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Design and Layout Guidelines for the CDCVF2505 Clock
Driver

Kal Mustafa Bus Solutions

ABSTRACT

This application note describes tuning techniques, line termination methods, and filter circuit for the
CDCVF2505, and it provides PCB layout guidelines.

Contents
1 Introduction 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Tuning for Zero Delay 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Common Termination Techniques 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 Series Termination 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 Parallel Termination 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 Thévenin Termination 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 AC Termination 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Layout Guidelines 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Filtering and Noise Reduction Techniques 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1 Bypass and Filter Capacitors 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 Ferrite Beads 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3 Filter Circuit 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4 Typical Output Driver Characteristics 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Bibliography 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

List of Figures

1 Functional Block Diagram of CDCVF2505 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2 Delay vs Delta Load 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3 Tuning for Minimum Delay 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4 Driver Output Impedance 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5 Series Termination 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6 CDCVF2505 Output Waveforms Driving Single and Dual Loads 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7 Parallel Termination 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8 Thévenin Termination 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9 AC Termination 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10 Filter Circuit for the CDCVF2505 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11 High-Level Output Voltage vs Current 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12 Low-Level Output Voltage vs Current 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

List of Tables

1 Functional Comparison Between CDCVF2505 and CY2305 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2 Capacitor Values for Filtering Certain Frequencies 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



SCAA045

2 Design and Layout Guidelines for the CDCVF2505 Clock Driver

1 Introduction

The CDCVF2505 is a high-performance, low-skew, low-jitter, phase-lock loop (PLL) clock driver
(refer to [1] for details). It uses a PLL to phase- and frequency-align the input (CLKIN) and
output (1Y[0:3], CLKOUT) clock signals precisely, and it provides integrated series-damping
resistors that make it ideal for driving point-to-point loads. Unlike many products containing
PLLs, the CDCVF2505 does not require an external RC network; instead, the loop filter for the
PLL is included on-chip, minimizing component count, space, and cost. As can be seen from
Table 1, the CDCVF2505 has performance superior to the Cypress CY2305.

Table 1. Functional Comparison Between CDCVF2505 and CY2305

FEATURE CDCVF2505 CY2305

Number of inputs 5 5

Package 8-pin SOIC and 8-pin TSSOP 8-pin SOIC

Frequency range 24–200 MHz 1−100/133 MHz

Cycle-to-cycle jitter at 66 MHz < 150 ps < 200 ps

SSC compatible Yes No

On-chip series damping resistors 25 Ω No

Input-to-output propagation delay < ±150 ps < 350 ps

Output duty cycle 45–55% 40–60%

PLL lock time 100 μs 1 ms

Rise/fall time at 0.4–2.0 V 2.5/2.5 ns 2.5/2.5 ns

Operating temperature range −40°C–85°C 0°C–70°C

Output skew 150 ps max. < 250 ps

Power-down feature Yes No

When a PLL is used in an application, data errors can be introduced as a result of (a) signal
degradation from line noise and, (b) reflections caused by improper line termination when the
signal transit time through the transmission line exceeds the rise or fall time of the signal. This
note provides guidelines and suggestions for avoiding noise and line termination problems. It
also details tuning for zero and specified nonzero delays.

2 Tuning for Zero Delay

As shown in Figure 1, the CLKOUT pin (8) completes the feedback loop of the PLL. This
connection is made inside the chip and external feedback is not required. However,CLKOUT can
be loaded with a capacitor to adjust the input-to-output propagation delay. Depending on the
application and the delay requirements, the designer can choose two capacitor values between
5 pF and 25 pF on CLKOUT to determine the exact propagation delay between CLKIN and Yn.
Native propagation delay as a function of delta load (the difference between the CKLOUT and
Yn loads) is shown in Figure 2.

When a lead-lag relationship is sought instead of a zero delay, it can be obtained by loading the
feedback pin, CLKOUT. To get a positive phase error (i.e. CLKIN leads the Y outputs), the
CLKOUT pin should be loaded more lightly than the Y outputs. Alternatively, for a more negative
phase error (Y outputs leading the reference input CLKIN), the CLOCKOUT pin should be
loaded more heavily than the Y outputs. As a rule of thumb, the adjustment is about 50 ps/pF of
loading difference; thus, 1 pF will induce delay of 35–50 ps. A 1-inch trace of 50-Ω transmission
line in FR-4 material has about a 3-pF parasitic capacitance, or approximately a 100-ps delay.
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Figure 1. Functional Block Diagram of CDCVF2505

Note that adjusting the trace length of the feedback loop coarse-tunes the phase error. Adjusting
the capacitive loading on the feedback is the best way to fine tune the phase error, with this
loading being placed as close to the CLKOUT pin as physically possible. For example, for a
phase lead (CLKIN lead Yn), the trace length of the Y outputs is increased. Conversely,
increasing the trace length of the feedback path decreases the phase error and, in this case, the
Yn outputs are advanced relative to the reference clock input (CLKIN).
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Figure 3. Tuning for Minimum Delay
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3 Common Termination Techniques

As a general rule, transmission line (trace) termination is necessary when the round trip
propagation time of the signal is equal to or greater than the transition (rise or fall) time of the
driver; otherwise, there will be data errors caused by signal degradation, line noise, and,
reflections.

Most termination methods rely on impedance matching of the line with either the source or the
load. There are several termination techniques that can be used to terminate transmission lines.
These are series (source), parallel, Thévenin, and ac termination. Each has its advantages and
disadvantages, although ac termination has the widest general endorsement.

Excluding the series damping resistor, the typical output characteristic of the CDCVF2505 driver
shown in Figure 4 is a PMOS impedance of 12 Ω and an NMOS impedance of 15 Ω. Therefore,
the total output impedence of the driver when the output is high is approximately 37 Ω (12 + 25)
and 40 Ω (15 + 25) when the driver is low.

25 Ω

VDD

12 Ω
(When On)

15 Ω
(When On)

Figure 4. Driver Output Impedance

3.1 Series Termination

In series termination, a resistor is added to the outputs of the driver, thereby increasing the
impedance at the line source and preventing signal reflection off the driver end. The resistor
value is chosen to match the source and trace impedances. This is shown schematically in
Figures 5(a) and 5(b) for single and dual transmission lines, respectively.
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Figure 5. Series Termination

Series termination is effective in reducing the driver’s edge rate, and it consumes low power. It is
recommended for single receiver, point-to-point and star topologies. Series termination provides
good signal quality by damping overshoot and undershoot, and effectively reducing line noise
and EMI. Its drawbacks are that it slows the signal’s rise and fall time, and that it should not be
used with distributed loads. The CDCVF2505 can be used to drive one or two 50-Ω transmission
lines each. In the dual-transmission-line case, there is no need to add any external series
resistor to the outputs because the CDCVF2505 has an integrated 25-Ω resistor included on
chip. Conversely, in the single-transmission-line case, an additional 25-Ω resistor should be
added as close as possible to the outputs of the CDCVF2505. In both cases the CDCVF2505
provides optimal performance with minimal overshoot and undershoot, as can be seen from
Figure 6. This figure shows simulated signal integrity of the output buffer at 133 MHz and a 4-pF
load driving single and dual transmission lines. The plot does not reflect the actual duty cycle of
the PLL; rather, the similation was done for the output buffer only. The CDCVF2505 corrects the
output duty cycle of the PLL to 50%, independent of the input duty cycle.
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3.2 Parallel Termination

Parallel termination is simple to implement. It uses a single resistor at the load end of the trace,
as shown in Figure 7 and, like the Thévenin and ac methods, it acts by preventing signal
reflection from the load end. The value of the termination resistor should be such that the load
and line impedances match. In essence, the termination resistor absorbs and dissipates energy
that would otherwise reflect.

There are a few disadvantages to this method: It consumes a large amount of power, it produces
unbalanced rise and fall times which result in duty cycle distortion, and it degrades the high
output level of the signal.

25 Ω

Driver R

R = Zo
Zo = 50 Ω

4 pF

Figure 7. Parallel Termination

3.3 Thévenin Termination

Thévenin termination uses two load-end resistors whose parallel combination must result in
matching between the load and trace impedances. This is shown schematically in Figure 8.

25 Ω

Driver R2

R1||R2 = Zo

R1

VCC

Zo = 50 Ω

4 pF

Figure 8. Thévenin Termination

The termination resistors are a pullup and pulldown pair that help balance the driver’s high- and
low-logic levels. This method enhances the fan-out capability of the driver, and it reduces power
consumption caused by duty cycle distortion. A disadvantage is the constant dc-current leakage
from VCC to GND regardless of the driver’s logic state.

3.4 AC Termination

Here, an RC high-pass filter is used to terminate the load end of the trace (see Figure 9). AC
termination is recommended for backplanes, cables, distributed loads, and clocks drivers. It
generates no power dissipation and permits loads to be added anywhere along the transmission
line. To avoid overshoot and undershoot, the RC time constant should be greater than the
transmission line’s round-trip propagation time. The capacitor serves to block low-frequency
noise and considerably reduces quiescent power dissipation while minimizing overshoot and
undershoot.
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25 Ω

Driver R

R = Zo

C

Zo = 50 Ω

4 pF

Figure 9. AC Termination

4 Layout Guidelines

The following suggestions are offered to aid PCB layout:

• Isolate the power pin of the clock driver from the power plane of the board by a ferrite bead.
The ferrite prevents high-frequency noise from reaching the main power supply.

• Minimize EMI by avoiding the use of vias to route clock signals. Vias add unwanted
inductance to the trace and in general reduce the effectiveness of bypass capacitors.

• To minimize reflections and ringing, keep traces short and impedance balanced

• If possible, place clock signals far away from data busses.

• Load all outputs equally.

• Avoid routing traces near the edge of the PCB board.

• Clock traces should not cross each other. They should also be of equal length to minimize
clock skew.

• Route clock traces point-to-point and terminate them individually.

• Keep power and ground planes close together. This reduces power-supply noise.

• Place power-supply decoupling capacitors and filter components as close to VCC as
possible. For decoupling, it is recommended to use low-inductance, low-ESR (equivalent
series resistance) capacitors because they provide best performance.

5 Filtering and Noise Reduction Techniques

The following provides general guidelines for reducing radiated emissions and improving signal
quality of PLL clock generators. Also discussed are power-supply and ground-noise reduction
techniques through decoupling, and the use of both bypass capacitors and ferrite beads.

5.1 Bypass and Filter Capacitors

Filter capacitors are used to eliminate low-frequency power-supply noise. A popular filter
capacitor is a surface mount 22-μF ceramic device connected as close to the power supply as
physically possible.
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Bypass capacitors, on the other hand, are used to provide a very-low-impedance path for
current surges between VCC and GND at high frequency. Also, they guard the power system
against induced fluctuations. It is recommended to use mica or monolithic, ceramic-type
capacitors because they are small, inexpensive and, most importantly, they have very low
equivalent series inductance (ESL) and series equivalent resistance (ESR). The precise value
for a bypass capacitor can be determined as follows (see also Johnson and Graham, 1993).

• Assuming all gates are switching simultaneously, find the maximum expected step change in
current and the maximum power-supply noise. Dividing the power-supply noise by the
current change gives the maximum common-path impedance: Zmax = ΔV/ΔI.

• Find the inductance, L, of the power-supply wiring, then calculate the 3-dB or knee
frequency using the equation f = Zmax /(2πL).

• Calculate the capacitance, C, of the bypass capacitor according to C = 1/(2πfZmax).

This kind of calculation is exemplified by the following: Assume (i) there is a 40-gate board with
each gate switching a 20-pF load in 2.5 ns, (ii) the power supply has a wiring inductance, L, of
100 nH, and (iii) a voltage noise margin, Vn, of 110 mV. Then

�I � n C �V
�t

�
(40) �20 � 10�12�(3.3)

2.5 � 10�9
� 1.056 A

The maximum impedance is

Zmax �
Vn

�I
� 0.110

1.056
� 0.104 �

Then, the frequency above which the power supply wiring requires a bypass capacitor to take
over is

fPSW �
Zmax

(2� L)
� 0.104

2�� 100 � 10�9
� 166 kHz

Next, the value of the bypass capacitor is calculated:

Cbypass � 1
(2� fPSW Zmax)

� 1
2�� 166 � 103 � 0.104

� 9.22 �F

This is an uncommon value, so a 10-μF capacitor is used instead. The calculation says that a
10-μF capacitor is effective at frequencies above 166 kHz. Assuming now that the 10-μF
capacitor has an ESL of 1 nH, the maximum frequency at which this bypass capacitor is
effective is

fbypass �
Zmax

(2� ESL)
� 0.104

�2�� 1 � 10�9�
� 16.55 MHz

The 10-μF capacitor is effective over the hundredfold range from 166 kHz to 16.6 MHz.

It is good practice to use an array of small capacitors in parallel because they provide lower
series inductance at high frequency than a single large capacitor. The most common values for
bypass capacitors are: 22 μF, 4.7 μF, 0.1 μF, and 0.001 μF. The 22-μF and 4.7-μF capacitors
work well at relatively low frequency (low frequency bypass). The 0.1-μF capacitor targets the
midrange frequencies, while 0.001-μF and smaller capacitors handle high frequencies (high
frequency bypass). Choosing three or more capacitors with different values effectively filters
noise from a wider bandwidth.
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As opposed to ideal capacitors, real capacitors contain additional parasitic, inductive and
resistive elements. The most important parameters are the ESL and ESR, because they act
respectively as an inductance and a resistance in series with the capacitance. They tend to
defeat the effectiveness of a bypass capacitor.

The equation for the impedance of a capacitor as a function of frequency, including ESR, is:

X(f) � ESR2 ��2�fL � 1
2�fC

�
2�

There are several ESR meters commercially available that can measure very low resistance
(below 1 Ω), and some ESR meters are 1-Ω full-scale with 10-mΩ resolution. There are other
methods for measuring ESR without using an ESR meter—further information on ESR
measurements can be found at: http://fribble.cie.rpi.edu/~repairfaq/sam/captest.htm

5.2 Ferrite Beads

By nature, PLL-based clock drivers and generators are noise-sensitive. Inserting a ferrite bead
to isolate the high-frequency noise created by the clock generator and to prevent it from
reaching the main power supply suppresses noise and reduces its spread around the PCB.

Ferrite beads neither enhance nor degrade the performance of a clock generator; they merely
provide noise isolation (power supply decoupling).  It is preferable to use low-dc-impedance
ferrite, between 0 Ω and 5 Ω. However, at clock frequencies the impedance of the bead should
be at least 50 Ω under load conditions. This relatively large impedance prevents noise
generated by clock harmonics from spreading across the PCB. The impedance of a ferrite bead
is a function of frequency, size, material, and the number of turns. Because ferrite beads are
composed of ferromagnetic material that is contained within the bead, they are not susceptible
to externally-radiated magnetic fields, nor can such fields detune them. Only when temperature
rises above the Curie point will the ferrite loose its magnetic properties and become useless as a
noise-attenuating element.

The Curie temperature is material dependant and can range between 120°C and 500°C.
Although other vendors have similar products, Fair-Rite Corporation’s beads #43/44, #61, #73
are popular and meet these requirements. The #43/44 material is best-suited for noise
attenuation over the range 20–300 MHz; the #73 material is recommended for suppression over
the range 1–25 MHz; for frequencies above 200 MHz, #61 is the best choice.

5.3 Filter Circuit

Putting these components together provides good filtering for many clock generators and
especially for PLL-based clock drivers. Although the CDCVF2505 has only one VCC, it has an
integrated internal filter circuit separating the analog and digital power supplies, it works even
better with an additional external filter circuit. Figure 10 contains an example of such a circuit.
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Ferrite
Bead

C2

1

2

3

4

8

7

6

5

CLKIN
1Y1
1Y0

GND

CLKOUT
1Y3

1Y2

CDCVF2505
(TOP VIEW)

VDD 3.3V

0.1 μF 0.01 μF

to System
VCC at 3.3 V

0.001 μF C1

NOTES: 1. C2 can be 47, 39, 10, or 4.7 μF
2. C1 is system dependent and can be found as in the example

Figure 10. Filter Circuit for the CDCVF2505

The exact value of a bypass capacitor is not as critical as having three or more different
capacitor ranges, one each for low frequency, midrange, and high frequency. For example, if the
maximum wiring impedance, Zmax, is 0.1 Ω, the value, C, of the bypass capacitor can be
calculated from the equation C = 1 / (2πfZmax). Values for some capacitors that can be used to
filter certain noise frequencies are listed in Table 2.

Table 2. Capacitor Values for Filtering Certain Frequencies

f3dB (MHz) C (μF)

0.033 47

0.072 22

0.159 10

0.339 4.7

3.2 0.5

7.2 0.22

16 0.1

32 0.05

80 0.02

100 0.016

160 0.01

200 0.008

318 0.005

400 0.004

1600 0.001

5.4 Typical Output Driver Characteristics

Figures 11 and 12 show the output buffer characteristic impedance of the CDCVF2505 clock
driver when the driver is in high and low states, respectively. These curves provide typical output
behavior when driving both single and multiple loads. The strength of the driver is measured by
the current sourcing or sinking capabilities.
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