ABSTRACT

Analog designers are frequently required to develop circuits that convert high-voltage signals to levels acceptable for low-voltage data converters. This paper describes several solutions for this common task using modern amplifiers and typical power supplies. Five examples of conditioning ±10V bipolar signals for low-voltage, single-rail analog-to-digital converters (ADCs) are presented: a modular approach, a single-supply/single-part approach, and an instrumentation amplifier approach. Both single-ended, differential input versions are discussed.
1 Introduction

Analog front-end designers are often confronted with the challenge of coupling high-voltage bipolar signals to ADCs that operate on low-voltage single supplies. Traditional single-part, high-voltage converters are becoming obsolete, although many applications continue to use high-voltage bipolar analog signals. Modern data converters are designed on small geometry processes because of advanced digital capabilities, higher yields, and overall lower costs. Op amps, on the other hand, are designed on large geometry processes to withstand higher internal voltages and allow precise control of internal elements. Modern op amps offer several outstanding features, such as rail-to-rail I/O, a wide input common-mode voltage range, linear transfer functions, low power consumption and low-voltage operation. By using discrete op amps and data converters, designers can optimize circuit performance by using the proper part and avoiding expensive, compromised, single-part solutions.

2 Circuit 1: The Modular Approach

The circuit shown in Figure 1 is a classic modular approach to circuit design. The first stage is attenuation. The second stage is level-shifting. This style is convenient because designers can compartmentalize adjustments. Input range can be adjusted by changing R1. Level-shift can be changed by adjusting REF1V50. These parameters are independent and can be tuned with minimal interactions. Furthermore, designers may want to include anti-alias filtering or other analog functions. These blocks can be neatly inserted at node N2.

On the front-end voltage divider, the equation for R1 is:

\[
\frac{R_1}{R_2} = \frac{V_{\text{OUT}}}{V_{\text{IN}} - V_{\text{OUT}}}
\]

In Circuit 1, the following values are used:
- \(V_{\text{OUT}} = 3V\)
- \(V_{\text{IN}} = 20(\pm 10)V = V_1\)
- \(R_1 = 1.76k\) (1.78k is closest standard value)
- \(R_2 = 10k\)
- \(\text{REF1V50} = \) midpoint of ADC full-scale input range.

Figure 1. Circuit 1: Modular Design
These component values can be altered to account for different input ranges or input impedance requirements. In this example, the value of R2 is held constant to simplify calculations and reduce trimming to one element.

The first stage op amp is an OPA277. The OPA277 was chosen for its low V_{IO}, low drift, and bipolar swing. This stage needs to have bipolar swing about ground because the input signal is bipolar. The OPA277 is also a great candidate for active-filter stages. TI's free FilterPro design tool (available for download at www.ti.com) can be used to design and model active filters. FilterPro presumes that the amplifiers under consideration are operating in a bipolar mode, making node N1 the appropriate place for filters. Another option for the first stage is the OPA725, which is suitable for bipolar stages with $\pm5V$ rails.

The second stage op amp is the OPA364. This outstanding, low-voltage op amp offers many assets which are ideal at this stage: it is low-voltage and low-power, in addition to having a large input common-mode voltage range. It also has zero crossover distortion for linear, monotonic, large-signal output.

Resistor networks are used to bias the OPA364 and the reference because they are matched. This ratiometric design takes advantage of this property. Gain errors from mismatched components cannot be distinguished from genuine signals. For example, the gain error from discrete 1% components is equivalent to ~40dB of erroneous signal. This is inadequate for 12-bit, or higher, conversions, where the minimum detectable signal is below ~70dB. Resistor networks with ratio 0.01% tolerances (~80dB) are readily available. High-quality metal foil networks with 0.005% tolerances (~106dB) may be necessary for extreme cases.

The DC sweep plot of Circuit 1 is shown in Figure 2. Node N3 shows the input common-mode voltage swing of the second stage.

![Figure 2. DC Sweep of Circuit 1](image)

Designers may want to consider the INA132 or the INA152 for the second stage. These amps are considerably slower than the OPA364, but they come with precision-matched internal resistors to reduce gain errors. In general, DC precision is desirable for open-loop applications such as temperature sensors or calibrated transducers, where absolute accuracy, offset and drift are critical. This precision makes the INA132 a good choice for absolute measurements. In closed-loop applications such as servos loops or PID controllers, high-speed and monotonicity are desirable. In closed-loop systems, DC offsets and gain errors will be canceled by feedback and calibration. This makes the OPA364, or the OPA301, a good choice for servos and feedback signals.
3 Circuit 2: Single-Supply/Single-Port Approach

Figure 3 shows a circuit that is attractive to designers who are limited to a single low-voltage supply. The proper selection of biasing components enables both the attenuation and level-shifting functions to be accomplished in one stage.

The following series of formulas defines the relationship of the bias components:

\[R1 = R3 \] \hspace{1cm} (2)
\[R2 = R4 \] \hspace{1cm} (3)
\[\frac{R1}{R2} = \frac{V_{IN}}{V_{OUT}} \] \hspace{1cm} (4)

Circuit 2 uses the following values:
- \(V_{OUT} = 3V \)
- \(V_{IN} = 20(\pm 10)V = V1 \)
- \(R1 = R3 = 20.0k \, 1\% \)
- \(R2 = R4 = 3.01k \, 1\% \)
- \(REF1V50 = \) midpoint of ADC full-scale input range.

This architecture is much more compact than the modular solution of Circuit 1; however, it does rely on tight component tolerances, and does not offer either simple adjustment or filter insertion options. The DC sweep plot of Circuit 2 is shown in Figure 4. Note the large common-mode voltage swing at node N1 and the rail-to-rail output range. These two requirements make the OPA364 the best choice. Also, note the output clamping action of the OPA364, which ensures that the ADC output is not overdriven. This design can be used with input voltages far outside the power-supply rails, though designers need to pay attention to the power dissipated in R3 and the input common-mode voltage limitations of the operational amplifier.
4 Circuit 3: Difference Amp Approach

Figure 5 shows a circuit designed with the INA146. This part has built-in biasing components for attenuation and a user-programmable gain stage. Additionally, the difference amp offers excellent common-mode rejection.
The following equations relate the bias components:

\[
\frac{V_{OUT}}{V_{IN}} = \left(\frac{10k}{100k} \right) \times \left(1 + \frac{RF}{RG} \right)
\]

(5)

\[
RF \times RG = \frac{100k}{10k} \times \frac{V_{OUT}}{V_{IN}} - 1
\]

(6)

\[
RF = 10k \times \frac{100k}{10k} \times \frac{5}{20} - 1 = 15k
\]

(7)

With RG = 10k.

Figure 6 shows the DC sweep of Circuit 3.

![Figure 6. DC Sweep of Circuit 3](image-url)
5 Circuit 4: Differential Input with INA146

Some systems have differential inputs. This is a popular technique to reduce common-mode noise. Audio engineers have used low-level, differential signals in harsh on-stage environments for decades. The INA146 is designed for these types of applications. Figure 7 shows Circuit 3 adapted for differential input. However, changing Circuit 3 from single-ended to differential is straightforward. Note the polarity reversal of the inputs.

![Figure 7. Circuit 4 (Circuit 3 with Differential Input)](image-url)
6 Circuit 5: Differential Input Modular

Circuit 1 can also be adapted for differential input. The changes require more effort, though; additionally, the attenuation stages are inverting, and the overall circuit looks more like a classic differential audio input. Note the use of matched components in this circuit. Figure 8 shows Circuit 5.

![Circuit 5: Differential Input Modular](image)

Figure 8. Circuit 5 (Circuit 1 with Differential Input)

7 Voltage References and Ranges

The references shown in these examples are simple. They are for ratiometric applications where the ADC range is the rail. The references shown are $V_{CC}/2$, or at the mid-scale of the ADC range. This proportion is required for these circuits. 3.3V or 5V can be used in any of these designs; the references would be 1.65V or 2.5V, respectively. These designs will work with absolute references as well, as long as the V_{REF} is one-half of the ADC full-scale range.

The other requirement is a good buffer driving the reference signal. These designs put a wide range of loads on the reference, and a buffer is essential. For in-depth information on buffering references for precision and high-resolution designs, see Application Note Voltage Reference Filters (SBVA002).
8 References

2. Stitt, R.M. *Voltage Reference Filters*. Application note. (SBVA002)

3. Wilson, P. *High-Voltage Signal Conditioning*. Application note. (SBOA096)

4. *FilterPro™ MFB and Sallen-Key Design Program*. Executable program. (SLVC003.zip)

To obtain a copy of the referenced documents, visit the Texas Instruments web site at www.ti.com.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible for any such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated