Non-inverting microphone pre-amplifier circuit

Design Goals

<table>
<thead>
<tr>
<th>Input Pressure (Max)</th>
<th>Output Voltage (Max)</th>
<th>Supply</th>
<th>Frequency Response Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100dB SPL (2 Pa)</td>
<td>1.228V \text{rms}</td>
<td>V_{cc}</td>
<td>@20Hz \text{ dB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{ee}</td>
<td>@20kHz \text{ dB}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>-0.5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0V</td>
<td>-0.1dB</td>
</tr>
</tbody>
</table>

Design Description

This circuit uses a non-inverting amplifier circuit configuration to amplify the microphone output signal. This circuit has very good magnitude flatness and exhibits minor frequency response deviations over the audio frequency range. The circuit is designed to be operated from a single 5V supply.

Design Notes

1. Operate within the op amp linear output operating range, which is usually specified under the A_{OL} test conditions.
2. Use low-K capacitors (tantalum, C0G, and so forth) and thin film resistors help to decrease distortion.
3. Use a battery to power this circuit to eliminate distortion caused by switching power supplies.
4. Use low value resistors and low noise op amps for low noise designs.
5. The common mode voltage is equal to the DC bias voltage set using the resistor divider plus any variation caused by the microphone output voltage. For op amps with a complementary pair input stage it is recommended to keep the common mode voltage away from the cross over region to eliminate the possibility of cross over distortion.
6. Resistor R_1 is used to bias the microphone internal JFET transistor to achieve the bias current specified by the microphone.
7. The equivalent input resistance is determined by R_1, R_2, R_3. Use large value resistors for R_2 and R_3 to increase the input resistance.
8. The voltage connected to R_1 to bias the microphone does not have to be the same as the op amp supply voltage. Using a higher voltage supply for the microphone bias allows for a lower bias resistor value.
Design Steps

This design procedure uses the microphone specifications provided in the following table.

<table>
<thead>
<tr>
<th>Microphone Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity @ 94dB SPL (1 Pa)</td>
<td>–35 ± 4 dBV</td>
</tr>
<tr>
<td>Current Consumption (Max)</td>
<td>0.5mA</td>
</tr>
<tr>
<td>Impedance</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>Standard Operating Voltage</td>
<td>2Vdc</td>
</tr>
</tbody>
</table>

1. Convert the sensitivity to volts per Pascal.
 \[
 10^{-\frac{35dB}{20}} = 17.78\text{mV}_\text{Pa}
 \]

2. Convert volts per Pascal to current per Pascal.
 \[
 \frac{17.78\text{mV}}{2.2k\Omega} = 8.083\text{μA}_\text{Pa}
 \]

3. Max output current occurs at max pressure 2Pa.
 \[
 I_{\text{Max}} = 2\text{Pa} \times 8.083\text{μA}_\text{Pa} = 16.166\text{μA}
 \]

4. Calculate bias resistor. In the following equation, V_mic is microphone standard operating voltage.
 \[
 R_1 = \frac{V_{\text{out}} - V_{\text{mic}}}{I_{\text{L}}} = \frac{6V-2V}{0.5mA} = 6kΩ = 5.9kΩ \text{ (Standard Value)}
 \]

5. Set the amplifier input common mode voltage to mid–supply voltage. The equivalent resistance of \(R_2\) in parallel with \(R_3\) should be 10 times larger than \(R_1\) so that a majority of the microphone current flows through \(R_1\).
 \[
 R_{\text{eq}} = R_2|R_3 > 10 \times R_1 = 100kΩ
 \]
 Choose \(R_2 = R_3 = 200kΩ\)

6. Calculate the maximum input voltage.
 \[
 R_{\text{in}} = R_1/R_{\text{eq}} = 5.9kΩ|100kΩ = 5.571kΩ
 \]
 \[
 V_{\text{in}} = I_{\text{Max}} \times R_{\text{in}} = 16.166\text{μA} \times 5.571kΩ = 90.067\text{mV}
 \]

7. Calculate gain required to produce the largest output voltage swing.
 \[
 \text{Gain} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1.228V}{90.067\text{mV}} = 13.634\text{V}
 \]

8. Calculate \(R_4\) to set the gain calculated in step 7. Select feedback resistor \(R_5\) as 10kΩ.
 \[
 R_4 = \frac{R_5}{\text{Gain}-1} = \frac{10kΩ}{13.634-1} = 791Ω ≈ 787Ω \text{ (Standard Values)}
 \]
 The final gain of this circuit is:
 \[
 \text{Gain} = 20\log \frac{V_{\text{out}}}{V_{\text{in}}} = 20\log \frac{16.166\text{μA} \times 5.571kΩ \times (1+\frac{10kΩ}{100kΩ})}{2V} = -4.191\text{dB}
 \]

9. Calculate the corner frequency at low frequency according to the allowed deviation at 20 Hz. In the following equation, \(G_{\text{pole1}}\) is the gain contributed by each pole at frequency “f”. Note that you divide by three because there are three poles.
 \[
 f_c = f_0 \left(\frac{1}{G_{\text{pole1}}} \right)^2 - 1 = 20Hz \left(\frac{1}{10^{20}} \right)^2 - 1 = 3.956\text{Hz}
 \]

10. Calculate \(C_1\) based on the cut off frequency calculated in step 9.
 \[
 C_1 = \frac{1}{2\pi f_c R_{\text{req1}}} = \frac{1}{2\pi \times 100kΩ \times 3.956\text{Hz}} = 0.402\text{μF} \approx 0.33\text{μF} \text{ (Standard Value)}
 \]

11. Calculate \(C_2\) based on the cut off frequency calculated in step 9.
 \[
 C_2 = \frac{1}{2\pi f_c R_{\text{req2}}} = \frac{1}{2\pi \times 787Ω \times 3.956\text{Hz}} = 51.121\text{μF} \approx 47\text{μF} \text{ (Standard Value)}
 \]

12. Calculate the high frequency pole according to the allowed deviation at 20 kHz. In the following equation, \(G_{\text{pole2}}\) is the gain contributed by each pole at frequency “f”).
 \[
 f_p = \frac{1}{\left(\frac{1}{0.2\text{kHz}} \right)^2 - 1} = \frac{20kHz}{\left(\frac{1}{10^{20}} \right)^2 - 1} = 131.044\text{kHz}
 \]
13. Calculate C3 to set the cutoff frequency calculated in step 12.

$$C_3 = \frac{1}{2\pi f_c R_f} = \frac{1}{2\pi \times 10 \times 131.044 \text{kHz}} = 121.451 \text{pF} \approx 120 \text{pF} \text{ (Standard Value)}$$

14. Calculate the output capacitor, C_4, based on the cutoff frequency calculated in step 9. Assume the output load R_6 is $10k\Omega$.

$$C_4 = \frac{1}{2\pi f_c R_6} = \frac{1}{2\pi \times 10 \times 3.956 \text{kHz}} = 4.023 \mu\text{F} \approx 3.3 \mu\text{F} \text{ (Standard Value)}$$

Design Simulations

AC Simulation Results

![Graph showing gain vs. frequency with marked values: -4.85dB @ 20Hz, -0.66dB deviation, -4.32dB @ 20kHz, and -0.13dB deviation.]}
Transient Simulation Results

The input voltage represents the SPL of an input signal to the microphone. A 1 V\text{rms} input signal represents 1 Pascal.

Noise Simulation Results

The following simulation results show 22.39uV\text{rms} of noise at 22kHz. The noise is measured at a bandwidth of 22kHz to represent the measured noise using an audio analyzer with the bandwidth set to 22kHz.
References:
1. Analog Engineer's Circuit Cookbooks
2. SPICE Simulation File SBOC525
3. TI Precision Designs TIPD181
4. TI Precision Labs

Design Featured Op Amp

<table>
<thead>
<tr>
<th>TLV6741</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
<td>1.8V to 5.5V</td>
</tr>
<tr>
<td>V_{inCM}</td>
<td>(Vee) to (Vcc –1.2V)</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Rail–to–rail</td>
</tr>
<tr>
<td>V_{os}</td>
<td>150µV</td>
</tr>
<tr>
<td>I_i</td>
<td>890uA/Ch</td>
</tr>
<tr>
<td>I_b</td>
<td>10pA</td>
</tr>
<tr>
<td>$UGBW$</td>
<td>10MHz</td>
</tr>
<tr>
<td>SR</td>
<td>4.75V/µs</td>
</tr>
<tr>
<td>#Channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Design Alternate Op Amp

<table>
<thead>
<tr>
<th>OPA320</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
<td>1.8V to 5.5V</td>
</tr>
<tr>
<td>V_{inCM}</td>
<td>Rail–to–rail</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Rail–to–rail</td>
</tr>
<tr>
<td>V_{os}</td>
<td>40µV</td>
</tr>
<tr>
<td>I_i</td>
<td>1.5mA/Ch</td>
</tr>
<tr>
<td>I_b</td>
<td>0.2pA</td>
</tr>
<tr>
<td>$UGBW$</td>
<td>20MHz</td>
</tr>
<tr>
<td>SR</td>
<td>10V/µs</td>
</tr>
<tr>
<td>#Channels</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated