Qualifying and manufacturing a space or military part is an important step in verifying that the device will withstand the harsh environment and/or radiation in space, and will also operate as intended over the duration of a mission. Texas Instruments is a certified manufacturer on the Defense Logistics Agency Land and Maritime (DLA) list of Qualified Manufacturers List (QML) for both QML Class V (space) and QML Class Q (military) microcircuits. This QML manufacturing flow is a single controlled baseline that follows military standard MIL-PRF-38535 in accordance with MIL-STD-883 as a means to ensure product quality and reliability, from design to fabrication. QML lots ship with a Certificate of Conformance per MIL-PRF-38535, a Processing Conformance Report (PCR) summarizing traceability and testing performed, and with Quality Conformance Inspection (QCI) reports available (see Appendix I). For examples of various QCI reports, see Appendix II. (For more information regarding TI’s optimization of certain QML processes per MIL-PRF-38535, refer to QML Process Optimizations.) With over 50% of Texas Instruments’ fabs QML Class V certified, TI is a trusted partner to deliver high quality, reliable products for all space and military application needs.

The QML flow is outlined below with Class V in the blue on the left and Class Q on the right in red.

1 Bond pull and die shear is an inline process monitor for both Class V and Class Q
Method 2010 Condition A is an internal visual test to check internal materials, construction, and workmanship of microcircuits per MIL-STD-883
Method 2010 Condition B is an internal visual test to check internal materials, construction, and workmanship of microcircuits per MIL-STD-883
[45/0] means 45 samples tested with 0 fails
CSAM can be used as an alternative to X-ray on some devices
X-ray for ceramic lids is an optimization; otherwise it is required at 100%
Method 1015 is a burn-in test performed to screen out marginal devices per MIL-STD-883
Method 1015 paragraph 3.2 states post burn-in measurement must be completed within 96 hours after removal of the devices from the specified burn-in test condition and must consist of all 25°C DC parameter measurements per MIL-STD-883
5% total and not to exceed 3% functional

Class V

5% total

Class Q

Percent Defect Allowable (PDA) Calculation

Cold & Hot Temperature Post-Burn-In Electrical Test (-55°C / 125°C)

QCI Group A – Lot Accept (Tri-Temp Electrical Test)
Every Lot [116/0]

Fine & Gross Leak Detection (Method 1014 Condition B and C)

100% External Visual Inspection (Method 2009)

QA Lot Acceptance [45/0]

QCI Group B – Process Monitor
Generic by Package Family by Assembly Site

Class V – QCI Summary Report provided

Class Q – QCI Summary Report available upon request

QCI Group C – Life Test (Method 1005 Paragraph 3.3)
1000 hour burn-in @ 125°C

by Wafer Lot

Class V – QCI Summary Report provided

Class Q – QCI Summary Report available upon request

By Microcircuit Group by Wafer Fab

QCI Group D – Package Construction Monitor
Generic by Package Family by Assembly Site

Class V – QCI Summary Report provided

Class Q – QCI Summary Report available upon request

QCI Group E – Radiation Lot Accept
Radiation Hardness Assurance (RHA)

by Wafer Lot

Class V – performed during product qualification

Class V RHA – QCI Summary Report provided for RHA only

Not performed

Class Q – QCI Summary Report available upon request

Termination Finishes (Sn63Pb37 or Gold-Plated Hot Solder Dip)
For more information on RoHS compliance, click here.

Pack and Ship

9 PDA includes both parametric and DC functional reject fails after burn-in; if there is >5% total reject fails, the entire lot is scrapped
10 For Class V, the lot is scrapped if there is >5% total reject fails and/or if there is >3% functional reject fails; in addition, failure analysis will be performed on burn-in screen failures to a degree sufficient to establish failure mode
11 Method 1014 is a test designed to determine the hermeticity of the seal of the microelectronic device per MIL-STD-883
12 Method 2009 is a test method to verify workmanship of packaged devices per MIL-STD-883
13 Method 1005 paragraph 3.3 states the test must be completed with 96 hours of removal from burn-in oven; if measurements cannot be completed within 96 hours, devices must return to burn-in oven for 24 hours to establish a new 96 hour electrical test window per MIL-STD-883
14 For Class V devices, the Radiation Lot Accept test occurs for each qualification; for Class V RHA devices, the Radiation Lot Accept test occurs for each wafer lot
15 Depending on the device, the hot solder dip can be done at different places in the flow
Appendix I

Texas Instruments provides Certificate of Conformance documents for all QML lots. Additionally, TI automatically ships QCI Summary Reports with all Class V lots and may be ordered for Class Q lots. All PCR and QCI documents may be downloaded from the TI website, https://qci.ext.ti.com/.

<table>
<thead>
<tr>
<th>Document</th>
<th>Class V</th>
<th>Class Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate of Conformance per MIL-PRF-38535</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Processing Conformance Report (example):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Assembly lot traceability</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>b) Wafer lot traceability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) 100% screen performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) QCI Group A testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) QCI Group B testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) QCI Group C testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g) QCI Group E testing (QMLV RHA only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h) QCI WLA testing (QMLV only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCI Group B Summary Report (example)</td>
<td>Yes</td>
<td>Upon request</td>
</tr>
<tr>
<td>QCI Group C Summary Report (example)</td>
<td>Yes</td>
<td>Upon request</td>
</tr>
<tr>
<td>QCI Group D Summary Report (example)</td>
<td>Yes</td>
<td>Upon request</td>
</tr>
<tr>
<td>QCI Group E Summary Report (example)</td>
<td>RHA only</td>
<td>N/A</td>
</tr>
<tr>
<td>QCI WLA Summary Report (example)</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

To obtain copies of QML lot specific documents, follow the instructions below.

1. Log on to https://qci.ext.ti.com/ using a MYTI account. For first time users, an additional two-factor authorization is required. (For any difficulties in logging on, please contact qci_2fa@list.ti.com.)

2. To download a QCI Summary Report (Groups B, C, D, E, or WLA):
 a. Under ‘Reports’ tab, highlight ‘Lot Test Summary,’ and click on desired report
 b. Enter either the ‘PCR Lot Number’ (listed as Q.C. Reference number in PCR report) or the ‘Group Lot Number’ (listed as QA Lot Number in Certificate of Conformance) into the corresponding box
 c. Click ‘Show Report’

3. There is an additional Radiation Hardness Assured (RHA) Lot Acceptance Report option for RHA lots.
 a. At bottom of screen, scroll to ‘File Attachment’ to access the report

4. To download the PCR:
 a. Under ‘Reports’ tab, click on ‘PCR Listing’
 b. Enter the ‘PCR Lot Number’ and click ‘Show Report’

5. For assistance, click ‘Help’ in upper right corner of screen
Appendix II

The following QCI Summary Report examples refer to part number TPS7A4501-RHA with PCR Lot Number 4015079. Reports pulled from https://qci.ext.ti.com/ will look like these.

Example – Processing Conformance Report

<table>
<thead>
<tr>
<th>Texas Instruments Incorporated</th>
<th>Military Products Department</th>
<th>Military High Reliability Integrated Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Conformance Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix II

The following QCI Summary Report examples refer to part number TPS7A4501-RHA with PCR Lot Number 4015079. Reports pulled from https://qci.ext.ti.com/ will look like these.

Example – Processing Conformance Report

<table>
<thead>
<tr>
<th>Device Type: 562011222403/X</th>
<th>SMD: 562011222403/X</th>
<th>PCR Lot Number: 4015079</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Type: RHA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembly Location
- Wate Lot #: 3305086
- Wate #: 1

Assembly Date Code Year: 2014
- Week: 45
- Lot Window: A

Wate Lot Date Code Year: 2013
- Qty: 4Q
- Die Rev: D
- W/F Code: 5

Integrated Circuits referenced above have received the following processes per recorded history:

- **SCREEN**
 - Method: (ML-STD-883)
 - 1000 C (1000C)

- **INTERNAL VISUAL PRECAP**
 - 2010
 - CONDITION A (4000)
 - CONDITION A (4000)

- **TEMPERATURE CYCLING**
 - 2000
 - CONDITION C

- **CENTIFUGE**
 - 2000
 - CONDITION E, Y PLANE

- **FIND TEST**
 - 2000
 - CONDITION A

- **X-RAY**
 - 2012
 - 25% MONITOR OR 100%

- **INTERMEDIATE ELECTRICAL TEST**
 - 25% DC / FUNCTIONAL

- **BURN IN**
 - 2015
 - TEMPERATURE C, 25C

FINAL ELECTRICAL TEST
- 25C
- 125C
- -55C
- N/A
- N/A

TEST PROGRAM
- EF55000R01
- EF55000R01
- EF55000R01

RELIABILITY
- 1000
 - CONDITION A OR B

GROSS LEAK
- 2000
 - CONDITION C

EXTERNAL VISUAL
- 2000
 - (100%)

EXTERNAL VISUAL
- 2000
 - (100%)

QUALITY CONFORMANCE ATTRIBUTE DATA GROUP B: YOD-10K

<table>
<thead>
<tr>
<th>TEST & TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC ELECTRICAL - AMBIENT</td>
</tr>
<tr>
<td>DC ELECTRICAL - MINIMUM</td>
</tr>
<tr>
<td>DC ELECTRICAL - MAXIMUM</td>
</tr>
</tbody>
</table>

DEVICE LEAD FINISH
- This product complies with MIL-PRF-38535 A.3.5.6.3 Microcircuit finishes. Finishes of external leads or terminals and all external package elements shall conform to either A.3.5.6.3.2 or A.3.5.6.3.3 as applicable. The use of flame test, as an undercoat or final finish, is prohibited both internally and externally. The tin content of solder shall not exceed 97 percent. Tin shall be alloyed with a minimum of 3 percent lead by weight.

SOLDER PROCESSING DATA
- N/A

NOTE: The following documents must be pulled and sent with each lot.

1. PROCESS CONFORMANCE REPORT
2. GENERIC GROUP B QC CONFORMANCE REPORT
3. GENERIC GROUP D QC CONFORMANCE REPORT
4. WAFER LOT ACCEPTANCE REPORT
5. WAFER LOT ACCEPTANCE REPORT

Product has passed Group B RHA QCI in accordance with MIL-PRF-38535.

Prepared By: Date: 10/30/2015

<table>
<thead>
<tr>
<th>QCI Group B - Lot #: 401501</th>
<th>Date Code: 1445B</th>
<th>Pkg Type: 164HFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCI Group C - Lot #: 4005420</td>
<td>Date Code: 1420A</td>
<td>Pkg Type: 164HFG</td>
</tr>
<tr>
<td>QCI Group D - Lot #: 4005420</td>
<td>Date Code: 1420A</td>
<td>Pkg Type: 164HFG</td>
</tr>
<tr>
<td>QCI Group E - Lot #: 3305086</td>
<td>Date Code: 1420A</td>
<td>Pkg Type: 164HFG</td>
</tr>
</tbody>
</table>

Wate Lot Acceptance - Lot #: 4005420

Wate Lot #: 3305086
Example – QCI Group B Summary Report

<table>
<thead>
<tr>
<th>66666 Sub-Group</th>
<th>Test</th>
<th>Method</th>
<th>Sample Size</th>
<th>Rejects / Data</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>RESISTANCE TO SOLVENTS</td>
<td>TM2015</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B3</td>
<td>SOLDERABILITY</td>
<td>TM2003</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B5</td>
<td>BOND STRENGTH</td>
<td>2011</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B5</td>
<td>DIE ATTACH STRENGTH</td>
<td>2019 OR 2027</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Resistance to solvents testing required only on devices using inks or paints as a marking medium.
2. 22 leads / 3 packages minimum. Not required for solder columns.
3. 15 wires / 4 units minimum.

Comments:
Prepared By: Vut Kangkamanee
Prepared By Email: x0194988@ti.com
Prepare Date: 11/11/2014

Example – QCI Group C Summary Report

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>4005420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Date Code</td>
<td>2014-20-A</td>
</tr>
<tr>
<td>Parent Die</td>
<td>STLADC1963DVS</td>
</tr>
<tr>
<td>Pin</td>
<td>10</td>
</tr>
<tr>
<td>Test Start</td>
<td>07/04/2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>66666 Sub-Group</th>
<th>Test</th>
<th>Method</th>
<th>Sample Size</th>
<th>Rejects / Data</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Steady-state life test</td>
<td>1005</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>End point electrical test</td>
<td>45</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 1,000 hours/125C or equivalent. (If greater than 1,000 hours/125C enter actual conditions into comments below).
2. End point electrical testing in accordance with device test specification.

Comments:
Prepared By: Vut Kangkamanee
Prepared By Email: x0194988@ti.com
Prepare Date: 08/22/2014
Example – QCI Group D Summary Report

Group D Summary Report

- **Lot Number:** 4005420
- **Device Name:** S962R1222403VXC
- **Assembly Site:** MMT
- **Test Start:** 06/26/2014
- **Test Complete:** 07/10/2014
- **Lead Finish:** NIAU
- **Package:** HKU
- **Package Family:** GROUP B
- **Pin:** 10
- **Window:** 2014 to 04 2015

<table>
<thead>
<tr>
<th>66666 Sub-Group</th>
<th>Test</th>
<th>Method</th>
<th>Sample Size</th>
<th>Rejects / Data</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Physical Dimensions</td>
<td>2016</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Lead Integrity</td>
<td>2004 and 2028</td>
<td>45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>Seal (Fine and Gross)</td>
<td>1014</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Thermal Shock</td>
<td>1011</td>
<td>15</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>Temperature Cycle</td>
<td>1010</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Moisture Resistance</td>
<td>1004</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Visual Examination</td>
<td>1004 and 1010</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Seal (Fine and Gross)</td>
<td>1014</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>End-point electrical test</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Mechanical Shock</td>
<td>2002</td>
<td>15</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>D4</td>
<td>Vibration, Variable Freq</td>
<td>2007</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Constant acceleration</td>
<td>2001</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Seal (Fine and Gross)</td>
<td>1014</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Visual Examination</td>
<td>1010 and 1011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>End-point electrical test</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Salt Atmosphere</td>
<td>1009</td>
<td>15</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>D5</td>
<td>Visual Inspection</td>
<td>1009</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Seal (Fine and Gross)</td>
<td>1014</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Internal water vapor</td>
<td>1018</td>
<td>3 (5)</td>
<td>0 (1)</td>
<td>8</td>
</tr>
<tr>
<td>D7</td>
<td>Adhesion of lead finish</td>
<td>2025</td>
<td>15</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>D8</td>
<td>Lid Torque</td>
<td>2024</td>
<td>5</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Notes:
1. Condition B2, 3 devices, 45 leads total. For PGA and rigid leads use Condition B1 or Method 2028. For LCCC packages only, use condition D and S5 of 15 based on the number of pads tested from 3 devices minimum.
2. Condition B, 15 cycles.
3. Condition C, 100 cycles.
4. Endpoint electrical testing in accordance with device test specification.
5. Condition B.
6. Condition A.
7. Condition E (20Kg) Y1 axis only.
8. Endpoint electrical testing in accordance with device test specification.
10. Condition A.
8. 5000 PPM and 100C. Sample size is 3/0 or 5/1.
9. 15 leads, not performed for LCCC. Any deviations to test methods or conditions, such as centrifuge, will be specified in the device travel.
11. Glass Frit Seal Only - N/A for MMT Assembly.

Comments:
Performed D3 and D4

File Attachment:
- No Files Uploaded

Prepared By: Vut Kangkamanee **Prepared By Email:** x0194988@ti.com **Prepare Date:** 07/17/2014
Example – QCI Group E Summary Report

<table>
<thead>
<tr>
<th>Sub-Group</th>
<th>Test</th>
<th>Method</th>
<th>Sample Size</th>
<th>Rejects / Data</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>RHA LOT ACCEPTANCE REPORT</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Total Ionizing Dose</td>
<td></td>
<td>1019</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Dose Rate mrad(Si)/sec</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>-or-</td>
<td></td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Dose Rate rad(Si)/sec</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Total Dose krad (Si)</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Electrical Test</td>
<td></td>
<td>---</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Total Grp E Sample Size</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>Rejects</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Registered my.ti.com users may download the RHA acceptance report from https://qci.ext.ti.com/qci/
1. Dose Rate and Total Dose per TI RHA QM Plan
2. 25C, Maximum supply voltage
3. Endpoint electrical testing in accordance with device test specification.
4. Registered my.ti.com users may download the RHA acceptance report from https://qci.ext.ti.com/qci/ (In case of difficulty contact support@ti.com)

Comments:
The part exhibits low dose rate sensitivity but remains within the pre-irradiation electrical limits at 100krad Total Dose Level, as allowed by MIL-STD-883, TM 1019.

File Attachment
TPS7A4501-RHA DLA Report.pdf

Prepared By: a0461373 Prepared By Email: Prepare Date: 01/19/2015

To download the full RHA DLA report, click the link under ‘Filename.’
Example – QCI Wafer Lot Acceptance Summary Report

<table>
<thead>
<tr>
<th>Sub-Group</th>
<th>Test</th>
<th>Method</th>
<th>Sample Size</th>
<th>Rejects / Data</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLA-1</td>
<td>Wafer Thickness</td>
<td>5007</td>
<td>2 wafers/lot</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>WLA-2</td>
<td>Metallization Thickness</td>
<td>5007</td>
<td>1 wafer/lot</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WLA-3</td>
<td>Thermal Stability</td>
<td>5007</td>
<td>1 wafer/lot</td>
<td>0</td>
<td>2,3</td>
</tr>
<tr>
<td>WLA-4</td>
<td>SEM Inspection Lot Acceptance</td>
<td>2018</td>
<td>2 wafers/lot</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WLA-5</td>
<td>Glassivation Thickness</td>
<td>5007</td>
<td>1 wafer/lot</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WLA-6</td>
<td>Gold Backing Thickness</td>
<td>5007</td>
<td>1 wafer/lot</td>
<td>0</td>
<td>2,4</td>
</tr>
<tr>
<td>WLA-7</td>
<td>Steady-state life test</td>
<td>1005</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>WLA-7</td>
<td>Endpoint Electrical Test</td>
<td>1005</td>
<td>45</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. This test is not required when the finished wafer design thickness is greater than 10 mils before backgrind.
2. In-line monitor data for this wafer lot may be used.
3. Applicable to all linear, all MOS, all bipolar digital operating at 10V or more. (VFB/VT/C-V)
4. Gold backed wafers only.
5. 1,000 hours/125°C or equivalent
6. Endpoint electrical testing in accordance with device test specification

Comments:

Prepared By: Vut Kangkamanee
Prepared By Email: x0194988@ti.com
Prepare Date: 08/27/2014
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated