The 3650 is an optically coupled, differential input, isolation amplifier having programmable gain. Noise for the 3650 is specified to 4\(\mu\)VRms (typ) on the input stage of the isolation barrier and 65\(\mu\)VRms (typ) on the output stage. The gain of the 3650 is controlled using external resistors on the input stage. In low gains, the noise performance of the 3650 is dominated by the output stage noise figure. The noise performance in high gains is dominated by the input stage noise. By using two OPA627s as a pre-amp to the 3650 isolation amplifier, the noise performance of the isolation circuit is greatly enhanced.

\[
E_n (\text{rms}) = \sqrt{\left(2 \cdot (E_{RG} \cdot G)^2 + (E_{nI} \cdot G)^2 + E_{nO}\right)^2}
\]

where:
- \(E_n (\text{rms})\) = total noise referred to output,
- \(E_{RG}\) = rms noise of RG,
- \(E_{nI}\) = rms noise of the input stage of 3650,
- \(E_{nO}\) = rms noise of the output stage of 3650,
- \(G = \frac{(V_1 - V_2) \cdot 10^6}{2 \cdot R_G}\)

The output-referred change in total noise vs gain is illustrated in Figure 2. Figure 2 graphically shows the noise performance of the 3650 with gains from 1 to 1000. For high

FIGURE 1. The 3650 Isolation Amplifier Has Differential Inputs and Adjustable Gain.

FIGURE 2. 3650 Noise (RTO) vs Gain of the 3650 Isolation Amplifier Shown in Figure 1.
values of R_G (or low input stage gains) the total noise referred to the output of the 3650 is dominated by the noise in the output stage, which is specified to 65µVrms (typ). As R_G decreases in value, the gain of the 3650 increases and eventually the noise in the input stage dominates due to the increase in gain. As shown in Figure 2, the effects of the input stage noise starts to dominate as the 3650 gain increases above 10V/V. If the 3650 is applied in a low gain configuration, the noise referred to output will be optimized; however, it is possible to improve the noise performance in mid to high gains by using a pre-gain stage to the 3650. Figure 3 illustrates a configuration using the 3650 and two OPA627 amplifiers to improve the noise performance of the overall isolation solution. Here the OPA627 is selected because of its low noise performance characteristics; however, a variety of amplifiers could be used instead, depending on the noise requirements of the particular application. Two op amps are configured at the input to the 3650 to preserve the differential input and the programmable gain features that the 3650 offers. The total output noise calculation for this circuit is given by:

$$E_n (\text{rms}) = \sqrt{(2 \cdot (E_{\text{OPA627}} \cdot G)^2 + (E_{\text{in}})^2 + (E_{\text{out}})^2}$$

where:

- $E_n (\text{rms})$ = total noise referred to output,
- E_{OPA627} = rms noise the OPA627 operational amplifier,
- E_{in} = rms noise of the input stage of 3650,
- E_{out} = rms noise of the output stage of 3650,
- $G = \frac{10^6}{2 \cdot R_{G1} \cdot \left[1 + 2 \cdot \frac{R_F}{R_{G2}}\right]}$
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated