
�	�����	��	� ���
�
	������

1995 Mixed-Signal Products

Application Report

SLAA013



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright   1999, Texas Instruments Incorporated



iii

Contents
Section Title Page

1 Introduction 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 The Ideal Transfer Function 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 Analog-to-Digital Converter (ADC) 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 Digital-to-Analog Converter (DAC) 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Sources of Static Error 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 Offset Error 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 Gain Error 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 Differential Nonlinearity (DNL) Error 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 Integral Nonlinearity (INL) Error 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 Absolute Accuracy (Total) Error 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Aperture Error 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Quantization Effects 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Ideal Sampling 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Real Sampling 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 Alaising Effects and Considerations 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1 Choice of Filter 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2 Types of Filter 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2.1 Butterworth Filter 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.2 Chebyshev Filter 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.3 Inverse Chebyshev Filter 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.4 Cauer Filter 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.5 Bessel-Thomson Filter 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.3 TLC04 Anti-Aliasing Butterworth Filter 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



iv

List of Illustrations
Figure Title Page

1. The Ideal Transfer Function (ADC) 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2. The Ideal Transfer Function (DAC) 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3. Offset Error 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4. Gain Error 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5. Differential Nonlinearity (DNL) 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6. Integral Nonlinearity (INL) Error 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7. Absolute Accuracy (Total) Error 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8. Aperture Error 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9. Quantization Effects 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10. Ideal Sampling 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11. Real Sampling 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12. Aliasing Effects and Considerations 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13. TLC04 Anti-aliasing Butterworth Filter 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1

1 INTRODUCTION

This application report discusses the way the specifications for a data converter are defined on a manufacturers data sheet
and considers some of the aspects of designing with data conversion products. It covers the sources of error that change
the characteristics of the device from an ideal function to reality.

2 THE IDEAL TRANSFER FUNCTION

The theoretical ideal transfer function for an ADC is a straight line, however, the practical ideal transfer function is a
uniform staircase characteristic shown in Figure 1. The DAC theoretical ideal transfer function would also be a straight
line with an infinite number of steps but practically it is a series of points that fall on the ideal straight line as shown in
Figure 2.

2.1 Analog-to-Digital Converter (ADC)
An ideal ADC uniquely represents all analog inputs within a certain range by a limited number of digital output codes.
The diagram in Figure 1 shows that each digital code represents a fraction of the total analog input range. Since the analog
scale is continuous, while the digital codes are discrete, there is a quantization process that introduces an error. As the
number of discrete codes increases, the corresponding step width gets smaller and the transfer function approaches an
ideal straight line. The steps are designed to have transitions such that the midpoint of each step corresponds to the point
on this ideal line.

The width of one step is defined as 1 LSB (one least significant bit) and this is often used as the reference unit for other
quantities in the specification. It is also a measure of the resolution of the converter since it defines the number of
divisions or units of the full analog range. Hence, 1/2 LSB represents an analog quantity equal to one half of the analog
resolution.

The resolution of an ADC is usually expressed as the number of bits in its digital output code. For example, an ADC
with an n-bit resolution has 2n possible digital codes which define 2n step levels. However, since the first (zero) step
and the last step are only one half of a full width, the full-scale range (FSR) is divided into 2n – 1 step widths.

Hence

1 LSB � FSR��2n – 1� for an n-bit converter
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Figure 1. The Ideal Transfer Function (ADC)
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2.2 Digital-to-Analog Converter (DAC)
A DAC represents a limited number of discrete digital input codes by a corresponding number of discrete analog output
values. Therefore, the transfer function of a DAC is a series of discrete points as shown in Figure 2. For a DAC, 1 LSB
corresponds to the height of a step between successive analog outputs, with the value defined in the same way as for
the ADC. A DAC can be thought of as a digitally controlled potentiometer whose output is a fraction of the full scale
analog voltage determined by the digital input code.
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Figure 2. The Ideal Transfer Function (DAC)
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3 SOURCES OF STATIC ERROR

Static errors, that is those errors that affect the accuracy of the converter when it is converting static (dc) signals, can
be completely described by just four terms. These are offset error, gain error, integral nonlinearity and differential
nonlinearity. Each can be expressed in LSB units or sometimes as a percentage of the FSR. For example, an error of 1/2
LSB for an 8-bit converter corresponds to 0.2% FSR.

3.1 Offset Error
The offset error as shown in Figure 3 is defined as the difference between the nominal and actual offset points. For an
ADC, the offset point is the midstep value when the digital output is zero, and for a DAC it is the step value when the
digital input is zero. This error affects all codes by the same amount and can usually be compensated for by a trimming
process. If trimming is not possible, this error is referred to as the zero-scale error.
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3.2 Gain Error
The gain error shown in Figure 4 is defined as the difference between the nominal and actual gain points on the transfer
function after the offset error has been corrected to zero. For an ADC, the gain point is the midstep value when the digital
output is full scale, and for a DAC it is the step value when the digital input is full scale. This error represents a difference
in the slope of the actual and ideal transfer functions and as such corresponds to the same percentage error in each step.
This error can also usually be adjusted to zero by trimming.
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3.3 Differential Nonlinearity (DNL) Error
The differential nonlinearity error shown in Figure 5 (sometimes seen as simply differential linearity) is the difference
between an actual step width (for an ADC) or step height (for a DAC) and the ideal value of 1 LSB. Therefore if the
step width or height is exactly 1 LSB, then the differential nonlinearity error is zero. If the DNL exceeds 1 LSB, there
is a possibility that the converter can become nonmonotonic. This means that the magnitude of the output gets smaller
for an increase in the magnitude of the input. In an ADC there is also a possibility that there can be missing codes i.e.,
one or more of the possible 2n binary codes are never output.
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3.4 Integral Nonlinearity (INL) Error
The integral nonlinearity error shown in Figure 6 (sometimes seen as simply linearity error) is the deviation of the values
on the actual transfer function from a straight line. This straight line can be either a best straight line which is drawn so
as to minimize these deviations or it can be a line drawn between the end points of the transfer function once the gain
and offset errors have been nullified. The second method is called end-point linearity and is the usual definition adopted
since it can be verified more directly.

For an ADC the deviations are measured at the transitions from one step to the next, and for the DAC they are measured
at each step. The name integral nonlinearity derives from the fact that the summation of the differential nonlinearities
from the bottom up to a particular step, determines the value of the integral nonlinearity at that step.
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3.5 Absolute Accuracy (Total) Error
The absolute accuracy or total error of an ADC as shown in Figure 7 is the maximum value of the difference between
an analog value and the ideal midstep value. It includes offset, gain, and integral linearity errors and also the quantization
error in the case of an ADC.
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4 APERTURE ERROR

Aperture
Error

ADC

fCLK
–VO
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Hold
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V = VOsin2πft

= 2πfVOcos2πft
dV
dt

= 2π fVO
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EA = TA = 1/2 LSB =
dV
dt

2VO

2n+1
2VO
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1
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f =
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Figure 8. Aperture Error

Aperture error is caused by the uncertainty in the time at which the sample/hold goes from sample mode to hold mode
as shown in Figure 8. This variation is caused by noise on the clock or the input signal. The effect of the aperture error
is to set another limitation on the maximum frequency of the input sine wave because it defines the maximum slew rate
of that signal. For a sine wave input as shown, the value of the input V is defined as:

V � VO sin2�ft

The maximum slew rate occurs at the zero crossing point and is given by:

dV
dt max

� 2�fVO

If the aperture error is not to affect the accuracy of the converter, it must be less than 1/2 LSB at the point of maximum
slew rate. For an n bit converter therefore:

EA � TA
dV
dt
� 1�2 LSB �

2 VO
2n�1

Substituting into this gives

2 VO
2n�1

� 2�fVOTA

So that the maximum frequency is given by

fMAX �
1

TA�2n�1
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5 QUANTIZATION EFFECTS

The real world analog input to an ADC is a continuous signal with an infinite number of possible states, whereas the
digital output is by its nature a discrete function with a number of different states determined by the resolution of the
device. It follows from this therefore, that in converting from one form to the other, certain parts of the analog signal
that were represented by a different voltage on the input are represented by the same digital code at the output. Some
information has been lost and distortion has been introduced into the signal. This is quantization noise.

For the ideal staircase transfer function of an ADC, the error between the actual input and its digital form has a uniform
probability density function if the input signal is assumed to be random. It can vary in the range ±1/2 LSB or ±q/2 where
q is the width of one step as shown in Figure 9.

Error at the jth step

Ej = (Vj – VI)

The mean square error over the step

Error E

+1/2
LSB

–1/2
LSB

Quantization
Error

VI

Digital
Code

–q1/2
+q1/2

Ej

1
q1

+q/2

Ej  dE = q

Assuming equal steps, the total error is
N2 = q2/12 (Mean square quantization noise)

2

 

For an input sine wave F(t) = A sinωt, the signal
power

F2(t) =
1
2π ∫

0

2π

A2sin2ωt dωt =
A2

2

and q � 2A
2n �

A
2n–1

SNR � 10 Log �F2

n2
� � 10 Log � A2�2

A2�3 � 2n
�

SNR � 6.02n � 1.76 dB

E 2
j = 2

–q/2 12
∫

Figure 9. Quantization Effects

p(�) � 1
q for �– q

2
� ���

q
2
�

p(�) � 0

Otherwise

Where

The average noise power (mean square) of the error over a step is given by

N
2
� 1

q �
�q�2

q�2

�
2d�

which gives

N
2
�

q2

12
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The total mean square error, N2, over the whole conversion area is the sum of each quantization levels mean square
multiplied by its associated probability. Assuming the converter is ideal, the width of each code step is identical and
therefore has an equal probability. Hence for the ideal case

N2 �
q2

12

Considering a sine wave input F(t) of amplitude A so that

F(t) � Asin�t

which has a mean square value of F2(t), where

F2(t) � 1
2�
�
2�

0

A2sin2(�t)dt

which is the signal power. Therefore the signal to noise ratio SNR is given by

SNR(dB) � 10Log ��A2
2
	 �q2

12
	�

But

q � 1 LSB � 2A
2 n �

A
2n–1

Substituting for q gives

SNR(dB) � 10Log ��A2
2
	 � A2

3� 22n
	� � 10 Log �3� 22n

2
	

� 6.02n� 1.76dB

This gives the ideal value for an n bit converter and shows that each extra 1 bit of resolution provides approximately
6 dB improvement in the SNR.

In practice, the errors mentioned in section 3 introduce nonlinearities that lead to a reduction of this value. The limit of
a 1/2 LSB differential linearity error is a missing code condition which is equivalent to a reduction of 1 bit of resolution
and hence a reduction of 6 dB in the SNR. This then gives a worst case value of SNR for an n-bit converter with 1/2 LSB
linearity error.

SNR (worst case) � 6.02n� 1.76� 6 � 6.02n � 4.24 dB

Hence we have established the boundary conditions for the choice of the resolution of the converter based upon a desired
level of SNR.
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6 IDEAL SAMPLING

In converting a continuous time signal into a discrete digital representation, the process of sampling is a fundamental
requirement. In an ideal case, sampling takes the form of a pulse train of impulses which are infinitesimally narrow yet
have unit area. The reciprocal of the time between each impulse is called the sampling rate. The input signal is also
idealized by being truly bandlimited, containing no components in its spectrum above a certain value (see Figure 10).
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Figure 10. Ideal Sampling

The ideal sampling condition shown is represented in both the frequency and time domains. The effect of sampling in
the time domain is to produce an amplitude modulated train of impulses representing the value of the input signal at the
instant of sampling. In the frequency domain, the spectrum of the pulse train is a series of discrete frequencies at
multiples of the sampling rate. Sampling convolves the spectra of the input signal with that of the pulse train to produce
the combined spectrum shown, with double sidebands around each discrete frequency which are produced by the
amplitude modulation. In effect some of the higher frequencies are folded back so that they produce interference at lower
frequencies. This interference causes distortion which is called aliasing.

If the input signal is bandlimited to a frequency f1 and is sampled at frequency fs, as shown in the figure, overlap (and
hence aliasing) does not occur if

f1 � fs� f1 i.e., 2f1 � fs

Therefore if sampling is performed at a frequency at least twice as great as the maximum frequency of the input signal,
no aliasing occurs and all of the signal information can be extracted. This is Nyquist’s Sampling Theorem, and it provides
the basic criteria for the selection of the sampling rate required by the converter to process an input signal of a given
bandwidth.
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7 REAL SAMPLING

The concept of an impulse is a useful one to simplify the analysis of sampling. However, it is a theoretical ideal which
can be approached but never reached in practice. Instead the real signal is a series of pulses with the period equalling
the reciprocal of the sampling frequency. The result of sampling with this pulse train is a series of amplitude modulated
pulses (see Figure 11).
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Figure 11. Real Sampling

Examining the spectrum of the square wave pulse train shows a series of discrete frequencies, as with the impulse train,
but the amplitude of these frequencies is modified by an envelope which is defined by (sin x)/x [sometimes written
sinc(x)] where x in this case is πfs. For a square wave of amplitude A, the envelope of the spectrum is defined as

Envelope � A��
T
��sin��fs��� � �fs�

The error resulting from this can be controlled with a filter which compensates for the sinc envelope. This can be
implemented as a digital filter, in a DSP, or using conventional analog techniques.
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8 ALIASING EFFECTS AND CONSIDERATIONS

No signal is truly deterministic and therefore in practice has infinite bandwidth. However, the energy of higher frequency
components becomes increasingly smaller so that at a certain value it can be considered to be irrelevant. This value is
a choice that must be made by the system designer.

As shown, the amount of aliasing is affected by the sampling frequency and by the relevant bandwidth of the input signal,
filtered as required. The factor that determines how much aliasing can be tolerated is ultimately the resolution of the
system. If the system has low resolution, then the noise floor is already relatively high and aliasing does not have a
significant effect. However, with a high resolution system, aliasing can increase the noise floor considerably and
therefore needs to be controlled more completely.

One way to prevent aliasing is to increase the sampling rate, as shown. However, the frequency is limited by the type
of converter used and also by the maximum clock rate of the digital processor receiving and transmitting the data.
Therefore, to reduce the effects of aliasing to within acceptable levels, analog filters must be used to alter the input signal
spectrum (see Figure 12).
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Figure 12. Aliasing Effects and Considerations

8.1 Choice of Filter

As shown with sampling, there is an ideal solution to the choice of a filter and a practical realization that compromises
must be made. The ideal filter is a so-called brickwall filter which introduces no attenuation in the passband, and then
cuts down instantly to infinite attenuation in the stopband. In practice, this is approximated by a filter that introduces
some attenuation in the passband, has a finite rolloff, and passes some frequencies in the stopband. It can also introduce
phase distortion as well as amplitude distortion. The choice of the filter order and type must be decided upon so as to
best meet the requirements of the system.

8.2 Types of Filter

The basic types of filters available to the designer are briefly presented for comparison purposes. This is not intended
to be a full analysis of the subject; therefore, other texts should be referenced for more details.
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8.2.1 Butterworth Filter

A Butterworth (maximally flat) filter is the most commonly used general purpose filter. It has a monotonic passband
with the attenuation increasing up to its 3-dB point which is known as the natural frequency. This frequency is the same
regardless of the order of the filter. However, by increasing the order of the filter, the roll-off in the passband moves closer
to its natural frequency and the roll-off in the transition region between the natural frequency and the stopband becomes
sharper.

8.2.2 Chebyshev Filter

The Chebyshev equal ripple filter distributes the roll-off across the whole passband. It introduces more ripple in the
passband but provides a sharper roll-off in the transition region. This type of filter has poorer transient and step responses
due to its higher Q values in the stages of the filter.

8.2.3 Inverse Chebyshev Filter

Both the Butterworth and Chebyshev filters are monotonic in the transition region and stopband. Since ripple is allowed
in the stopband, it is possible to make the roll-off sharper. This is the principle of the Inverse Chebyshev, based on the
reciprocal of the angular frequency in the Chebyshev filter response. This filter is monotonic in the passband and can
be flatter than the Butterworth filter while providing a greater initial roll-off than the Chebyshev filter.

8.2.4 Cauer Filter

The Cauer or (Elliptic) filter is nonmonotonic in both the pass and stop bands, but provides the greatest roll-off in any
of the standard filter configurations.

8.2.5 Bessel-Thomson Filter

All of the types mentioned above introduce nonlinearities into the phase relationship of the component frequencies of
the input spectrum. This can be a problem in some applications when the signal is reconstructed. The Bessel-Thomson
or linear delay filter is designed to introduce no phase distortion but this is achieved at the expense of a poorer amplitude
response.

In general, the performance of all of these types can be improved by increasing the number of stages, i.e., the order of
the filter. The penalty for this of course is the increased cost of components and board space required. For this reason,
an integrated solution using switched capacitor filter building blocks which provide comparable performance with a
discrete solution over a range of frequencies from about 1 kHz to 100 kHz might be appropriate. They also provide the
designer with a compact and cost effective solution.
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8.3 TLC04 Anti-Aliasing Butterworth Filter
The TLC04 fourth order Butterworth filter features include the following:

• Low clock to cutoff frequency error . . . 0.8%
• Cutoff depends only on stability of external clock
• Cutoff range of 0.1 Hz to 30 kHz
• 5-V to 12-V operation
• Self clocking or both TTL and COS compatible

As detailed previously the Butterworth filter generally provides the best compromise in filter configurations and is by
far the easiest to design. The Butterworth filter’s characteristic is based on a circle which means that when designing
filters, all stages to the filter have the same natural frequency enabling simpler filter design. Most modern designs which
use operational amplifiers are based on building the whole transfer function by a series of second order numerator and
denominator stages (a Biquad stage). The Butterworth design is simplified, when using these stages, because each stage
has the same natural frequency. This can easily be converted to a switched capacitor filter (SCF) which has very good
capacitor matching and accurately synthesized RC time constants.

The switched capacitor technique is demonstrated in Figure 13. Two clocks operating at the same frequency but in
complete antiphase, alternately connect the capacitor C2 to the input and the inverting input of an operational amplifier.
During Φ1, charge Q flows onto the capacitor equal to VIC2. The switch is considered to be ideal so that there is no series
resistance and the capacitor charges instantaneously. During Φ2, the switches change so that C2 is now connected to the
virtual earth at the operational amplifier input. It discharges instantaneously delivering the stored charge Q.
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The average current that flows IAV depends on the frequency of the clocks T so that

IAV � Q
T
� VI

C2
T

� VIC2FCLK

Therefore, the switched capacitor looks like a resistor of value

Req �
VI

IAV
� 1

C2FCLK

The advantage of the technique is that the time constant of the integrator can be programmed by altering this equivalent
resistance, and this is done by simply altering the clock frequency. This provides precision in the filter design, because
the time constant then depends on the ratio of two capacitors which can be fabricated in silicon to track each other very
closely with voltage and temperature. Note that the analysis assumes VI to be constant so that for an ac signal, the clock
frequency must be much higher than the frequency of the input.

The TLC04 is one such filter which is internally configured to provide the Butterworth low-pass filter response, and the
cut-off frequency for the device is controlled by a digital clock. For this device, the cut-off frequency is set simply by
the clock frequency so that the clock to cut-off frequency ratio is 50:1 with an accuracy of 0.8%. This enables the cut-off
frequency of the filter to be tied to the sampling rate, so that only one fundamental clock signal is required for the system
as a whole. Another advantage of SCF techniques means that fourth order filters can be attained using only one integrated
circuit and they are much more easily controlled.

The response of an nth order Butterworth filter is described by the following equation.

Attenuation � �1 � � ƒ
ƒc
�2n�1�2

The table below lists the fourth order realization in the TLC04.

FREQUENCY ATTENUATION
(FACTOR)

ATTENUATION
(dB)

PHASE
(DEGREE)

Fc/2 0.998 0.02 26.6

Fc 0.707 3 45

2Fc 0.0624 24 63.4

4Fc 0.00391 48 76

8Fc 0.000244 72 82.9

12Fc 0.000048 86 85.2

16Fc 0.000015 96 86.4

This means that sampling at 8 times the cut off frequency gives an input-to-aliased signal ratio of 72 dB, which is less
than ten bit quantization noise distortion.
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