will reset ADC/PGA and SERIAL state machines.							
10	R/F	Sets SCLK polarity.							
16	CONV	Start conversion cycle on rising edge of CONV pin. Must remain active HIGH for two CCLK cycles. CONV pin going HIGH will abort any conversion in progress. CONV pin must remain LOW for one clock cycle before going HIGH again.							
17	BUSY	Pin HIGH indicates a conversion in progress; can be used to generate an interrupt.							
18	OSCE	Enables internal oscillator and drives CCLK pin. also disables D5 (OSCR) and D4 (OSCE) bits of the Reference/Oscillator configuration register.							
19	CCLK	Default is an input pin to drive ADC/PGA state machine; can be configured as an output pin driven by the internal oscillator by D4 (OSCE) bit of register 6.							
REMA	NING PIN	S.							
1-8	LINEx	Muxed analog input pins. Even (pos) Line 0, 2 ,4 ,6 Odd (neg) Line 1, 3, 5, 7							
11-14	DIOx	General-purpose I/O pins. Configured through registers 6, 5.							
24	V _{DD}	Supply pin.							
25	GND	Ground.							
26	V _{REF}	Unbuffered output pin.							
27	REF _{IN}	Buffered input pin.							
28	REF _{OUT}	Buffered output pin.							

TABLE I. ADS7870 Pinout.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

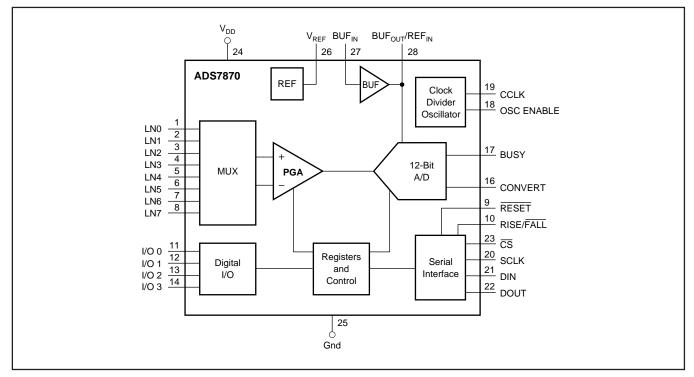


FIGURE 1. ADS7870 System Layout.

MC68HC11 HARDWARE

The interface shown here is for the 68HC11 micro-controller family, specifically the MC68HC11E9. The example test circuit was constructed on Motorola's M68HC11EVBU Universal Evaluation Board. MC68HC11E9 SPI pins are listed in Table II. Configuration of the MC68HC11E9 is single-chip operation with no external memory. The MC68HC11E9 has 512 bytes of EEPROM and 512 bytes of RAM. The program example is stored in EEPROM starting at \$B600, which is the jump-to address upon startup if PE0 (pin 43), jp2 of the MC68HC11E9, is tied LOW. The instruction/data array for the ADS7870 is in EEPROM starting at \$B7F0, the last 16 bytes of EEPROM memory. 128 bytes of RAM are used to store 64 (12-bit) ADS7870 conversion samples, MSB first, with the 4 lower bits of the

INTERFACE PROGRAM AND DESCRIPTION

LSB byte ignored. The interface program is downloaded to the MC68HC11E9 using its onboard monitor program stored in 12k of ROM. When PE0 (43), jp2, is tied HIGH, a jump to \$E000 starts the Monitor program. The Monitor program allows the user to interface with the MC68HC11E9 through a UART (Universal Asynchronous Receiver Transmitter) on the M68HC11EVBU evaluation board. Any PC with Windows[®] or DOS, and a terminal program can interface through an available COM port.

Windows is a registered trademark of Microsoft Corp.

PIN NO.	LABEL	PURPOSE
22	MISO	Serial Data In
23	MOSI	Serial Data Out
24	SCLK	Serial Output in Master Mode
25	SS	Output in Master Mode

TABLE II. MC68HC11E9 SPI Pins.

- Lines 15 19 Variables, SPI registers of the HC11.
 - 28 37 Data for initialization of the ADS7870 in EEPROM starting at \$B7F0. These are the last 16 bytes in user EPROM for up to 8 register writes or reads.
 - 39 48 Main program
 - 53 64 HC11 set to Master controller. Initializes the SPI port for data direction and data clocking rate.
 - 69 88 This initialization subroutine can read from available memory instructions and data bytes to program the ADS7870. By pointing the X index register to the instruction/data array (line 71) and by comparing to the last data address (line 80), the array size can be changed.
 - 92 126 Programming the ADS7870 in its auto read-back mode means that after the 8th clock cycle of the instruction 80h (to start a conversion and set PGA gain and mux channels, see Table III) the data from the previous conversion is immediately available for read back. The data, MSB first (or LSB, user choice), is stored in RAM immediately after it is read in and the next conversion started. The SCLK of the HC11 is set to its maximum rate of 1Mhz. The ADS7870 internal clock rate at 2.5MHz. The fact that extra time is needed to store data in RAM gives a maximum sample rate of approximately 20kHz, which is well below the ADS7870 maximum rate of 50kHz.

1		*******	*****	*****
1 2				le using M68HC11EVBU & ADS7870EA
3		*	g program examp	ic using MOOHETTEVDC & ADS7870EA
4		* This same	nle program uses	the HC11E9 SPI to configure the
5				conversion samples.
6				in HC11E9 EEPROM. Conversion samples
0 7			l in HC11E9 RAM	
, 11				v1. ************************************
11		* HC11E9		
12			•	*****
15		PORTD	EQU \$1008	
15 16		DDRD	EQU \$1008	
10		SPCR	EQU \$1009	* SPI control register
18		SPSR	EQU \$1028	* SPI status register
18		SPDR	EQU \$1029 EQU \$102A	* SPI data register
21			-	511 uata 10215101 *************
21				DS7870 stored in EEPROM
22		-		starting at \$B7F0
23 24			agram for 8bit wr	
24				***************
20 28		ORG	#\$B7F0	* data array address
28 29		OKU	#\$ D 71'0	data array address
30		FCB	#\$00	* software reset (39 zeros then a one)
31		FCB	#\$00	* can be used to eliminate \overline{CS} connection
32		FCB	#\$00	can be used to eminiate est connection
33		FCB	#\$00	
34		FCB	#\$03	* 1 byte write to ADS7870 register 3
35		FCB	#\$03	* data to register 3, set bit RBMO (auto read-back mode)
36		FCB	#\$04 #\$07	* 1 byte write to ADS7870 register 7
37		FCB	#\$07 #\$1C	* data to register 7, set bit OSCE, REFE, BUFE
38			πφ1 C ************	***************************************
39		* Main Pro		
40			-	****
39		ORG	#\$B600	* Optional program start point.
40		ORO	μφ Β 000	optional program statt point.
41		LDS	#\$01C8	* start of stack
42				
43		LDY	#\$1000	* point Y index to SPI register
43 44		LDY	#\$1000	* point Y index to SPI register
44		LDY BSR	#\$1000 INIT_SPI	* point Y index to SPI register* call initalizion subroutine
44 45		LDY BSR BSR	#\$1000 INIT_SPI INIT_ADS	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine
44 45 46		LDY BSR	#\$1000 INIT_SPI	* point Y index to SPI register* call initalizion subroutine
44 45 46 47		LDY BSR BSR BSR	#\$1000 INIT_SPI INIT_ADS SAM_64	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine
44 45 46 47 48		LDY BSR BSR	#\$1000 INIT_SPI INIT_ADS	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine
44 45 46 47 48 49		LDY BSR BSR BSR JMP	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine
44 45 46 47 48 49 50		LDY BSR BSR BSR JMP	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51		LDY BSR BSR JMP ********** * Subroutin	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52	INIT SPI	LDY BSR BSR JMP ********** * Subroutin *****	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52 53	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin **********	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52 53 54	INIT_SPI	LDY BSR BSR JMP *********** * Subroutin *****	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52 53 54 55	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52 53 54 55 56	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin **********	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56 57	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA STAA LDAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA STAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA STAA LDAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	INIT_SPI	LDY BSR BSR JMP *********** * Subroutin ********** PSHA LDAA STAA LDAA STAA STAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA STAA LDAA STAA LDAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initalizion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	INIT_SPI	LDY BSR BSR JMP ********** * Subroutin ********** PSHA LDAA STAA LDAA STAA LDAA	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	INIT_SPI	LDY BSR BSR JMP ***********************************	#\$1000 INIT_SPI INIT_ADS SAM_64 \$E000 *********************************	 * point Y index to SPI register * call initializion subroutine * call ADS7870 initialization subroutine * call ADS7870 sampling subroutine * jump to BUFFALO monitor program ***********************************

65		******	****	******
65 66				7870 (refer to ADS program data in HC11
67			Lines 30-37)	870 (fefer to ADS program data in field
68				******
69	INIT_ADS	PSHX		* X index register to stack
70	INII_ADS	PSHA		* A index register to stack
			#¢D7E0	6
71 72		LDX	#\$B7F0	* set index register to first instruction * $\cot \frac{\overline{CS}}{\overline{CS}}$ LOW such as a provide interface
72		BCLR	\$08,Y \$20	* set $\overline{\text{CS}}$ LOW, synchronize ADS serial interface
73			400 X	
74	INSTRU_L	LDAA	\$00,X	* load first instruction register A
75		STAA	SPDR	* clock data out of HC11 SPI port
76	W1	LDAA	SPSR	* check SPI status register
77		BPL	W1	* if SPSR bit 7 set transfer complete
78				
79		INX		* increment to ADS data byte
80		CPX	#B7F8	* compare index register to address after last
81				* byte in instruction and data string
82		BNE	INSTRU_L	* if programming of ADS complete continue
83				
84		BSET	\$08,Y \$20	* set CS HIGH, disable ADS serial interface
85				
86		PULA		* restore register A
87		PULX		* restore register X
88		RTS		* return to main
89		*******	*****	******************
90		* Subroutir	ne: HC11 initiates	ADS7870 conversion and reads MSB first.
91		*******	******	******************
92	SAM_64	PSHX		* X index register to stack
93		PSHA		* A index register to stack
94		LDX	#\$0100	* point index register X to conversion data array
95				* in RAM
96		BSET	\$08,Y \$20	* set $\overline{\text{CS}}$ HIGH, disable ADS serial interface
97		BCLR	\$08,Y \$20	* set $\overline{\text{CS}}$ LOW, synchronize ADS serial interface
98				
99	DATA_L	LDAA	#\$80	* 1 0 0 0, 0 0 0 0
100	_	STAA	SPDR	* D7-HIGH start a conversion
101				* Gain 1 D6-D4 LOW, Mux input 0 and 1 D3-D0 LOW
102	W2	LDAA	SPSR	* check status register
103		BPL	W2	* check for transfer complete
104				1 I
105		STAA	SPDR	* send don't care data byte
106	W4	LDAA	SPSR	* load status register
107		BPL	W4	* check for transfer complete
108				
109		LDAA	SPDR	* load MS byte, ADS previous conversion
110		STAA	\$00,X	* store in data array
111		INX	+ • • • •	* increment to next data address
112				
112		STAA	SPDR	* send don't care data byte
114	W5	LDAA	SPSR	* load status
115		BPL	W5	* check for transfer complete
116		DIL	110	eneer for transfer complete
117		LDAA	SPDR	* load LS byte, ADS previous conversion
118		STAA	\$00,X	* store LS byte
119		INX	ψυ υ, 2 τ	* increment array, 12-bit conversion acquired
120				merement allay, 12 on conversion acquired
120		CPX	#\$0182	* compare to next address after last in array
121		BNE	DATA_L	* if 64 12-bit transfers complete, continue
122			DAIA_L	11 0+ 12-on nansiers complete, continue
123		PULA		* restore register A
124		PULA PULX		* restore register X
125		RTS		* return to main
120		K13		

