AC Adapter Input Detection for High-Current and High-Voltage Load Switches

John Cummings

ABSTRACT

High-current load switches such as the TPS2590 or TPS25910 have active-low enable pins that requires additional circuitry for detecting whether the input voltage is in a valid range. Discreet circuit implementations can result in a brief false start-up that may be undesirable in the application. This application report shows how the TPS3700 can both serve as a precision voltage-detection circuit, as well as provide a power good (PG) function to enable downstream dc-dc converters.

Contents

1 Introduction .. 2
2 AC Adapter Detection .. 4
3 Power Good Indication ... 4
4 Optional Delay .. 5
5 References .. 5

List of Figures

1 TPS25910 Block Diagram .. 2
2 TPS3700 Block Diagram ... 3
3 AC-Adapter and Power-Good Schematic .. 4
4 Optional Delay for Adapter Detect and Power-Good Conclusion 5
1 Introduction

The TPS25910 is the latest in the family of high-voltage and high-current load switches from Texas Instruments. The device can be programmed to limit the load current from 0.82 A to 6.5 A, and also has the ability to control the slew rate of the output voltage. This feature is critical in applications where it must be ensured that the attached load does not cause a system-wide failure. The block diagram is shown in Figure 1.

Figure 1. TPS25910 Block Diagram
As shown in Figure 1, the TPS25910 has an internal pass FET that is used to both minimize the inrush current into the load and protect the system in the event of a short circuit. The constant power engine also minimizes inrush. This circuit controls the linear current amplifier (LCA) to limit the maximum power dissipated by the pass FET. Therefore, when first enabled, the voltage across the FET (V_{DS}) is from V_{IN} to GND (that is, before you enable the TPS25910, the voltage at the IN pins is V_{IN} and the voltage on the OUT pins should be GND because the device has not been enabled). As current ramps through the FET, the capacitance at V_{OUT} is charged. As V_{DS} decreases, the current in the FET (I_{DS}) is allowed to increase to maintain a constant power dissipation across the FET.

The FET gate pin is brought outside of the device so that a capacitor can be added to further control the current slewing into the load. This slew rate control is essential for applications where several loads may attempt to power on simultaneously. If the outrush to the load is too severe, it may result in V_{IN} falling or creating a brownout.

The TPS3700 is a window comparator with independent undervoltage and overvoltage thresholds and outputs. This device can operate with VDD ranging from 1.8 V to 18 V. If the voltage at the INB– pin rises above the 400-mV threshold, the OUTB pin is pulled low. Correspondingly, if the INA+ pin falls below the 400-mV threshold, the OUTA pin is pulled low. Because this device is designed as a window comparator, the OUTA and OUTB pins are open-drain outputs and can either be tied together or used independently. See the block diagram shown in Figure 2.

![Figure 2. TPS3700 Block Diagram](image)

The intended operation of the TPS3700 is to validate that V_{IN} is in a proper range before enabling the system. For example, when the window is set to $4.75 \, V < V_{IN} < 5.25 \, V$ and within this window both outputs are high impedance, if V_{IN} falls below 4.75 V, then OUTA is pulled low. Correspondingly, if V_{IN} rises above 5.25 V, then OUTB is pulled low.
2 AC Adapter Detection

Typically, systems require that the input voltage is correct prior to enabling the system power path. A simple comparator with reference effectively achieves this requirement. However, the TPS3700 both detects that the input voltage rail is valid, and sets a PG threshold for the load voltage. R5 and R6 (see Figure 3) set the AC adapter detection threshold as shown in Equation 1:

\[
V_{\text{IN}} = V_{\text{REF}} \cdot \left(\frac{R5 + R6}{R6} \right) = 10.95 \, \text{V}
\]

(1)

For a 12-V adapter assuming ±5% tolerance, the result in Equation 1 should be enough. If 10% or wider tolerance is required, R6 can be reduced accordingly to accommodate the wider tolerance. When \(V_{\text{IN}}\) rises above this threshold, OUTB is pulled low. This action is used to enable the TPS25910. Once enabled, the TPS25910 starts to slew current into the load.

3 Power Good Indication

Because the effective resistance between the drain and source of the internal MOSFET in the TPS25910 (\(R_{\text{DS(ON)}}\)) is typically less than 30 mΩ with a maximum nominal load current of 5 A, there is only a 210 mV drop across the TPS25910. Therefore, it is possible to use the same threshold for PG detection. This reason is why the same values are chosen for R3 and R4 to detect \(V_{\text{OUT}}\). Of course, if more margin is required, this threshold can be lowered. After the voltage threshold is met, the OUTA pin stops pulling down the PG rail and allows R7 to pull up the PG rail. This threshold can be used to enable either a dc-dc converter or just alert the system that the power is ready.

Figure 3. AC-Adapter and Power-Good Schematic
4 Optional Delay

To avoid accidental startup with a power line glitch or to better debounce an input rail, some applications prefer to delay the startup and PG. If this feature is required, it is as easy as adding one or two additional capacitors to Figure 3, as shown in Figure 4.

Combining the TPS3700 along with the TPS25910 provides a means of providing an application with precision ac adapter insert detection and robust inrush current management and protection. Taking advantage of the second output of the TPS3700 for a PG signal adds a reliable means to enable either dc-dc converters or simply let an MCU know that the input power rail is valid and stable.

5 References

1. TPS25910 Datasheet, SLUSAR6, Texas Instruments
2. TPS3700 Datasheet, SBVS187, Texas Instruments
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Audio and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

TI E2E Community
e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated