ABSTRACT

A demo/test system has been built as a simple example for using the TLV320AIC20/21/24/25 codecs. The hardware part of the system includes the AIC20/21/24/25 EVM boards, an AIC development interface board, and a TMS320C5402™ DSP DSK board. The C54xx software, in assembly and C, is implemented on the 'C5402 DSP. A 2-device/4-channel and a 6-device/12-channel codec system are presented in this application report. Project collateral discussed in this application report can be downloaded from the following URL: http://www.ti.com/lit/zip/SLAA153.

Contents

1 Introduction ... 2
2 Hardware System .. 2
 2.1 2-Device/4-Channel Cascade Operation 2
 2.2 6-Device/12-Channel Cascade Operation 5
3 Software Design .. 6
4 Demo/Test Procedure ... 7
5 References .. 8

List of Figures

1 2-Device/4-Channel AIC20/21/24/25 EVM System and Hardware Connections 4
2 6-Device/12-Channel System EVM Boards Connections .. 5
3 Selected Analog Inputs/Outputs for the AIC20/21/24/25 EVM .. 6

List of Tables

1 Summary of AIC20/21/24/25 Differences ... 2
2 Configuration of the AIC20/21/24/25 EVM Board .. 3
3 Configuration of the AIC Development Platform Board ... 3
4 Configuration of the C5402 DSK Board DIP Switches .. 3
5 Configuration of the C5402 DSK Board Straps ... 3
6 Configuration of the Slave AIC20/21/24/25 EVM Board .. 5

TMS320C5402 is a trademark of Texas Instruments Incorporated.
Trademarks are the property of their respective owners.
1 Introduction

By applying the 16-bit 26-ksps dual channel codecs, TLV320AIC20, TLV320AIC21, TLV320AIC24, or TLV320AIC25, this report develops a demo/test system that demonstrates and provides the following:

- The application example
- The basic functions
- The startup software code

TI’s TMS320C5402 DSK, and the associated Code Composer Studio (CCS), are utilized as the development platform. The discussion and software/firmware code are applicable for systems that use these codecs and the C54xx interface.

2 Hardware System

The four codec devices addressed in this application report, TLV320AIC20, TLV320AIC21, TLV320AIC24, and TLV320AIC25, share the exact same core, with the differences only in the digital I/O power supply range and the name and number of the analog I/O ports. The differences are summarized in Table 1. For more details on these devices, refer to the corresponding data sheets [1], [2], [3], and [4] listed in the reference section.

<table>
<thead>
<tr>
<th>DIFFERENCE</th>
<th>TLV320AIC20</th>
<th>TLV320AIC21</th>
<th>TLV320AIC24</th>
<th>TLV320AIC25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital I/O Power Supply</td>
<td>2.7 V – 3.6 Vdc</td>
<td>1.1 V – 3.6 Vdc</td>
<td>The same as ‘AIC20</td>
<td>The same as ‘AIC21</td>
</tr>
<tr>
<td>Analog Input Names</td>
<td>MICI+/MICI–</td>
<td>LINEI+/LINEI–</td>
<td>The same as ‘AIC20</td>
<td>The same as ‘AIC24</td>
</tr>
<tr>
<td></td>
<td>HNSI+/HNSI–</td>
<td>HDSI+/HDSI–</td>
<td>MICI+/MICI–</td>
<td>INP1/INM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIDI+/CIDI–</td>
<td>INP4/INM4</td>
<td></td>
</tr>
<tr>
<td>Analog Output Names</td>
<td>LINEO+/LINEO–</td>
<td>HNSO+/HNSO–</td>
<td>The same as ‘AIC20</td>
<td>OUTP1/OUTM1</td>
</tr>
<tr>
<td>Number of Analog Output Ports</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

2.1 2-Device/4-Channel Cascade Operation

To build a 2-device/4-channel codec system, the following hardware boards are used for this application report:

- One TLV320AIC20/21/24/25 EVM board, which has two installed ‘AIC20 devices
- One TLV320AIC development board, which provides the hardware interface between the Codecs and a DSK or EVM board, such as the ‘C5402 DSK, ‘C6201 EVM, ‘C6211DSK, or ‘C6711 DSK
- One TMS320C5402 DSK board (part# TMDS320005402)

Before these boards are connected to form a hardware system, there are some jumpers, straps, or switches that need to be set up on the boards. Such a procedure is called the hardware configuration. Table 2 through Table 5 lists the setting positions for the hardware configuration.
Table 2. Configuration of the AIC20/21/24/25 EVM Board

<table>
<thead>
<tr>
<th>JUMPER NO.</th>
<th>POSITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Installed</td>
<td>Connects 3.3-V analog drive power ground to AGND (vs disconnect of the drive ground to AGND)</td>
</tr>
<tr>
<td>W2</td>
<td>2~3</td>
<td>Connects the first channel FSD to the second channel’s FS (vs connects the FSD to 1 or 0)</td>
</tr>
<tr>
<td>W3</td>
<td>Not Installed (12: Connects the first channel FSD high and 23: Connects the first channel FSD low)</td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td>1~2</td>
<td>Connects the first channel M/S high so that it is a master (vs connects the 1st channel M/S low)</td>
</tr>
<tr>
<td>W5</td>
<td>Installed</td>
<td>Connects analog and digital grounds together (vs separate analog and digital grounds on the board)</td>
</tr>
</tbody>
</table>

Table 3. Configuration of the AIC Development Platform Board

<table>
<thead>
<tr>
<th>JUMPER NO.</th>
<th>POSITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>1~2</td>
<td>Codec EVM system power-up through DSK board (vs through an external power supply)</td>
</tr>
<tr>
<td>W2</td>
<td>1~2</td>
<td>MCLK source: DSP’s CLKOUT (vs through the on-board 100-MHz oscillator)</td>
</tr>
</tbody>
</table>

Table 4. Configuration of the C5402 DSK Board DIP Switches

<table>
<thead>
<tr>
<th>SWITCH NO.</th>
<th>NAME</th>
<th>ON/OFF</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JTAGSEL</td>
<td>OFF</td>
<td>Use external (e.g., XDS510PP emulator)</td>
</tr>
<tr>
<td>2</td>
<td>MP/MC</td>
<td>ON</td>
<td>At microcontroller mode</td>
</tr>
<tr>
<td>3</td>
<td>CLKMD3</td>
<td>ON</td>
<td>The CLKMD pins are set to 0 1 0, which sets the default DSP CPU clock frequency = 100 MHz (20 MHz x 5)</td>
</tr>
<tr>
<td>4</td>
<td>CLKMD2</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CLKMD1</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DMSEL</td>
<td>OFF</td>
<td>External memory is onboard</td>
</tr>
<tr>
<td>7</td>
<td>USER 1</td>
<td>ON</td>
<td>User S/W defined (0)</td>
</tr>
<tr>
<td>8</td>
<td>USER 0</td>
<td>ON</td>
<td>User S/W defined (0)</td>
</tr>
</tbody>
</table>

NOTE: ON = 0 and OFF = 1

Table 5. Configuration of the C5402 DSK Board Straps

<table>
<thead>
<tr>
<th>STRAP NAME</th>
<th>SETTING</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP1</td>
<td>1 to 2</td>
<td>CPLD program via J1</td>
</tr>
<tr>
<td>JP2</td>
<td>2 to 3</td>
<td>Normal boot mode</td>
</tr>
<tr>
<td>JP3</td>
<td>2 to 3</td>
<td>Low-impedance output for speaker driver</td>
</tr>
<tr>
<td>JP4</td>
<td>Installed</td>
<td>125-mA DAA loop current</td>
</tr>
</tbody>
</table>

NOTE: All strap and jumper settings presented here are the manufacturer default settings.

After the hardware configuration, connect and build the system as shown in Figure 1.
Figure 1. 2-Device/4-Channel AIC20/21/24/25 EVM System and Hardware Connections

Two additional connections are required:

- On the top of the AIC20/21/24/25 EVM board, three more jumpers need to be connected on the P1 connector:
 - Pin#9 with pin#10
 - Pin#11 with pin#12
 - Pin#13 with pin#14

- Some external analog input/output devices, such as a microphone, signal generator, speaker, and oscilloscope need to be connected to the system. Understanding that the actual input/output to a codec channel is programmable, the analog I/O connection in Figure 1 is based on the software configuration which is discussed in Chapter 3.
2.2 6-Device/12-Channel Cascade Operation

By adding two more codec EVM boards on top of the 4-channel system, a 6-device/12-channel EVM system is obtained. The additional hardware connections are shown in Figure 2.

![Figure 2. 6-Device/12-Channel System EVM Boards Connections](image)

All discussions on the 4-channel system apply to the 12-channel system, with two additional AIC EVM boards configured. Table 6 lists the configuration of the two EVM boards. Note that all of the codec devices on the boards are in the slave mode.

<table>
<thead>
<tr>
<th>JUMPER #</th>
<th>POSITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Not Installed</td>
<td>Disconnects 3.3-V analog drive power ground to AGND (the two grounds need to be connected only at one point on the first codec EVM board).</td>
</tr>
<tr>
<td>W2</td>
<td>2–3</td>
<td>Connects the first channel FSD to the second channel’s FS</td>
</tr>
<tr>
<td>W3</td>
<td>Not Installed</td>
<td>Don’t care</td>
</tr>
<tr>
<td>W4</td>
<td>1–2</td>
<td>Connects the first channel M/S low as a slave</td>
</tr>
<tr>
<td>W5</td>
<td>Installed</td>
<td>Disconnects analog and digital grounds (the two grounds need to be connected only at one point on the first codec EVM board).</td>
</tr>
</tbody>
</table>

As stated in the previous section, the three jumpers on connector P1 should only appear on the top AIC20/21/24/25 EVM board. In this case, the three jumpers (of P1) on the first AIC EVM board have been removed and moved to P1 on the third (top) AIC EVM board.
3 Software Design

Software configuration sets up the ‘C54xx DSP (MMRs) and all of the codec channels’ control registers. For software configuration of the ‘C54xx DSP, and especially its McBSP(s), refer to reference [5] through reference [7]; and for the definition of the codec’s control registers, refer to references [1], [2], [3], or [4]. The files InitC5402.asm and InitAIC20.asm in the demo/test code package provide configuration examples for the DSP and the AIC20 codec and their interfaces, respectively.

Sample Frequency — As stated in the previous section, MCLK is supplied from the DSP’s CLKOUT. With the DSP’s maximum operating speed of 100 MHz, CLKOUT is set at 50 MHz. By setting M = 20, N = 5, P = 2 (50 M/16/M/N/P = 15625) in the demo/test code, the sample frequency is set to 15.625 KHz.

Analog Input/Output Selection — For each of the codec channels, there are five analog inputs and four (or three for AIC24/25) analog outputs that are accessible through the software configuration. Figure 3 illustrates the selected input/output for each of the codec channels.

![Figure 3. Selected Analog Inputs/Outputs of the AIC20/21/24/25 EVM](image)

* The hex code for configuring the corresponding codec control registers.

To test/demo the 2- or 6-AIC20/21/24/25 DSP/codec system though the proper external audio devices, such as a microphone, a speaker, or a scope, follow Figure 3 and connect these external devices to the system.

The actual code for the software configuration can be found in InitAIC20.asm. The complete demo/test software/firmware code can be downloaded from the TI website at:

www.ti.com

The file named AIC20SW_2C.zip is for two AIC20/21/24/25 cascade operation and the file named AIC20SW_6C.zip is for 6-device cascade operation.
4 Demo/Test Procedure

Perform the demo/test with the EVM system according to the following procedure:

1. Power OFF all equipment
2. Set the jumpers/switches on all three layers of boards (DSP, AIC development platform, and AIC20/21/24/25 EVM(s)). Refer to Table 2 through Table 6 of this application report for the positions.
3. Plug the three layers of boards together (note there is no keying between the AIC development platform, also called the AIC mother board, and the AIC20/21/24/25 EVM board connectors, and therefore special precautions are necessary for proper connections). Refer to Figure 1 and Figure 2 for the connections.
4. Connect the JTAG or the parallel cable to the DSK board.
5. Connect the microphone, signal generator, speakers, and scope probes to the system’s analog connections, refer to Figure 1 and/or Figure 3.
6. Power up and boot up the PC.
7. At the PC, unzip the file AIC20SW_2C.zip for 2–device system or AIC20SW_6C.zip for a 6–device system and save to proper directories.
8. Connect the ac-to-dc power supply to the DSK board (refer to Figure 1), and power-up the whole EVM system. At the P1 connector at the top of the AIC EVM board, verify the following measurements:
 - 3.3-Vdc at Pins #25 and #27
 - 1.8-Vdc at Pins #29 and #31
 - 3.3-Vdc at Pins #33 and #35
 - 3.3-Vdc at Pins #37 and #39
 - Pins #2, #4, #6, #28, #30 and #32 are digital ground
 - Pins #34, #36, #38 and #40 are analog ground
9. Push the RESET button on the AIC development platform board, refer to Figure 1 for the location (S1), to hardware-reset all of the codecs.
10. Attach the scope’s probes at the following test points on the AIC motherboard (development platform):
 - TP8: SCLK
 - TP9: FS (master FS)
 - TP10: DIN (Codec)/DX (DSP)
 - TP11: DOUT (Codec)/DR(DSP)
 And observe the power-up default digital interface conditions and verify the following:
 - FS frequency = MCLK/16/16/8/6 = 4096 Hz
 - SCLK Frequency = FS*16*(# of Codecs)*2 = 520.833 kHz
 (for a 2 AIC20/21/24/25 system — one EVM board)
 or = 1562.5 kHz
 (for a 6 AIC20/21/24/25 system — three EVM boards)
No DIN since the DSP has not run yet

A certain DOUT can be observed

All signals sync to FS

11. At the PC, run CCS, load the *.out file, and run the program

12. The results:

You hear a DTMF tone from speaker#1 (J2) generated by the DSP — DTMFTone.c.

When talking into the microphone (J16), you hear speaker#2 (J11).

Probe J5 and you see a full-scale pure sine wave (about 244 Hz) generated by the DSP — SineGen.c.

Input a signal through the signal generator to J13. Observe and compare the original with the codec channel’s entire hardware/software loop-back signals through the probes at J13 and J3.

5 References

1. TLV320AIC20, Low Power, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel Codec, data manual (SLAS363A)
2. TLV320AIC21, Low Power, Low Voltage, 1.1 V to 3.6 V I/O, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel Codec, data manual (SLAS365A)
3. TLV320AIC24, Low Power, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel Codec, Data Manual (SLAS366A)
4. TLV320AIC25, Low Power, Low Voltage, 1.1 V to 3.6 V I/O, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel Codec, data manual (SLAS367A)
5. TMS320VC5402 Fixed-Point Digital Signal Processor (SPRS079E)
6. TMS320C54x DSP CPU and Peripherals, Reference Set Volume 1 (SPRU131G)
7. TMS320C54x DSP Enhanced Peripherals, Reference Set Volume 5 (SPRU302)
8. TMS320C54x DSP Mnemonic Instruction Set, Reference Set Volume 2 (SPRU172C)
9. TMS320C54x Assembly Language Tools, User’s Guide (SPRU102E)
10. TMS320C54x Optimizing C/C++ Compiler, User’s Guide (SPRU103F)