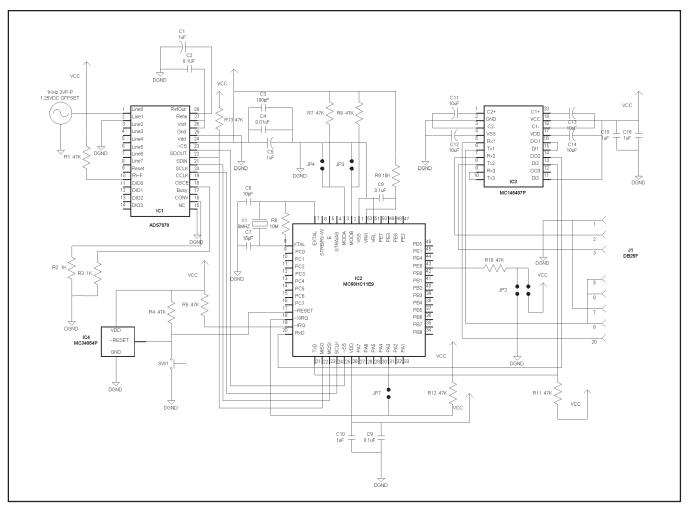


FIGURE 2. ADS7870 and MC68HC11E9 Data Aquisition System.

WIRING THE SYSTEM CIRCUIT

The M68HC11EVBU has all the necessary hardware and software for interfacing with the PC. The ADS7870 comes in an SSOP package. A 28-pin Enplas (OTS-34-0.65-01) socket will ease the breadboarding procedure. After wiring the hardware as shown in Figure 2, adding the jumpers jp4 and jp7 will place the MC68HC11E9 in the single-chip mode of operation. All program code, instructions, and data conversion will reside on the microcontroller. For use with M68HC11EVBU Monitor program, connect jp2 to GND, and leave jp3 open.

RUNNING HARDWARE FROM PC

With the jumpers in place connect the M68HC11EVBU to a PC, start the PC terminal program, and set modem port settings according to the evaluation board manual. Power up the ADS7870 along with EVBU, or after power up push the reset button on the EVBU. A message from the Monitor program indicating program version will confirm that a link has been made. Assembly and debugging can all be done from the Monitor program. Most link-up problems will most likely be in the setup of the PC terminal program and serial communications port; a shared PC port may cause problems. It is best to choose a port that will not be shared by other PC software or hardware configurations. The example program was used to acquire the data in Figure 3. Using a logic analyzer to view the output from subprogram SAM_64 (line 92), the patterns should match the timing diagram in Figures 4 and 5. Before any data conversions are verified, a simple test will verify the serial communications link between the ADS7870 and the MC68HC11E9. A single data-byte write to digital I/O

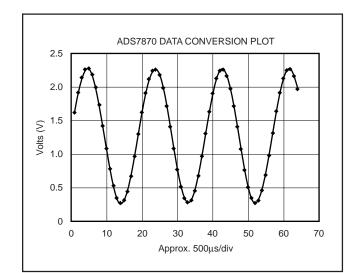


FIGURE 3. ADS7870 Data Conversion Plot.

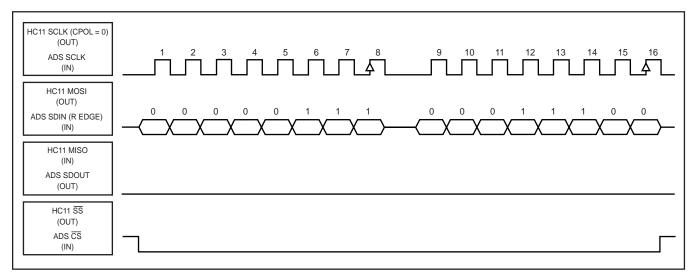


FIGURE 4. 1-Byte Write Instruction (07h), Followed by Data Byte (1Ch).

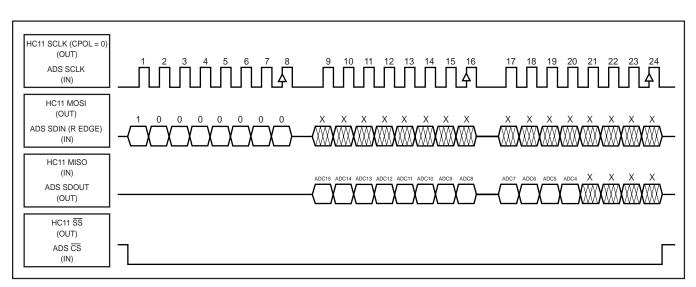


FIGURE 5. 1-Byte Conversion Start and Gain/Mux Register Write (80h), Followed by a 12-Bit Auto Read Back.

control register instruction/address 06h sent first, followed by the data byte 0Fh, will enable the I/O pins as outputs. A second write to the digital I/O register instruction/address 05h, and data byte 0Fh will turn on the digital I/O output drivers.

The instructions and data can be added to the ADS7870 initialization subroutine in line 74 by advancing the address four bytes. The instructions and data must be entered manually by modifying the memory locations in the instruction/ data array starting at \$B7F0.

The ADS7870 interfacing program (without the program lines numbers) can be downloaded and assembled with the AS11.EXE and PCBUG11.EXE provided with the M68HC11EVBU or found on the Motorola web site. The program can also be entered one line at a time using the Motorola (BUFFALO) Monitor program. Addressing for labels must then be calculated and entered.

The hardware, as shown in the schematic of Figure 2, and the program example will function with $\overline{\text{CS}}$ controlled by the

micro-controller or by connecting CS to digital ground. The program and hardware will continue to operate the same in both configurations with no change in sample rate. When the CS of the ADS7870 is connected to the micro-controller, the resynchronization is done once at the start of subroutine SAM_64 (line 96-97); if connected to digital ground, resynchronization is done in subroutine INIT_ADS through the serial interface.

DATA COLLECTION

Run the BUFFALO program and download ADS7870 conversion data to terminal program using the memory dump command to view results. A screen capture (when using the Windows-based terminal program) is an easy, although tedious way of importing the data into a spreadsheet. After some number conversions and scaling, results such as the plot in Figure 3 can be attained.

SUMMARY

The outline in Table III is useful in further evaluation of the ADS7870. Serial instructions and internal registers are listed. Detailed information on the ADS7870 can be found at the

Burr-Brown web page (http://www.burr-brown.com). The hardware and software will provide a starting point in the evaluation of the ADS7870, or the basis for a space-saving and low-cost data-acquisition system.

REGISTER ADDRESS			ADDR	READ/	REGISTER ADDRESS							REGISTER				
AS4	AS3	AS2	AS1	AS0	N0.	N0.	WRITE	D7(MSB)	D6	D5	D4	D3	D2	D1	D0	NAME
0	0	0	0	0	0	Read	ADC3	ADC2	ADC1	ADC0	0	0	0	OVR	A/D Output Data, LS Byte	
0	0	0	0	1	1	Read	ADC11	ADC10	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	A/D Output Data, MS Byte	
0	0	0	1	0	2	Read	0	0	VLD5	VLD4	VLD3	VLD2	VLD1	VLD0	PGA Valid Register	
0	0	0	1	1	3	R/W	0	0	0	0	RBM1	RBM0	CFD1	CFD0	A/D Control Register	
0	0	1	0	0	4	R/W	CNV/BSY	G2	G1	G0	M3	M2	M1	M0	Gain/Mux Register	
0	0	1	0	1	5	R/W	CNV/BSY	0	0	0	103	102	IO1	100	Digital I/O State Register	
0	0	1	1	0	6	R/W	0	0	0	0	OE3	OE2	OE1	OE0	Digital I/O Control Register	
0	0	1	1	1	7	R/W	0	0	OSCR	OSCE	REFE	BUFE	R2V	RGB	Ref/Oscillator Control Register	
1	1	0	0	0	24	R/W	LSB	2W/3	8051	0	0	8501	2W/3	LSB	Serial Interface Control	
1	1	1	1	1	31	Read	0	0	0	0	0	0	0	1	ID Register	

TABLE III. Register Address Map.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated