Connecting **ENUM** Terminal to an External Open-Drain Buffer

Mu Afzal

ABSTRACT

This application note describes how to connect the cPCI hot-swap signal **ENUM** on the PCI2250 to an external open-drain buffer.

Contents

1. **Introduction** ... 2
2. **Description of Problem** .. 2
3. **Workarounds** .. 2
 3.1 Using Texas Instruments’ Single-FET Bus Switch 2
 3.2 Using Fairchild Semiconductor’s MM74C906M Open-Drain Pulldown Buffer 3

List of Figures

1. Connecting PCI2250 to TI’s SN74CBTS1G125 2
2. Connecting PCI2250 to Fairchild’s MM74906 3
1 Introduction

The purpose of this application note is to describe how to connect the cPCI hot-swap signal ENUM on the PCI2250 to an external open-drain buffer.

2 Description of Problem

According to the cPCI hot-swap specification, the ENUM signal must be an open-drain output. However, ENUM is not implemented as an open-drain buffer on the PCI2250. The PCI2250 will actively drive ENUM when a hot-swap event has not occurred. This will cause contention on ENUM if another device is also driving this signal.

3 Workarounds

The problem can be easily fixed by adding an external open-drain buffer. Two solutions are proposed in this document.

3.1 Using Texas Instruments’ Single-FET Bus Switch

In this implementation, the ENUM output from the PCI2250 is connected to TI’s SN74CBTS1G125 single-FET bus switch, as shown in Figure 1.

![Figure 1. Connecting PCI2250 to TI's SN74CBTS1G125](image)

ENUM_IN is the output from the PCI2250 and an input to the switch. ENUM_OUT is the open-drain output from the switch, which should be used in the system.
3.2 Using Fairchild Semiconductor’s MM74C906M Open-Drain Pulldown Buffer

Fairchild Semiconductor’s MM74C906M part is available in the SOP or DIP package. System designers may choose the appropriate package to fit the needs of their systems. Using this buffer, ENUM should be connected as shown in Figure 2.

Figure 2. Connecting PCI2250 to Fairchild’s MM74906

ENUM IN is the output from the PCI2250 and an input to the open-drain buffer. ENUM OUT is the open-drain output from the buffer, which should be used in the system.
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated