Implementing JESD204B SYSREF and Achieving Deterministic Latency With ADC32RF45

Srinivas Murthy

ABSTRACT
SYSREF is a critical signal for data converters with a JESD204B interface and a deep understanding of it is imperative for application engineers. This application note provides details for deriving SYSREF frequency for a given mode of the device, SYSREF timing to achieve deterministic latency across converters, and the AC characteristics of this signal to choose the appropriate SYSREF driver for an industry-first 3-Gsps, RF-sampling ADC – ADC32RF45.

Contents
1 Introduction .. 2
2 Calculating SYSREF Frequency ... 3
3 Driving SYSREF of ADC32RF45 ... 5
4 SYSREF Timing and Deterministic Latency ... 6
5 Can the Device Operate Without SYSREF (Subclass 0 Operation)? .. 7
6 Conclusion ... 8
7 Reference .. 8

List of Figures
1 Sysref Distribution in ADC32RF45, Shown for a Single Channel ... 2
2 Data Packing of Lanes for LMFS = 8821 Mode ... 4
3 SYSREF Driving Circuit .. 5
4 SYSREF Timing With Regard to Rising Edge of Device Clock at 3 GHz \(T_{SU} = 140 \) ps and \(T_H = 50 \) ps .. 6
5 SYSREF Internal Programmable Delay .. 6
6 SYSREF Duplication via SPI Writes ... 7

List of Tables
1 Data Packing of Lanes for LMFS = 82820 Mode .. 3
2 SYSREF Frequency for Different ADC32RF45 Modes .. 5
1 Introduction

1.1 Using SYSREF in ADC32RF45

The SYSREF signal is typically a periodic signal which is sampled by the ADC32RF45 device clock, and is used to align the boundary of the local multi-frame clock inside the data converter for subclass 1 operation to achieve deterministic latency across converters. The device also uses the same signal to reset critical blocks such as the clock divider for the interleaved ADCs, NCOs, decimation filters, and so on. The ADC32RF45 needs SYSREF to put the device into the right state even before loading the device configuration. The same device also offers subclass 0 operation for applications that do not require deterministic latency by replacing the SYSREF signal with SPI based trigger via SPI writes.

SYSREF is used to synchronize all dividers in the device. In the DDC bypass mode, SYSREF is used for resetting the input clock $f_s/4$ divider that is used to clock the four ADC cores, interleaving correction clock dividers, and the JESD local multi-frame clock (LMFC) generation. In the DDC mode, SYSREF is also used to reset the DDC clock generation module and to reset the NCOs of the DDC. It is important to gate the SYSREF externally or internally to the device in the DDC mode after the JESD link is established as the NCO phase is reset on SYSREF.

![Figure 1. Sysref Distribution in ADC32RF45, Shown for a Single Channel](image-url)
2 Calculating SYSREF Frequency

The ADC32RF45 has two main modes of operation; the first is wide-band RF sampling bypassing the internal DDC and the second is decimation mode to extract only the required bandwidth of the incoming RF signal.

1. **SYSREF frequency for 3 GHz RF sampling (DDC bypass mode):**

 The ADC32RF45 has a unique way of packing 12-bit samples onto the JESD lanes using bit packing to improve the efficiency over the lanes. The JESD block takes in 20 samples of 12 bits. On each lane it combines 5 consecutive 12-bit samples and appends four 0s to make 64 bit which is encoded to 80 bits by the 8b-10b encoder. The 80 bits are sent over each lane and, in effect, 20 samples over 4 lanes per channel as shown in Table 1.

 Table 1. Data Packing of Lanes for LMFS = 82820 Mode

 |-----|-----------|------------------|---------|-----------|------------------|---------|-----------|-----------|

 The high-speed JESD link between transmitter and receiver is configured by specifying the following parameters:

 - **LMFS = 82820 with K = 16:**
 - L is the number of lanes per device
 - M is the number of converters per device
 - F is the number of octets per lane per frame clock
 - K is the number of frames per multi-frame clock.

 The actual SYSREF frequency is determined by the following 2 constraints:

 - SYSREF must be a sub-multiple of the local multiple frame clock.
 - Sampling clock, \(f_S = 3000 \text{ MHz} \)
 - JESD frame clock = \(f_C = f_S / S = 3000 / 20 = 150 \text{ MHz} \) as \(S = 20 \)
 - Lane rate = \(f_C \times f \times 10 = 150 \times 8 \times 10 = 12 \text{ Gbps} \)
 - LMFC (Local multi-frame clock) = \(\text{LMFC} = FC / K = f_S / (K \times S) = 15 \text{ MHz} / 16 = 9.375 \text{ MHz} \)
 - Maximum SYSREF frequency = LMFC
 - SYSREF also needs sub-multiple of \(f_S / 64 \) from ADC digital block design.
 - Maximum SYSREF = \(f_S / 64 \)

 Combining the two constraints yields, Maximum SYSREF to be \(f_S / \text{LCM}(64,20 \times K) \)

 Where LCM is least common multiple

 Generalized expression, SYSREF = \(f_S / \text{LCM}(64,20 \times K) / N \) where \(N \) is a integer (1,2,...)
For the previous example,

SYSREF = 3000 / LCM(64,20 × 16) / N
 = 3000 / 320 / N = 9.375 / 4 (choosing N = 4)
 = 2.34375 MHz

2. SYSREF frequency for DDC mode:
ADC32RF45 also supports the feature-rich DDC block. Section 3 shows how to derive the SYSREF for one of the DDC modes.

\(f_s = 3000 \text{ MHz} \)

DDC factor (D) = 8

DDC output rate = \(f_s / D \) = 3000 / 8 = 375 MHz

LMFS for dual-band DDC per channel = 8821. Each I and Q of the complex output is treated as one converter.

<table>
<thead>
<tr>
<th>Channel A first band, Complex I/Q output</th>
<th>LMFS = 8821</th>
</tr>
</thead>
</table>

Figure 2. Data Packing of Lanes for LMFS = 8821 Mode

The actual SYSREF frequency is determined by the following 2 constraints for DDC 8 × mode, LMFS =8821:

- SYSREF needs to be a sub-multiple of local multiple frame clock.
 - Sampling clock, \(f_s = 3000 \text{ MHz} \)
 - Decimated output rate = \(f_s / D \) where D is the decimation factor
 - JESD frame clock = FC = \(f_s / D / S = 3000 / 8 / 1 = 375 \text{ MHz} \)
 - Lane rate = FC \times F \times 10 = 375 \times 2 \times 10 = 7.5 \text{ Gbps}
 - LMFC (local multi-frame clock) = LMFC = FC / K = \(f_s / (D \times K \times S) = 375 \text{ MHz} / 16 = 23.4375 \text{ MHz}. \)
 - Maximum SYSREF frequency = LMFC
- SYSREF also needs sub-multiple of \(f_s / 64 \) from ADC digital block design.
 - Maximum SYSREF = \(f_s / 64 \)

Combining the two constraints yields, Maximum SYSREF to be = \(f_s / LCM(64,20 \times K) \)

Generalized expression, SYSREF = \(f_s / LCM(64,D \times K \times S) / N \) where N is a integer (1,2...)
For the previous example,
\[\text{SYSREF} = \frac{3000}{\text{LCM}(64, 8 \times 16 \times 1)} / N \]
\[= \frac{3000}{128} / N \]
\[= 23.4375 / 16 \text{ (choosing } N = 16) \]
\[= 1.46484375 \text{ MHz} \]

Summarizing the SYSREF frequency calculation:

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>LMFS Setting</th>
<th>LMFC Clock or Max SYSREF Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass</td>
<td>82820</td>
<td>(f_s / \text{LCM}(64, 20 \times K), S=20)</td>
</tr>
<tr>
<td>Bypass</td>
<td>8224</td>
<td>(f_s / \text{LCM}(64, 4 \times K), S=4)</td>
</tr>
<tr>
<td>Bypass</td>
<td>4211</td>
<td>(f_s / \text{LCM}(64, 1 \times K), S=1)</td>
</tr>
<tr>
<td>Decimation</td>
<td>Various</td>
<td>(f_s / \text{LCM}(64,D \times K \times S))</td>
</tr>
</tbody>
</table>

Allowable values of SYSREF frequency = LMFC clock / N where N is an integer (N = 1, 2, ...)

Typically, it is always desirable to keep SYSREF frequency < 5 MHz (choose N accordingly) to avoid SYSREF coupling both on board and device to clock and RF input signal and highly recommended to switch off SYSREF to device once the JESD link is established.

3 Driving SYSREF of ADC32RF45

The ADC32RF45 SYSREF receiver has 100-Ω differential internal termination with no self-bias. SYSREF always must be DC coupled with a common mode of 1.2 V. A standard LVDS driver from the LMK04828 clock chip can be used as SYSREF, as shown in Figure 3.
4 SYSREF Timing and Deterministic Latency

The ADC32RF45 samples the incoming SYSREF on the rising edge of the device clock. Figure 4 shows the setup and hold time with regard to device clock at 3 GHz. The actual setup and hold numbers are yet to be finalized from device characterization. The simulation numbers and not Silicon data are presented in Figure 4.

$$\text{Valid Transition Window (VTW) = } T - t_{SU} - t_{H} = 143 \text{ ps}$$

Figure 4. SYSREF Timing With Regard to Rising Edge of Device Clock at 3 GHz

$$T_{SU} = 140 \text{ ps and } T_{H} = 50 \text{ ps}$$

NOTE: The numbers are from design simulations across process, voltage and temperature. Characterization is ongoing. The system must meet the SYSREF timing to achieve deterministic latency from power up to power up and across devices. The device also offers SYSREF internal delay programmability for any skew adjustment between SYSREF and device clock introduced on the board.

Figure 5. SYSREF Internal Programmable Delay
Can the Device Operate Without SYSREF (Subclass 0 Operation)?

The ADC32RF45 requires SYSREF to be established even before programming the device as it resets the clock dividers and is needed to get a stable clock. The device offers JESD SUBCLASS 0 operation where the external SYSREF can be replaced with a trigger based on SPI.

The following sequence can be used to operate the device in subclass 0 without using external SYSREF. For details on specifics of SPI programming, please refer to datasheet.

1. Select manual SYSREF and pulse SYSREF to reset the input clock divider (address, data).
 - 12h,04h (Select Master page)
 - 57h, 10h
 - 57h, 18h
 - 57h, 10h
2. Program the device. Source all the needed defaults
3. Mask the SYSREF to input clock divider.
 - 4001h, 00h
 - 4002h, 00h
 - 4003h, 00h
 - 4004h, 69h
 - 603Eh, 40h
4. Repeat Step 1, to reset JESD. Provide a reset to the LMFC counter.

Figure 6. SYSREF Duplication via SPI Writes
Conclusion

It is imperative for engineers to have a thorough understanding of SYSREF signals for a converter with JESD interface to bring up the device. This application note explains in detail the SYSREF parameters needed to successfully design-in ADC32RF45 in a system.

Reference

1. ADC32RF45 Dual-Channel, 14-Bit, 3.0-GSPS, Analog-to-Digital Converter (SBAS747)
2. ADC32RF45 EVM User Guide (SLAU620)
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information from third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications

- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-apps
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video
- **TI E2E Community**: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2016, Texas Instruments Incorporated