LF Reader Synchronization

Application Report

July 2004
LF Reader Synchronization

Application Report

TI-RFid
A TEXAS INSTRUMENTS TECHNOLOGY

Literature Number: SCBA019 (11-06-26-001)
July 2004
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>..</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>Why Do We Need to Synchronize Reader Units?</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Methods of Synchronization</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>No Synchronization</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Wireless Synchronization</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Wireless Synchronization Pros and Cons</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Wired Synchronization</td>
<td>10</td>
</tr>
<tr>
<td>5.1</td>
<td>Wired Synchronization Pros and Cons</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Combined Wireless/Wired</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Master-Slave Synchronization</td>
<td>11</td>
</tr>
<tr>
<td>7.1</td>
<td>M/S Synchronization without Acknowledgment</td>
<td>11</td>
</tr>
<tr>
<td>7.2</td>
<td>Master/Slave (M/S) Synchronization With Acknowledgment</td>
<td>12</td>
</tr>
<tr>
<td>7.3</td>
<td>Triggered Synchronization</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Figures

1 Wireless Synchronization – No Other Signals Detected... 9
2 Wireless Synchronization – Signal Detected and 2nd Cycle Delayed.. 9
3 Master/Slave Synchronization (Without Acknowledgment) .. 12
4 PLC Operated Timing Bus .. 13
5 Timing Pulses From a Master Controller ... 14
6 Typical Charge-Only Read ... 14
7 A Paged Read of a Multi-Page Tag ... 15

List of Tables

1 Separation of Standard Antennas .. 7
Edition Two – July 2004

This is the second edition of the Technical Application Note about LF Reader Synchronization.

It contains a description of when we may need to Synchronize Reader units for use with the following products:

TI-RFid LF Reader Family: S2000 Series

This document has been created to help support Texas Instruments’ Customers in designing in and/or using TI-RFid products for their chosen application. Texas Instruments does not warrant that its products will be suitable for the application and it is the responsibility of the Customer to ensure that these products meet their needs, including conformance to any relevant regulatory requirements.

Texas Instruments (TI) reserves the right to make changes to its products or services or to discontinue any product or service at any time without notice. TI provides customer assistance in various technical areas, but does not have full access to data concerning the use and applications of customers’ products.

Therefore, TI assumes no liability and is not responsible for Customer applications or product or software design or performance relating to systems or applications incorporating TI products. In addition, TI assumes no liability and is not responsible for infringement of patents and/or any other intellectual or industrial property rights of third parties, which may result from assistance provided by TI.

TI products are not designed, intended, authorized or warranted to be suitable for life support applications or any other life critical applications which could involve potential risk of death, personal injury or severe property or environmental damage.

TIRIS and TI*RFID logos, the words TI*RFID™ and Tag-it™ are trademarks or registered trademarks of Texas Instruments Incorporated (TI).

Copyright (C) 2001 Texas Instruments Incorporated (TI)

This document may be downloaded onto a computer, stored and duplicated as necessary to support the use of the related TI products. Any other type of duplication, circulation or storage on data carriers in any manner not authorized by TI represents a violation of the applicable copyright laws and shall be prosecuted.

About This Manual

This Technical Application Note is written for the sole use by TI*RFID Customers who are engineers experienced with TI*RFID and Radio Frequency Identification Devices (RFID).

Conventions

Certain conventions are used in order to display important information in this manual, these conventions are:

WARNING

A warning is used where care must be taken or a certain procedure must be followed, in order to prevent injury or harm to your health.
If You Need Assistance

CAUTION
This indicates information on conditions, which must be met, or a procedure, which must be followed, which if not heeded could cause permanent damage to the system.

Note: Indicates conditions, which must be met, or procedures, which must be followed, to ensure proper functioning of any hardware or software.

Note: INFORMATION: Information about setting up and procedures, that makes the use of the equipment or software easier, but is not detrimental to its operation.

If You Need Assistance

For more information, please contact the sales office or distributor nearest you. This contact information can be found on our web site at: http://www.ti-rfid.com.
Why Do We Need to Synchronize Reader Units?

In applications that require multiple readers operating at the same time and in the same area, it is necessary to coordinate their transmit and receive functions in order to avoid mutual interference. This is known as synchronization.

The separation distance between reader antenna systems can and does vary before there is a need to implement a method of synchronization. Variations in local conditions can affect the general noise background. For example, radio frequency interference (RFI) and electrical noise can travel from one reader to another, not only through the air (radiated) but via metal structures (conducted). Metal structures can include the frames of metal buildings, conveyors, reinforcing bars in concrete floors and power or data cables.

If you consider only radiated signals from standard antennas, listed in Table 1 below are the separation distances between antennas, without the need for synchronization.

<table>
<thead>
<tr>
<th>STANDARD ANTENNA TYPE</th>
<th>SEPARATION DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S02-C</td>
<td>18 meters</td>
</tr>
<tr>
<td>G02-E</td>
<td>32 meters</td>
</tr>
<tr>
<td>G01-E</td>
<td>55 meters</td>
</tr>
<tr>
<td>G04-E</td>
<td>105 meters</td>
</tr>
</tbody>
</table>

Depending on the antennas’ spatial orientation to one another, or if the antennas are heavily shielded by metal, the distances shown in Table 1 could be reduced. However, the separation distances may have to be greater if there are groups of synchronized readers in the same area and application.

Where customized and balanced antennas are used the System Integrator will need to determine the limits of separation themselves, to avoid ‘noise’ problems.

Where no provision is made for synchronization, the reading of transponders will become erratic, the reading distances will reduce and in extreme cases, no readings will result.
Methods of Synchronization

2 Methods of Synchronization

There are differing techniques to synchronize the S2000 Series and S2510 readers. The method chosen will depend on the type of transponder, the type of operation performed on that transponder (Charge-only read, General read, Program page, lock page), the size of the antennas and the speed at which the transponder is moving.

The S2000 Series and S2510 readers can be configured to synchronize in a number of different ways:

- No Sync
- Wireless Sync
- Wired Sync
- Combined Wireless/Wired Sync
- Master/Slave (M/S) Sync
 - Master/Slave without Acknowledgment
 - Master/Slave with Acknowledgment
 - Triggered Sync

These methods are discussed in the following sections.

3 No Synchronization

This option is only used in conjunction with Software synchronization.

If the same RS485 data network connects multiple readers, coordination of the readers can be controlled directly by the Host Computer. For example, the Host Computer may issue a Broadcast command for all readers to simultaneously perform a read cycle and buffer the result.

Another technique possible, using the RS485 data network, is to issue individual commands to each reader in turn. This technique is used when writing data to Multi-Page Transponders (MPTs).

Where a Programmable Logic Controller (PLC) has a number of point-to-point connections to readers, it is also possible to coordinate the activities via the ladder logic. With Software synchronization all readers will either be simultaneously transmitting or, only one reader will be transmitting, at any one time. In both cases, the readers can be configured to have No Sync.

4 Wireless Synchronization

Wireless synchronization can be used to control the coordination of readers, with standard and customized antennas. The proviso is that the electrical noise in the environment is low and the RFI noise is constant, for the type of antennas in use.

Wireless Synchronization is only valid for charge-only reading of transponders.

Each reader and its antenna is adjusted (in-situ) to set the background electrical noise level at its installed location, with all the other readers inhibited. Then, during operation, when the reader detects noise above the background level, it assumes that it is another reader and ‘backs-off’ for a set period before commencing its own cycle.
Figure 1. Wireless Synchronization – No Other Signals Detected

In Figure 1, two complete read cycles are shown – the reader has not had to ‘back-off’ because of another reader’s transmission. The reader turns on its transmitter for 50 ms after which the transponder, recognizing the end of the charge burst, responds with its data. The reader does not immediately initiate the next charge burst, but listens for 20 ms. This is a precaution to stop another reader’s receive data from being corrupted, when that transponder is on the limit of the first reader’s detection range. If no other signal is detected during this time, the reader starts the next cycle, which is 90 ms long.

Note: The cycle time may be extended by data processing whenever a transponder is read.

In Figure 2, the initial reader having completed its first read cycle, detects that another reader is already transmitting and waits 70 ms to allow that read cycle to complete. This is called ‘backing off’.

After this 70-ms delay the initial reader will always start its next cycle. This is to prevent constantly ‘backing off’ and never reading any transponders. The cycle time in this worst case is 140 ms.

The best case synchronization time is 70 ms and this occurs when the reader detects another transmission just after beginning the 20-ms synchronization listening period and immediately starts (synchronizes) its own cycle, to the other reader(s).

Figure 2. Wireless Synchronization – Signal Detected and 2nd Cycle Delayed
Wired Synchronization

In practice, reader units using Wireless Synchronization, tend to be read together (90 ms/approximately 10 reads/s) until one unit reads a transponder, gets out of phase with the others and then the units may run alternately (140 ms/approximately 6 reads/s). As the other readers see transponders, they may get back into phase again. So with Wireless Synchronization, we get the read cycle time alternating between 10 and 6 reads a second. This may not be reliable enough for higher speed operations. The description of operation above assumes that the readers are set to the standard times of operation.

Note: Where the reader configuration has changed, i.e., the charge-time or the interval between reads, all units must be set to the same parameters for correct operation.

4.1 Wireless Synchronization Pros and Cons

The method of wireless synchronization has a number of advantages over some of the other methods:

- There are no wires to run.
- All readers are autonomous (no Master unit).
- Enables hand held readers to co-exist with fixed units (using wireless synchronization).

However, there are disadvantages too:

- In noisy environments, there is too much sensitivity with larger antennas (TI Antenna RI-ANT-G04E and larger custom antennas) to allow accurate setting of the background levels.
- It is not suitable for operations other than a Charge-read on MPTs.
- It cannot be used when other readers are writing information to transponders.
- Where the environmental conditions change, e.g., a ground loop antenna characteristics’ change when a vehicle is positioned over it, the synchronization adjustment could then be wrong.

5 Wired Synchronization

Wired Synchronization operates the same as described for Wireless Synchronization when no other signal is detected and also exhibits the alternating read cycle times – 90 ms or 140 ms.

5.1 Wired Synchronization Pros and Cons

The advantages of this technique are:

- It is a Peer-to-Peer network and does not need a Master unit.
- It uses a single twisted pair cable.
- It operates independently of background noise.

The disadvantages are as follows:

- Readers may operate as slowly as 6 reads/s.
- It is only suitable for Charge-only reading of transponders.
- It cannot be used for operations other than Charge-read on MPTs.
- It cannot be used when other readers are writing information to transponders.
- If the power fails at a reader, the bus will fail.

Note: To overcome power failure use a relay held closed at power-up by the readers I/O. If power is lost, the relay releases the connection.
6 Combined Wireless/Wired

When this option is selected, groups of readers connected by the Wired Synchronization cabling can synchronize with other groups of Wired Synchronized readers, or with individual readers, by using Wireless Synchronization.

For example, at a site, all fixed readers could be connected on the same Wired Sync cable whilst allowing a handheld reader with Wireless Sync to be used for occasional audit purposes without conflict.

The advantages and disadvantages given for each of the above methods still apply.

7 Master-Slave Synchronization

Master/Slave (M/S) Synchronization is probably the most commonly used form of synchronization.

One reader is configured to be the Master and this reader then controls all the other readers, which are configured as Slaves.

There are three variants:

- M/S Synchronization without Acknowledgment
- M/S Synchronization with Acknowledgment
- Triggered Synchronization.

7.1 M/S Synchronization without Acknowledgment

The M/S method of synchronization is the fastest technique for reading transponders and was originally developed for reading moving vehicles. It assumes that all readers are on the same synchronization bus and the readers would not, for example, recognize a handheld reader that is trying (probably unsuccessfully) to perform a reading.

The S2000 Series and S2510 readers have a two-wire synchronization bus, which connects all readers. To implement this type of synchronization, connector ST24 for the S2000 Series and connector ‘C’ (Sync) on the S2510 are used. Physically a shielded twisted pair cable is connected to the transmit pair, pins 4 and 5 at the Master, whilst at the Slaves, the cable is connected to receive pins 1 and 2 on both the S2000 Series and S2510 readers. [For more details consult the Individual Reader Control Module Manual].

Note: Information: The bus referred to is built into the S2000 Series and S2510 reader for synchronization purposes and should not be confused with the RS485 data network that is available on the MA6A and S2510 readers.

Immediately the Master has finished a complete read cycle, it transmits a synchronization pulse on its transmit lines. Any Slave reader that has finished its cycle, looks for this pulse on its receive lines and on seeing it, will immediately start the next cycle. Assuming that the readers are set to the standard 50-ms charge pulse, the Master will be cycling about every 70 ms (14 reads/s). If vehicle series transponders are being used, it may be possible to reduce the charge time and further reduce the reading cycle time for high-speed applications.
This method has the following advantages:
• Uses a single twisted pair cable.
• Has the fastest read rate.
• The Master can be used for Charge-read or Write/Program.

There are disadvantages too:
• All readers must be on the same synchronization bus.
• It is not suitable for operations involving paged reads with MPTs.
• If the Master fails, all units stop.
• Slave units cannot be individually tested without the Master running.

7.2 Master/Slave (M/S) Synchronization With Acknowledgment

In ‘M/S Synchronization without Acknowledgment’, if a Slave reads a transponder and the Master does not, the Slave may miss the next pulse while it is processing the reading from that transponder.

In ‘M/S Synchronization with Acknowledgment’ the Master has to wait until all Slaves have completed their current cycles before initiating the next cycle. This is achieved by using a 4 wire synchronization bus (twin twisted pair) with the Slave transmit lines coupled back to the Master receive lines. [See the reference manual for further details].

With M/S synchronization, the readers are free running (gate Mode) and buffer the data or respond to their respective Host Computers via a point to point data connection. If configured as M/S synchronization, a Slave will not respond to a command from a Host Computer, unless it is getting the Master pulse – the cycle of a reader is suspended until the pulse is seen. The System Integrator should be aware that, if individual Host computers are issuing read commands i.e., “X” commands, these commands would only be actioned at the next pulse. Any delay configured into the Master will be affective to all Slaves.

Note: For correct functioning of M/S synchronization, the charge times of all Slaves must match those of the Master.

This method has the following advantages over M/S without Acknowledge:
• All units can Write/Program 64 bit tags (providing they do it together).
• They wait for the slowest to complete.

There are disadvantages too:
• The cable is a twin twisted pair.
The readers cannot be too close together if writing is performed, because of the possibility of corrupted data. This restriction also includes the Paged Read of MPT.

7.3 Triggered Synchronization

Triggered Synchronization is an M/S Synchronization Bus where the pulse signal is external and not an S2000 Series reader (although it is possible to change the software of a reader to allow it to function in this role). All readers are configured as Slaves but it is the external Master (trigger circuit) that issues the synchronization pulse at suitable intervals for the required operations on the transponder.

7.3.1 Timing Bus

The more complex version of this is known as a ‘Timing Bus’, when various time windows are defined for different operations that have to be carried out. For example, if multiple readers are required to read addressed pages of MPT, then to write data back to the transponders, the timing bus would start a read window lasting 90ms then initiate a time window of 320 ms for a write operation. In this way the differing times required for the two operations can be accommodated. At the same time, the readers would be instructed over their data cables, about which command to execute during each window.

The external Master unit must be capable of producing signals to the same voltage levels as the S2000 Series reader [see the reference manual]. This could be a custom timer board or the controls lines of a RS485 interface board.

7.3.2 PLC Output Timing Bus

Another type of timing bus can be used with a PLC output. All readers must be configured as Masters, but one reader has to be modified as shown below:

![Diagram of PLC Operated Timing Bus]

Figure 4. PLC Operated Timing Bus
Master-Slave Synchronization

When the PLC closes the relay, the signal on the synchronization bus initiates the next cycle at each reader. By controlling the pulses, the PLC, can coordinate different operations.

For instance, if the readers were alternately reading and writing (as in a Ski Pass application), the pulse might be as follows:

![Figure 5. Timing Pulses From a Master Controller](image)

‘Triggered’ and ‘Timing’ buses have the following advantages:

- The Master unit has total control over the coordination of the connected devices and can allow ‘windows’ for particular operations.
- Reading and Writing to 64 bit tags can be accommodated, if there is sufficient separation to prevent data corruption during the Write process.

There are disadvantages too:

- The Master unit is more complex and needs intelligence or to be controlled by an intelligent device.
- Cannot be used for addressing MP transponders if readers are close together because addressing conflicts can arise.

MPT represent the most challenging synchronization situations if ‘Paged reads’ and ‘Paged Writes’ need to be performed. To read 64 bit tags or the first page of MPT, the Reader’s transmitter is turned on for 50 ms and any transponder in the field that is sufficiently charged, responds with its data when it detects the end of the charge-up burst.

![Figure 6. Typical Charge-Only Read](image)

For a ‘Paged Read’, in addition to the charge-up burst, the transponder must hand the address of the page to be read. There is no checksum associated with this address, so if another reader is close to the first reader, the two addresses could become mixed and the wrong pages returned.
Note: Information: It is advisable that programmers confirm that the number of the returned page matches the requested page and immediately re-try if an error occurs.

Figure 7 shows the sequence of signals.

![Signal Sequence Diagram](image)

Figure 7. A Paged Read of a Multi-Page Tag

For the most effective method of writing data to particular pages of MPT in a multi-reader system, we recommend sending commands to each individual reader in sequence.

References

8 References

S2510 Reference Manual 11-06-21-031
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated