Inverting op amp with non-inverting positive reference voltage circuit

Design Goals

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{Min}</td>
<td>V_{Max}</td>
<td>V_{oMin}</td>
</tr>
<tr>
<td>–1V</td>
<td>2V</td>
<td>0.05V</td>
</tr>
</tbody>
</table>

Design Description

This design uses an inverting amplifier with a non-inverting positive reference voltage to translate an input signal of –1V to 2V to an output voltage of 0.05V to 4.95V. This circuit can be used to translate a sensor output voltage with a positive slope and negative offset to a usable ADC input voltage range.

Design Notes

1. Use op amp linear output operating range. Usually specified under A_{OL} test conditions.
2. Amplifier common mode voltage is equal to the reference voltage.
3. V_{ref} can be created with a voltage divider.
4. Input impedance of the circuit is equal to R_2.
5. Choose low-value resistors to use in the feedback. It is recommended to use resistor values less than 100kΩ. Using high-value resistors can degrade the phase margin of the amplifier and introduce additional noise in the circuit.
6. The cutoff frequency of the circuit is dependent on the gain bandwidth product (GBP) of the amplifier. Additional filtering can be accomplished by adding a capacitor in parallel to R_1. Adding a capacitor in parallel with R_1 will also improve stability of the circuit, if high-value resistors are used.
Inverting op amp with non-inverting positive reference voltage circuit

Design Steps

\[V_o = -V_i \times \left(\frac{R_1}{R_2} \right) + V_{\text{ref}} \times \left(1 + \frac{R_1}{R_2} \right) \]

1. Calculate the gain of the input signal.

\[G_{\text{input}} = \frac{R_1}{R_2} \]

\[V_{o,\text{max}} - V_{o,\text{min}} = V_{i,\text{max}} - V_{i,\text{min}} - \frac{R_1}{R_2} \]

\[-\frac{R_1}{R_2} = \frac{V_{o,\text{max}} - V_{o,\text{min}}}{V_{i,\text{max}} - V_{i,\text{min}}} = \frac{4.95V - 0.05V}{2V - 1V} = -1.633V \]

2. Select \(R_2 \) and calculate \(R_1 \).

\[R_2 = 6.81 \ \text{k}\Omega \]

\[R_1 = G_{\text{input}} \times R_2 = 1.633V \times 6.81 \ \text{k}\Omega = 11.123k\Omega \approx 11.1 \ \text{k}\Omega \text{ (Standard Value)} \]

3. Calculate the reference voltage.

\[V_{o,\text{min}} = -V_{i,\text{max}} \times \left(\frac{R_1}{R_2} \right) + V_{\text{ref}} \times \left(1 + \frac{R_1}{R_2} \right) \]

\[0.05V = -2V \times 11.11 \ \text{k}\Omega \times 6.81 \ \text{k}\Omega + V_{\text{ref}} \times 1 + 11.11 \ \text{k}\Omega \]

\[V_{\text{ref}} = \frac{V_{o,\text{max}} + V_{i,\text{max}} \times \frac{R_1}{R_2}}{1 + \frac{R_1}{R_2}} \]

\[= \frac{0.05V + 2V \times \frac{11.11 \ \text{k}\Omega}{6.81 \ \text{k}\Omega}}{1 + \frac{11.11 \ \text{k}\Omega}{6.81 \ \text{k}\Omega}} = 1.259V \]
Design References
See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.
See the circuit SPICE simulation file SBOC514.
See the Designing gain and offset in thirty seconds application report.

Design Featured Op Amp

<table>
<thead>
<tr>
<th>TLV9001</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
</tr>
<tr>
<td>V_{inCM}</td>
</tr>
<tr>
<td>V_{out}</td>
</tr>
<tr>
<td>V_{os}</td>
</tr>
<tr>
<td>I_q</td>
</tr>
<tr>
<td>I_b</td>
</tr>
<tr>
<td>UGBW</td>
</tr>
<tr>
<td>SR</td>
</tr>
<tr>
<td>#Channels</td>
</tr>
</tbody>
</table>

Design Alternate Op Amp

<table>
<thead>
<tr>
<th>OPA376</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
</tr>
<tr>
<td>V_{inCM}</td>
</tr>
<tr>
<td>V_{out}</td>
</tr>
<tr>
<td>V_{os}</td>
</tr>
<tr>
<td>I_q</td>
</tr>
<tr>
<td>I_b</td>
</tr>
<tr>
<td>UGBW</td>
</tr>
<tr>
<td>SR</td>
</tr>
<tr>
<td>#Channels</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>February 2019</td>
<td>Downscale the title and changed title role to 'Amplifiers'. Added links to circuit cookbook landing page and SPICE simulation file.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated