
1 Introduction

2 Tuning the DCO – Theory

Application Report
SLAA336A–October 2006–Revised August 2007

Using the DCO Library
Lane Westlund .. MSP430 Applications

ABSTRACT
This document serves as an overview describing the use of the DCO library within
existing C or assembly projects. This library encapsulates routines used for setting the
DCO to a specific speed based on a multiplication of a known clock, such as a 32-kHz
crystal. These functions are written in assembly to be optimized for the MSP430 but
can be called from any C program that includes their header files.

It is often necessary to have the digitally controlled oscillator (DCO) of an MSP430 tuned to a specific
frequency. Due to device variances, simply setting the DCO register values to a constant value across all
devices is not a method that can ensure accurate results. In order to have accuracy, the DCO must be
tuned based on a known frequency. In 4xx devices, this is done automatically using the FLL. The purpose
of the FLL is to keep the DCO running at a certain multiple of ACLK. In 1xx and 2xx devices, which do not
have the FLL, a similar tuning process can be accomplished using software and timers. By using this
software FLL to periodically calibrate the DCO, a high degree of accuracy can be achieved, enabling the
DCO to run at any arbitrary frequency, provided the VCC requirements are met.

Included with this application report are library files which are intended to be compiled in a larger project.
These files include functions necessary for setting the DCO to a multiple of an external crystal.

Also included in the library are a series of code examples, intended to illustrate various methods of
initializing and using the library.

Every MSP430 comes with a DCO. The frequency at which the DCO oscillates can be adjusted by setting
the DCO registers. In this way, the DCO can be tuned by incrementally changing the registers and
comparing the resultant frequency against a known frequency. When the speed of a slower clock source
is known, such as a 32-kHz watch crystal, the DCO speed can be adjusted until a specific number of DCO
cycles occur in one cycle of the slower clock.

To accomplish this, a Capture/Compare Register of Timer_A is initialized in Capture mode. In this mode, it
captures the value of Timer_A when a low-to-high transition occurs on an internal signal. In this case, the
internal signal is ACLK. When SMCLK is driving the timer, the captured value becomes the number of
SMCLK cycles since the last ACLK low-to-high transition.

When the number of SMCLK cycles are known, the DCO can be adjusted and measured again using the
same capture method previously outlined. In this way, the DCO can be tuned to a specific multiple of the
known ACLK frequency. For increased accuracy, the ACLK signal can be divided by eight to increase
granularity.

SLAA336A–October 2006–Revised August 2007 Using the DCO Library 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA336A

www.ti.com

3 Safety Factors

4 DCO_Library – Usage From C

Safety Factors

In order to ensure reliable and safe use of the DCO library, several safety measures have been added to
the library.

In order to prevent the library from becoming trapped in an infinite loop, a maximum number of 10,000
loops are allowed. If the desired frequency is not set after 10,000 iterations, the function returns 0xFF, in
order to signify the timeout has occurred. It should be noted that this timeout is loop count based and not
time based. This means that a timeout does not occur if no ACLK signal is present.

On 2xx devices, the DCO speed should not exceed the specified 16 MHz. As an additional safety factor,
2xx devices will not increment the DCO settings above the value given in the factory-calibrated 16-MHz
register settings. If this value is reached, the function exits, returning 0×02 to indicate the DCO is set to
the fastest setting.

In order to ensure a more consistent time for setting the DCO, a tolerance has been built into the setDCO
routine. The routine exits if the measured DCO is exactly set to the desired multiplier or if the DCO speed
is one MCLK slower.

#include <msp430x11x1.h>
#include "DCO_Library.h"

void main(void)
{
volatile unsigned int I;
int result;
WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog Timer
P1DIR |= 0x12; // P1.1 and P1.4 outputs
P1SEL |= 0x10; // P1.4 SMCLK output
P2DIR |= 0x01; // P2.0 output
P2SEL |= 0x01; // P2.0 ACLK output
for(I = 0; I < 0xFFFF; I++){} // delay for ACLK startup

result = setDCO(TI_2MHz);

if(result == DCO_SET_TO_SLOWEST) // returned result if DCO registers hit min
{
while(1); // trap the CPU if hit

}
else if(result == DCO_SET_TO_FASTEST) // returned result if DCO registers hit max
{
while(1); // trap the CPU if hit

}
else if(result == DCO_TIMEOUT_ERROR) // result if DCO takes >10000 loops
{
while(1); // trap the CPU if hit

}
while(1)
{
P1OUT |= 0x02; // P1.1 = 1
P1OUT &= ~0x02; // P1.1 = 0

}
}

2 Using the DCO Library SLAA336A–October 2006–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA336A

www.ti.com

DCO_Library – Usage From C

The file DCO_Library.h must be included in order to gain access to the definitions and functions when
using the Library from a C program.

The appropriate device header file must also be included in the library. This requires editing the
DCO_Library.s43 file. The correct device header file must be included to accommodate differences
between ACLK connections in Timer_A2 and Timer_A3 devices.

This program is a demonstration of setting the DCO to 2 MHz by tuning it to a 32-kHz watch crystal.

After a delay to ensure the startup of the 32-kHz crystal, the function setDCO is called. This function takes
one parameter, an integer describing the desired frequency of the DCO. In order to tune the DCO, this
routine divides ACLK by eight, then increases or decreases the DCO settings until the number of DCO
cycles per ACLK cycle is equal to the number passed to the setDCO routine.

Put another way, the resultant DCO frequency is:

DCO = parameter × (32768/8)

For convenience and code legibility, the included header file contains many predefined values that set the
DCO to specific value. For safety, the numbers have always been rounded down, so that the frequency
does not exceed that of the definition.

The setDCO routine returns a character that indicates the result of the operation. These values are given
definitions in the header file for clarity. Using this return value, the routine can indicate that it has set the
DCO to the fastest or slowest setting possible without matching the frequency, timed out when trying to
set the DCO, or set the DCO to the desired frequency without error.

SLAA336A–October 2006–Revised August 2007 Using the DCO Library 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA336A

www.ti.com

5 DCO_Library – Usage From Assembly

DCO_Library – Usage From Assembly

#include <msp430x11x1.h>
EXTERN TI_SetDCO
;---

RSEG CSTACK ; Define stack segment
;---

RSEG CODE ; Assemble to Flash memory
;---
RESET mov.w #SFE(CSTACK),SP ; Initialize stackpointer
StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
SetupPx bis.b #012h,&P1DIR ; P1.1,4 output direction

bis.b #010h,&P1SEL ; P1.4 = SMCLK
bis.b #001h,&P2DIR ; P2.0 output direction
bis.b #001h,&P2SEL ; P2.0 = ACLK

;
mov.w #0xFFFF, r15 ; Delay for ACLK startup

Loop dec.w r15
jnz Loop

mov.w #488, r12 ; value for 2MHz
call #TI_SetDCO
cmp.w #0x00, r12
jz Mainloop
cmp.w #0xFF, r12
jz TimeoutError
cmp.w #0x02, r12 ; compare returned value
jl SlowestError ; 1 = DCO set to slowest
jz FastestError ; 2 = DCO set to fastest setting
jn TimeoutError ; 0xFF = loop timeout error

;
Mainloop bis.b #002h,&P1OUT ; P1.1 = 1

bic.b #002h,&P1OUT ; P1.1 = 0
jmp Mainloop ; Repeat

SlowestError
nop ; set breakpoint here
jmp SlowestError

FastestError
nop ; set breakpoint here
jmp FastestError

TimeoutError
nop ; set breakpoint here
jmp TimeoutError

;---
COMMON INTVEC ; Interrupt Vectors

;---
ORG RESET_VECTOR ; POR, ext. Reset
DW RESET
END

In assembly, the usage of the library is the same as in C. In this case, R12 is used for passing and
returning parameters.

Since the header file is not included, the predefined values are not used. Instead, the numerical values
can be placed in the assembly code.

Using the DCO Library4 SLAA336A–October 2006–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA336A

www.ti.com

6 CCE Usage

7 Code Size

8 Included Library Files

8.1 DCO_Library.s43

8.2 DCO_Library.h

9 Function Description

9.1 setDCO(int delta)

CCE Usage

With the CCE version of the library, an extra modification is needed. Besides modifying the included
header file, the correct value for DEVICE_TYPE must also be set. This is to ensure that the correct
Timer_A registers are used in the code. To set the correct device, uncomment the line that sets device
type to a value of 1, 2, or 3, depending on whether the device is a 1xx, 2xx Timer_A3, or 2xx Timer_A2,
respectively.

xxx

Size (bytes)

DCO Library 184

In the zip file accompanying this application report, there are two directories: source_CCE and
source_IAR. The files in these directories are functionally equivalent and only contain minor changes to
allow for compiling using CCE or IAR, respectively.

This file includes all needed functions and variables to DCO tuning.

This file includes the definitions for the functions and variables used in DCO_Library.s43. This file must be
included in any C program that uses the library. It also includes a series of precomputed parameters for
the setDCO function.

This function causes the DCO to be set to a specific frequency. This frequency is based on ACLK, which
is typically a 32-kHz crystal. From a 32-kHz crystal, the DCO speed becomes:

DCO = delta × (32768/8)

It should be noted that passing a delta of 1 or 0 results in incorrect behavior.

This function returns a status integer. There are several values used to describe the state of the DCO
after calling this function. These values are given easy-to-remember definitions in the header file:

• 0 == DCO_NO_ERROR : The DCO was set to the desired frequency.
• 1 == DCO_SET_TO_SLOWEST: The DCO registers were decremented to the slowest setting without

reaching the desired frequency.
• 2 == DCO_SET_TO_FASTEST: The DCO registers were incremented to the fastest setting without

reaching the desired frequency. On 2xx devices, this also means that the setDCO function
incremented the DCO until its settings were equal to the built-in 16-MHz calibrated values.

• 0xFF == DCO_TIMEOUT_ERROR: The DCO did not reach the desired frequency after conducting
10,000 measurement loops.

SLAA336A–October 2006–Revised August 2007 Using the DCO Library 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA336A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Tuning the DCO – Theory
	3 Safety Factors
	4 DCO_Library – Usage From C
	5 DCO_Library – Usage From Assembly
	6 CCE Usage
	7 Code Size
	8 Included Library Files
	8.1 DCO_Library.s43
	8.2 DCO_Library.h

	9 Function Description
	9.1 setDCO(int delta)

