Design Description

This cookbook is intended to demonstrate a method of designing an accurate current sensing solution for systems with high common mode voltages. The principle aspect of this design uses a unidirectional circuit to monitor a system with V\(_{cm}\) = 400V by floating the supplies of the device across a Zener diode from the supply bus (V\(_{cm}\)). This cookbook is based on the *High Voltage 12 V – 400 V DC Current Sense Reference Design*.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(_{load}) Min</td>
<td>I(_{load}) Max</td>
<td>V(_{out}) Min</td>
</tr>
<tr>
<td>0.5A</td>
<td>9.9A</td>
<td>250mV</td>
</tr>
</tbody>
</table>

Texas Instruments

High-voltage, high-side floating current sensing circuit using current output, current sense amplifier

SBOA295—June 2018

Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated
Design Notes

1. The *Getting Started with Current Sense Amplifiers* video series introduces implementation, error sources, and advanced topics for using current sense amplifiers.

2. This example is for high V_{CM}, high-side, unidirectional, DC sensing.

3. To minimize error, make the shunt voltage as large as the design will allow. For the INA138 device, keep $V_{sense} >> 15$ mV.

4. The relative error due to input offset increases as shunt voltage decreases, so use a current sense amplifier with low offset voltage. A precision resistor for R_{shunt} is necessary because R_{shunt} is a major source of error.

5. The INA138 is a current-output device, so voltages referenced to ground are achieved with a high voltage bipolar junction transistor (BJT).
 - Ensure the transistor chosen for Q1 can withstand the maximum voltage across the collector and emitter (for example, need 400V, but select > 450V for margin).
 - Multiple BJTs can be stacked and biased in series to achieve higher voltages.
 - High beta of this transistor reduces gain error from current that leaks out of the base.

Design Steps

1. Determine the operating load current and calculate R_{shunt}:
 - Recommended V_{sense} is 100 mV and maximum recommended is 500 mV, so the following equation can be used to calculate R_{shunt} where $V_{sense} \leq 500$ mV:
 \[R_{shunt} = \frac{V_{sense\ max}}{I_{load\ max}} \rightarrow \frac{0.5}{10} = 50 \text{ m\Omega} \]

 - For more accurate and precise measurements over the operating temperature range, a current monitor with integrated shunt resistor can be used in some systems. The benefits of using these devices are explained in *Getting Started with Current Sense Amplifiers, Session 16: Benefits of Integrated Precision Shunt Resistor*.

2. Choose a Zener diode to create an appropriate voltage drop for the INA138 supply:
 - The Zener voltage of the diode should fall in the INA138 supply voltage range of 2.7 V to 36 V and needs to be larger than the maximum output voltage required.
 - The Zener diode voltage regulates the INA138 supply and protects from transients.
 - Data sheet parameters are defined for 12-V $V_{in\+}$ to the GND pin so a 12-V Zener is chosen.

3. Determine the series resistance with the Zener diode:
 - This resistor (R_3) is the main power consumer due to its voltage drop (up to 388 V in this case). If R_3 is too low, it will dissipate more power, but if it is too high R_3 will not allow the Zener diode to avalanche properly. Since the data sheet specifies I_Q for $V_S = 5$ V, estimate the max quiescent current of the INA138 device at $V_S = 12$ V to be 108 μA and calculate R_3 using the bias current of the Zener diode, 5 mA, as shown:
 \[R_3 = \frac{V_{CM} - V_{zener}}{I_{zener} + I_{INA138}} = \frac{400 - 12}{5 \text{ mA} + 108 \text{ μA}} \approx 75.96 \text{ k\Omega} \]

 - The power consumption of this resistor is calculated using the following equation:
 \[\text{Power}_{R_3} = \frac{(V_{CM} - V_{zener})^2}{R_3} \rightarrow \frac{(400 - 12)^2}{75 \text{ k\Omega}} \approx 2.007 \text{ W} \]
4. Calculate R_{out} using the equation for output current in the INA138 data sheet.

- This system is designed for 10V/V gain where $V_{out} = 1V$ if $V_{sense} = 100mV$:

$$I_{out\ INA138} = 200 \frac{\mu A}{V} \times (V_{sense\ max}) \rightarrow 200 \frac{\mu A}{V} \times (0.5V) = 100\mu A$$

$$R_{out} = \frac{V_{out\ max}}{I_{out\ INA138}} \rightarrow \frac{5V}{100\mu A} = 50k\Omega$$

Design Simulations

DC Simulation Results

The following graph shows a linear output response for load currents from 0.5A to 10A and $12V \leq V_{cm} \leq 400V$. I_{out} and V_{out} remain constant over a varying V_{cm} once the Zener diode is reverse biased.
Steady State Simulation Results

The following image shows this system in DC steady state with a 2-A load current. The output voltage is 10× greater than the measured voltage across R_{shunt}.

![Simulation Diagram]
Design References
See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

Getting Started with Current Sense Amplifiers video series:
https://training.ti.com/getting-started-current-sense-amplifiers

Abstract on Extending Voltage Range of Current Shunt Monitor:

High Voltage 12V – 400V DC Current Sense Reference Design:
http://www.ti.com/tool/TIDA-00332

Cookbook Design Files:
http://proddms.itg.ti.com/ stage/lit/sw/sglc001a/sglc001a.zip

Current Sense Amplifiers on Ti.com:

For direct support from TI Engineers use the E2E community:
http://e2e.ti.com

Design Featured Current Shunt Monitor

<table>
<thead>
<tr>
<th>INA138</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
<td>2.7V to 36V</td>
</tr>
<tr>
<td>$V_{in,cm}$</td>
<td>2.7V to 36V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Up to (V+) - 0.8V</td>
</tr>
<tr>
<td>V_{os}</td>
<td>±0.2mV to ±1mV</td>
</tr>
<tr>
<td>I_t</td>
<td>25µA to 45 µA</td>
</tr>
<tr>
<td>I_b</td>
<td>2 µA</td>
</tr>
<tr>
<td>UGBW</td>
<td>800kHz</td>
</tr>
<tr>
<td># of Channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Design Alternate Current Shunt Monitor

<table>
<thead>
<tr>
<th>INA168</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ss}</td>
<td>2.7V to 60V</td>
</tr>
<tr>
<td>$V_{in,cm}$</td>
<td>2.7V to 60V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Up to (V+) - 0.8V</td>
</tr>
<tr>
<td>V_{os}</td>
<td>±0.2mV to ±1mV</td>
</tr>
<tr>
<td>I_t</td>
<td>25µA to 45 µA</td>
</tr>
<tr>
<td>I_b</td>
<td>2 µA</td>
</tr>
<tr>
<td>UGBW</td>
<td>800kHz</td>
</tr>
<tr>
<td># of Channels</td>
<td>1</td>
</tr>
</tbody>
</table>

http://www.ti.com/product/ina168
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated