
1SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

Application Report
SLAA208A–October 2004–Revised August 2010

Interfacing an EEPROM via I2C Using the MSP430

William Goh .. MSP430 Applications
Christian Hernitscheck .. MSP430 Applications Europe

ABSTRACT
This report describes the implementation of I2C communication between the MSP430F16x USART or the
MSP430F2xx USCI I2C hardware module and an external EEPROM (24xx128). The application report
implements various EEPROM protocols such as Byte Write, Page Write, Current Address Read, Random
Address Read, Sequential Read and Acknowledge Polling.

Code for this application report can be downloaded from www.ti.com/lit/zip/slaa208.

Contents
1 Example Schematic ... 2
2 MSP430 Source Code .. 3
3 Example... 6
4 References ... 7

List of Figures

1 Interfacing the 24xx128 EEPROM to the MSP430 via I2C Bus.. 2
2 EEPROM "Byte Write" Command ... 3
3 EEPROM "Page Write" Command .. 4
4 EEPROM "Random Access Read" Command... 4
5 EEPROM "Current Address Read" Command... 5
6 EEPROM "Sequential Read" Command.. 5

List of Tables

1 Project Filenames and Sescriptions ... 3

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A
http://www.ti.com/lit/zip/slaa208

MSP430

24xx65

R2

Vcc Vcc

R1

A0

A1

A2

SCL

SDA

VCC

VSS

I
2
C Bus

Vcc

SCL

SDA

AVcc

AVss

DVcc

DVss

RST/NMI

Vcc

0.1uF

R3

Example Schematic www.ti.com

2 SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

1 Example Schematic
The schematic in Figure 1 shows how an EEPROM device can be connected to a MSP430 that has a
hardware I2C module. On the F16x devices, it uses a USART module. On the F2xx devices, it uses an
USCI module.

Figure 1. Interfacing the 24xx128 EEPROM to the MSP430 via I2C Bus

On the 24xx128, the user configurable pins A0, A1, and A2 define the I2C device addresses of the
connected EEPROMs. The inputs are used to allow multiple devices to operate on the same bus. The
logic levels applied to these pins define the address block occupied by the device in the address map. A
particular device is selected by transmitting the corresponding bits (A0, A1, and A2) in the control byte.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A

www.ti.com MSP430 Source Code

3SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

2 MSP430 Source Code
The software example shows how to use the MSP430 USART and USCI module for communication with
EEPROM via I2C bus. Depending on the memory size of the EEPROM the addressing scheme may look
different. There are EEPROM versions that only need one byte for addressing (memory size of 256 bytes
or less) and there are EEPROM versions that need two bytes. The example code uses two bytes for
addressing. A detailed description of the MSP430 USART and USCI module operation in I2C mode can be
found in references [1] and [2].

There are 2 folders in this project which are files for 1xx and 2xx devices. Both folders contain the same
filename and functionality:

Table 1. Project Filenames and Sescriptions

Filename Description
Main.c Contains the main function that demonstrates various examples on how to use the available EEPROM functions
I2Croutines.c EEPROM function library source file
I2Croutines.h EEPROM function library header definitions file

The I2C routines have the functions described in the following sections and can be used as a library.

2.1 InitI2C

Declaration void InitI2C(unsigned char eeprom_i2c_address);
Description Initializes the MSP430 for I2C communication
Arguments eeprom_i2c_address

Target EEPROM address to be initialized
Return none

2.2 EEPROM_ByteWrite

Declaration void EEPROM_ByteWrite(unsigned int Address , unsigned char Data);
Description A byte write command that writes a byte of data into the specified address that is provided.
Arguments Address

Address to write in the EEPROM
Data

Data to be written
Return none

Figure 2 shows the Byte Write protocol.

S Contol Byte R/W ACK Word Address 1 ACK Word Address 2 ACK Data ACK P
Figure 2. EEPROM "Byte Write" Command

When using a 24xx128 EEPROM, the upper seven bits of the control byte is always structured in the
following way: The upper 4 bits are a fixed number (1010) and the lower 3 bits are defined by the logical
level connected to the pins A2, A1, and A0 of the EEPROM.

For storing one byte of data in the EEPROM, four bytes have to be sent via I2C. The first byte is the
control byte, which is followed by the EEPROM address. This is the address a byte to be stored in the
EEPROM. Large EEPROM memory uses two bytes for defining the EEPROM address.

The fourth and last byte is the actual data that is stored in the accessed EEPROM. The data is written into
the EEPROM address that is transmitted as a part of the command format (see Figure 2).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A

MSP430 Source Code www.ti.com

4 SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

2.3 EEPROM_PageWrite

Declaration void EEPROM_PageWrite(unsigned int StartAddress , unsigned char * Data , unsigned char Size);
Description A Page Write command that writes a specified size of data from the data pointer into the specified address.
Arguments StartAddress

Starting point address to start writing in the EEPROM
Data

Pointer to data array to be written
Size

Size of data to be written
Return none

Figure 3 shows the Page Write protocol implementation. The control byte is first transferred followed by
the address. Then, a sequence of data is transmitted. The Page Write command writes 64-bytes at a time
as per the EEPROM datasheet [5]. Then the EEPROM is polled for an acknowledge via the acknowledge
polling function to ensure that the data write is complete before sending the next 64-byte packet. This 64-
byte packetization of data array buffer is handled automatically inside the page write function.

S Contol Byte W ACK Word
Address 1 ACK Word

Address 2 ACK Data Byte 0 ACK ... Data Byte 63 ACK P

Figure 3. EEPROM "Page Write" Command

2.4 EEPROM_AckPolling

Declaration void EEPROM_AckPolling(void);
Description The Acknowledge Polling is used to check if the write cycle of the EEPROM is complete. After writing data into the

EEPROM, the Acknowledge Polling function should be called.
Arguments none
Return none

The EEPROM requires a finite time to complete a write cycle. This is typically defined in the EEPROM
datasheet however it is possible that the write cycles may complete faster than the specified time.

The function EEPROM_AckPolling() takes advantage of the fact that the EEPROM will not acknowledge
its own address as long as it is busy finishing the write cycle. This function continues to send a control
byte until it is acknowledged, meaning that the function will only return after the write cycle is complete.

2.5 EEPROM_RandomRead

Declaration unsigned char EEPROM_RandomRead(unsigned int Address);
Description The Random Read command of the EEPROM allows reading the contents of a specified memory location.
Arguments Address

Address to be read from the EEPROM
Return Data byte from EEPROM

Figure 4 shows the Random Address read protocol. It uses master-transmit and master-receive operation
without releasing the bus in between. This is achieved by using a repeated START condition.

S Contol Byte W ACK Word Address 1 ACK Word Address 2 ACK S Control Byte R ACK Data NACK
Figure 4. EEPROM "Random Access Read" Command

First the address counter of the EEPROM has to be set. This is done using a master-transmit operation.
After sending the address, the MSP430 is configured for master-receive operation and initiates data read
by sending a repeated START condition.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A

www.ti.com MSP430 Source Code

5SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

2.6 EEPROM_CurrentAddressRead

Declaration unsigned char EEPROM_CurrentAddressRead(void);
Description The EEPROM internal address pointer is used. After execution of a write or read operation the internal address

pointer is automatically incremented.
Arguments none
Return Data byte from EEPROM

Figure 5 shows the current address read operation. The MSP430 is configured as a master -receive
before executing this command. Before the communication is started by the MSP430 the I2C module is
configured to master-receive mode.

S Contol Byte R ACK Data NACK P
Figure 5. EEPROM "Current Address Read" Command

After the STOP condition has occurred the received data is returned to the caller of the function.

2.7 EEPROM_SequentialRead

Declaration void EEPROM_SequentialRead(unsigned int Address , unsigned char * Data , unsigned int Size);
Description The sequential read is used to read a sequence of data specified by the size and starting from the known

address. The data pointer points to where the data is to be stored.
Arguments StartAddress

Starting point address to start reading from the EEPROM
Data

Pointer to data array to be stored
Size

Size of data to be read
Return none

Figure 6 shows the sequential read protocol implementation. The MSP430 is configured as a master
transmitter and sends out the control byte followed by the address. After that, a re-start is issued with the
MSP430 configured as a master receiver. When the last character is read, a stop command is issued.

S Control
Byte W ACK Word

Address 1 ACK Word
Address 2 ACK S Control

Byte R ACK Data
Byte 0 ACK ... Data

Byte 63 ACK P

Figure 6. EEPROM "Sequential Read" Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A

Example www.ti.com

6 SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

3 Example
The following example shows how to use the functions from the files "I2Croutines.c":

#include "msp430.h"
#include "I2Croutines.h"

unsigned char read_val[150];
unsigned char write_val[150];
unsigned int address;

int main(void)
{

unsigned int i;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

InitI2C(); // Initialize I2C module

EEPROM_ByteWrite(0x0000,0x12);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion
EEPROM_ByteWrite(0x0001,0x34);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion
EEPROM_ByteWrite(0x0002,0x56);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion
EEPROM_ByteWrite(0x0003,0x78);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion
EEPROM_ByteWrite(0x0004,0x9A);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion
EEPROM_ByteWrite(0x0005,0xBC);
EEPROM_AckPolling(); // Wait for EEPROM write cycle

// completion

read_val[0] = EEPROM_RandomRead(0x0000); // Read from address 0x0000
read_val[1] = EEPROM_CurrentAddressRead();// Read from address 0x0001
read_val[2] = EEPROM_CurrentAddressRead();// Read from address 0x0002
read_val[3] = EEPROM_CurrentAddressRead();// Read from address 0x0003
read_val[4] = EEPROM_CurrentAddressRead();// Read from address 0x0004
read_val[5] = EEPROM_CurrentAddressRead();// Read from address 0x0005

// Fill write_val array with counter values
for(i = 0 ; i <= sizeof(write_val) ; i++)
{

write_val[i] = i;
}

address = 0x0000; // Set starting address at 0
// Write a sequence of data array
EEPROM_PageWrite(address , write_val , sizeof(write_val));
// Read out a sequence of data from EEPROM
EEPROM_SequentialRead(address, read_val , sizeof(read_val));

__bis_SR_register(LPM4);
__no_operation();

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A

www.ti.com References

7SLAA208A–October 2004–Revised August 2010
Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

Interfacing an EEPROM via I2C Using the MSP430

}

4 References
1. MSP430x2xx Family User’s Guide (SLAU144)
2. MSP430x1xx Family User’s Guide (SLAU049)
3. MSP430x261x Data Sheet (SLAS541)
4. MSP430x16x Data Sheet (SLAS368)
5. 24LC128 Data Sheet (24AA128/24LC128/24FC128)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA208A
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAS541
http://www.ti.com/lit/pdf/SLAS368
http://ww1.microchip.com/downloads/en/DeviceDoc/21191R.pdf

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Interfacing an EEPROM via I2C Using the MSP430
	1 Example Schematic
	2 MSP430 Source Code
	2.1 InitI2C
	2.2 EEPROM_ByteWrite
	2.3 EEPROM_PageWrite
	2.4 EEPROM_AckPolling
	2.5 EEPROM_RandomRead
	2.6 EEPROM_CurrentAddressRead
	2.7 EEPROM_SequentialRead

	3 Example
	4 References

	Important Notice

