How to Select an Ambient Light Sensor for Your System

Introduction

Generally, when someone thinks of trying to design a system with an ambient light sensor there are four main concerns or problems that need to be addressed. The most important features of an ambient light sensor are spectral response, power, size, and range of lux measurement.

Selection

In many applications, ambient light sensors are used to set the display brightness based on the surrounding light conditions or variables. These use cases need light measurement at specific wavelengths such as spectroscopy and ultra-violet (UV) measurement. The ambient light sensor is used to measure optical energy at a specific wavelength or specific bands of wavelengths of light spectrum. The goal is to improve the visual experience to make it the most comfortable. It is important to regulate lighting based on surrounding variables to improve user experience (mobile displays, thermostats, and more). This is also critical to ensure safety in applications such as automobile center stack and heads up displays (HUD), where too bright is distracting and too dim is dangerous.

In some applications, the spectral response of the sensor must tightly match the photopic response of the human eye and include significant infrared rejection. Applications that need human eye response are things such as IP cameras, tablets, thermostats, and wearables. Some applications do not need human eye response, but instead can use a wide spectral bandwidth. For example, applications like video doorbells (Figure 1) or indoor lighting sometimes use a wide spectral bandwidth. The OPT3002 has a wide spectral bandwidth, ranging from 300 nm to 1000 nm. The OPT3001, OPT3004, OPT3007, and OPT3001-Q1 have human eye response.

Regardless of the environment an ambient light sensor is designed to be used in, a goal will always be to extend battery life. Displays consume approximately 30% to 40% of the power budget in most equipment, which is critical in wearables, mobile units, tablets, other devices because these applications run on battery 90% of the time. Controlling display intensity based on ambient conditions can help conserve power. The lifetime of the display can also increase by running at lower power. One feature of the OPT3002 is the ultra-low power at approximately 2 µA. Power consumption is very low, allowing the OPT3002 to be used as a low-power, battery-operated, wake-up sensor when an enclosed system is opened.

The next important consideration when designing an ambient light sensor into a system is size. For personal electronics industry (smart phones, notebook PCs, tablets, etc.) small form factor is extremely important since the applications are generally in a small enclosure. The OPT3007 has a nominal body size of 0.856 mm × 0.946 mm × 0.226 mm and comes in a picostar package. The four pin (six pins total, but four active) package enables the PCB designer to create a bigger opening to the active sensor area. The next device TI offers the OPT3004, which is differentiated from the OPT3001 by improving the angular IR rejection. This is beneficial in video surveillance applications.

The final consideration needed for designing an ambient light sensor is the range of lux measurement that can be measured. The OPT3002 has a wide spectral bandwidth, ranging from 300 nm to 1000 nm. Measurements can be made from 1.2 nW/cm² up to 10 mW/cm² without the need to manually select the full-scale ranges by using the built-in, full-scale setting feature. This capability allows light measurement over a 23-bit effective dynamic range. The results are compensated for dark-current effects, as well as other temperature variations. For the OPT3004, OPT3007, and OPT3001-Q1 measurements can be made from 0.01 lux up to 83 k lux without manually selecting full-scale ranges by using the built-in, full-scale setting feature. This capability allows light measurement over a 23-bit effective dynamic range.

With certain applications like IP Cameras, where IR light is emitted for night vision, angular IR rejection is paramount or false reads will be had. OPT3004 has increased angular IR rejection, allowing for use in these types of applications.
For automotive applications, or end equipments that will be influenced by high temperatures, Texas Instruments offers OPT3001-Q1, our automotive grade ALS. OPT3001-Q1 is available with a grade 2 qualification (-40°C to 105°C) and with grade 3 qualification (-40°C to 85°C). With the added qualifications, OPT3001-Q1 can be placed in many applications such as automotive infotainment and cluster.

Conclusion

In summary, the main considerations for designing an ambient light sensor into a system are spectral response, power, size, and measurement range. The OPT300x devices are sensors that measure the intensity of visible light and are suitable for display applications. The spectral response of the sensor tightly matches the response of the human eye, includes significant infrared rejection, has ultra-low power, and small size options. The OPT3002 differs by having an optical range of 300 nm to 1000 nm and no human eye response. The OPT3001, OPT3004, OPT3007, and OPT3001-Q1 are single-chip lux meters, measuring the intensity of light as visible by the human eye. The precision of the spectral response and strong IR rejection of the device enables the devices to accurately meter the intensity of light as seen by the human eye, regardless of light source. The strong IR rejection also aids in maintaining high accuracy when industrial design calls for mounting the sensor under dark glass for aesthetics. These parts are designed for systems that create light-based experiences for humans, and an ideal preferred replacement for photodiodes, photoresistors, or other ambient light sensors with less human eye matching and IR rejection.

To summarize the parts, refer to the following table.

<table>
<thead>
<tr>
<th></th>
<th>OPT3001</th>
<th>OPT3002</th>
<th>OPT3004</th>
<th>OPT3007</th>
<th>OPT3001-Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Range/Filter</td>
<td>Human Eye</td>
<td>300 nm to 1000 nm</td>
<td>Human Eye</td>
<td>Human Eye</td>
<td>Human Eye</td>
</tr>
<tr>
<td>ADC</td>
<td>23-Bit Effective Dynamic Range</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>1.8 µA</td>
<td>1.8 µA</td>
<td>1.8 µA</td>
<td>1.8 µA</td>
<td>1.8 µA</td>
</tr>
<tr>
<td>Supply Range</td>
<td>1.6 V to 3.6 V</td>
</tr>
<tr>
<td>Package</td>
<td>USON6 (2 mm × 2 mm)</td>
<td>USON6 (2 mm × 2 mm)</td>
<td>USON6 (2 mm × 2 mm)</td>
<td>PICOSTAR(6) (YMIF): 4 Active</td>
<td>USON6 (2 mm × 2 mm)</td>
</tr>
</tbody>
</table>

Related Documentation

- Order the OPT3001 Evaluation Module (EVM)
- Order the OPT3002 Evaluation Module (EVM)
- Order the OPT3004 Evaluation Module (EVM)
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated